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Influence of aspect ratio in convection due to nonuniform heating
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The influence of fluid depth in a convection problem in which heating is nonuniform is studied. We consider
a vessel that has at the bottom a temperature distribution which has Gaussian shape in the transversal direction
and whose surface is open to the atmosphere. Coupled buoyancy and thermocapillary effects are taken into
account. The results confirm a stationary bifurcation and a prelude of an oscillatory one as has been observed
recently in convection with quasi-one-dimensional heaters.@S1063-651X~98!09506-3#

PACS number~s!: 47.11.1j, 47.20.Dr, 47.20.Bp
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In convection there are situations in which localized
fects are able to generate differences in a large scale. In
general problem of turbulence it is important to know ho
proceses which involve different scales interact since i
thought that effects in a small scale are responsible for
haviors in a larger scale. In our problem we see how
effect in a small scale~localized heating! influences the be-
havior of a fluid in a larger scale and we compare this loc
ized effect with the global one. We think that the study
localized effects can help the understanding of turbulen
Along these lines the works of Kazarinoff and Wilkowski@1#
study thermocapillary flows in axially symmetric float zone
They discuss localized heating that corresponds to the
perimental results in Refs.@2–7#, in which the heaters hav
low ‘‘heat capacity’’ and, therefore, it is conceivable that
coupling between the temperature distributions of the he
and the fluid exists. This coupling has been avoided in R
@9# and the situation described here would be more clos
related to this experiment. In Ref.@8# the primary stationary
bifurcation that appears in convection due to nonunifo
heating is studied in a vessel for a fixed aspect ratio betw
the depth and the width of the cell. In this paper we exte
the study to several aspect ratios and we look at the influe
of this parameter in the problem. The physical situation t
we consider is shown in Fig. 1. There is a horizontal flu
layer of depthd (z coordinate! in a container of lengthL (y
coordinate! and widthl (x coordinate!. As shown in the fig-
ureL@ l and for this reason it can be considered to be in
ity. The container has a rigid bottom plate and an up
surface open to the atmosphere. A heater is located in
middle of the bottom plate atx5 l /2, along they direction.
The width of this heater is much smaller than the width
the container. The heater is atT0, and the temperature of th
environment isT1 (,T0). Then DT5T02T1 is the local
difference of temperatures in the liquid layer just over t
heater. When the heater is switched on a temperature d
bution which is Gaussian inx direction appears at the bo
tom.

The behavior of the system is as follows: a basic conv
tive state appears without threshold if a temperature grad
with horizontal component different from zero is applied.
consists of two big rolls parallel to the heater and filling t
convective cell. The basic rolls suffer a stationary bifurc
tion. The threshold for the bifurcation changes with the de
571063-651X/98/57~6!/7336~4!/$15.00
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of the fluid in such a way that while depth increases
temperature gradient required decreases. Experimental m
sures show us that for increasing depths and high value
the applied temperature gradient traveling waves are p
sible. We determine the basic state numerically and we p
form a linear stability analysis on this solution. We find th
the basic rolls suffer a stationary bifurcation and we obt
that theoretically the temperature gradient required depe
on the depth in the same way as the experiments show.
threshold also depends on the geometry of the wire hea
on the vessel, and on the environment and fluid propert
By increasing depth it appears a complex eigenvalue bra
for the appropriate wave numberk, but at the reported depth
it does not destabilize.

Starting from the general hydrodynamic problem our a
proximations follow@8#.

~1! The Oberbeck-Boussinesq approximation usual
convective problems.

~2! The variation of the surface tension as a function
the temperature is approximated bys(T)5s02g(T2T0),
wheres0 is the surface tension at temperatureT0, g is the
constant rate of change of surface tension with tempera
(g is positive for most current liquids!.

~3! The length in they direction is considered infinite.
~4! The free surface is assumed to be undeformable.
~5! The Prandtl number is considered infinite. This allow

some simplifications in the velocity potential and in th
equations. A very useful approach is to express the velo
field u in terms of a potential as follows:u5“3“3f ez
1“3j ez , where “3“3f ez is the poloidal part and
“3j ez is the toroidal part, but if the fluid has an infinit
Prandtl number, the equation forj has only the solutionj

FIG. 1. Problem setup.
7336 © 1998 The American Physical Society
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50 and it is sufficient to consider the poloidal part. The
fore the final expression for the velocity field isu
5(]x]zf,]y]zf,2D1f), where D15]x

21]y
2 . The transla-

tional symmetry in they direction for the basic state implie
that all the derivatives in this coordinate are zero. So i
possible in this case to obtain a simpler expression for
velocity field. If we call c5]xf, we have u5(]zc,0,
2]xc).

With these approximations the equations and bound
conditions for the basic state are

2

G
]zc]xQ2

2

G
]xc]zQ5DQ, ~1!

D2c2
1

G
R]xQ50, ~2!

whereD5(1/G2)]x
214]z

2 .

Q5exp @2~39x!2/~b!# at z521, ~3!

FIG. 2. Isotherms of the basic state before the instability fob
5200 and differentd, h numbers and temperature differencesDTc ,
the axes arex and z. ~a! d51 mm, h520 W/ (m2 °C ) and DT
51 °C (R516.614, M5150.654, and B50.161). ~b! d
51 mm, h5124 W/ (m2 °C), and DT51 °C (R516.614, M
5150.654, andB51.000).~c! d51 mm, h520 W/ (m2 °C), and
DT54.66 °C (R577.420, M5702.056, andB50.161). ~d! d
52.5 mm, h520 W/ (m2 °C), and DT51 °C (R5259.589, M
5376.640, andB50.403).
-

s
e
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c50 at z521, ~4!

]zc50 at z521, ~5!

BQ522]zQ at z51, ~6!

24]z
2c5

M

G
]xQ at z51, ~7!

]xQ50 at x561, ~8!

c50 at 561, ~9!

]xc50 at 561, ~10!

where 21<x<1, 21<z<1. In these equationsb is the
width of the temperature distribution andG is the aspect ratio
which is defined asG5 l /2d. The boundary conditions at th
surface involve the Biot numberB and the Marangoni num
berM . The Biot number isB5hd/K, whereh is the thermal
surface conductance andK is the thermal conductivity. It
describes the heat interchange at the surface. The Maran
number is defined asM5(gDTd)/(knr0) where g is the
constant rate of change of surface tension with temperat
k is the thermal diffusivity,n is the kinematic viscosity, and
r0 is the mean density of the liquid. This number takes
count of the thermocapillarity effects.

We have solved numerically these equations with
Chebyshev-collocation method@8#. The fields are approxi-
mated by the expansions:

f̃~x,z!5 (
n50

N21

(
m50

M21

anmTn~x!Tm~z!, ~11!

Q̃~x,z!5 (
n50

N21

(
m50

M21

bnmTn~x!Tm~z!, ~12!

whereTn , Tm are the Chebyshev polynomials.
The solution obtained for the basic state can be see

Fig. 2.
In order to perform a linear stability analysis of the bas

state (ub , Qb) we perturb it with a vector field dependin
on thex, y, andz coordinates, in a fully three-dimensiona
~3D! analysis:
TABLE I. Critical DTc andkc for different orders of expansions forb5200.

h51240 W/ (m2 °C) h5124 W/(m2 °C) h520 W/(m2 °C)
d N3M DTc kc DTc kc DTc kc

1.5 233 7 2.51 2.85 1.01 2.40 2.45 2.25
25 3 7 2.51 2.90 1.01 2.40 2.47 2.25
27 3 7 2.51 2.85 1.01 2.45 2.49 2.25

2.0 233 7 2.11 2.85 0.75 2.50 1.66 2.40
25 3 7 2.11 2.90 0.75 2.45 1.68 2.35
27 3 7 2.11 2.90 0.75 2.45 1.70 2.40

2.5 233 7 1.72 2.85 0.61 2.50 1.34 2.25
25 3 7 1.71 2.90 0.60 2.60 1.37 2.50
27 3 7 1.71 3.00 0.60 2.60 1.39 2.50



a-
e

lly
c

it
de
ffe
i-
in

r in
n
by

n

ace

y
s is

the

l
er.

all

h

ted

7338 57BRIEF REPORTS
ub~x,z!1ũ~x,z!elt1 iky, ~13!

Qb~x,z!1Q̃~x,z!elt1 iky. ~14!

The expressions~13! and~14! are replaced in the basic equ
tions ~1!–~10!. After eliminating the second order terms w
obtain the following eigenvalue problem:

S l2D1ux

]x

G
12uz]zD Q̃1S 2

G
]xQ]x]z2]zQD1D f̃50,

~15!

2D2D1f̃1RD1Q̃50. ~16!

24]z
2f̃2MQ̃50 at z51, ~17!

f̃50 at z521,1, ~18!

]zf̃50 at z521, ~19!

22]zQ̃2BQ̃50 at z51, ~20!

Q̃50 at z521, ~21!

f̃50 at x521,1, ~22!

]xQ̃50 at x521,1, ~23!

]xf̃50 at x521,1, ~24!

]x
2f̃50 at x521,1, ~25!

where the Laplacians areD5(1/G2)]x
214]z

22k2 and D1

5(1/G2)]x
22k2. We solve the problem posed numerica

with a Chebyshev-collocation method in which convergen
has been tested. In order to do this we consider that
reached if differences of consecutive approximations
crease for increasing order of the expansions and the di
ences between theDTc calculated with consecutive approx
mations are less than 0.05 °C. The influence of increas
the order in thez direction expansions (M ) is very small,

FIG. 3. Critical temperature thresholdsDTc as a function of
depth for different values ofh @h520, 124, and 1240 W/(m2 °C)#
and b. The solid line is forb5` and the dashed line is forb
5200. The circles correspond to the points calculated numeric
e
is
-
r-

g

and for this reason we only consider the increasing orde
the x direction expansions (N). The results can be seen i
Table I. From them we see that convergence improves
increasingh or b and decreasingd. The influence of depth
and other parameters, such as the width of the distributiob
or the thermal surface conductanceh, in the stability of the
basic state is studied by taking different values for them.

In Fig. 3 the solid line shows forb5` and different
values ofh, the critical thresholdsDTc depending ond. It
can be appreciated that asd increasesDTc decreases. The
dependence of the critical threshold on the thermal surf
conductance is not monotonous; it is minimum forh
5124 W/ (m2 °C) ~i.e., for d52, B52) and the maximum
changes betweenh520 W/ (m2 °C) ~i.e., for d52, B
50.3226) andh51240 W/ (m2 °C) ~i.e., for d52, B520).
We can say the same forb5200. The results are shown b
the dashed line. The difference between both situation
that the critical temperature difference increases whileb
decreases. The same information as in Fig. 3 but with
classical dimensionless numbersR andM as can be seen in
Fig. 4.

The value ofd affects not only the value of the critica
temperature but also the value of the critical wave numb

y.

FIG. 4. Critical Marangoni number as a function of Rayleig
number for different values of h @h520, 124, and
1240 W/(m2 °C)# andb. The solid line is forb5` and the dashed
line is for b5200. The circles correspond to the points calcula
numerically.

TABLE II. Critical wave numberskc depending ond for the
two values of the width of the distributionb and different values of
the thermal surface conductanceh.

h @W/ (m2 °C)# d kc (b5200) kc(b5`)

1.5 2.90 2.80
1240 2.0 2.90 2.80

2.5 2.90 2.75

1.5 2.40 2.40
124 2.0 2.45 2.40

2.5 2.60 2.45

1.5 2.25 2.05
20 2.0 2.35 2.10

2.5 2.50 2.15
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FIG. 5. Eigenvalue curves as a function of the wave number for different temperaturesDT andd52.5 mm.~a! The heating is uniform
(b5`); ~b! the heating is nonuniform (b5200). In this case a complex branch appears that is plotted with a thick dotted line.
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The main influence inkc is due toh, kc increases whenh
increases, but for some fixed values of the thermal sur
conductance, the values ofkc increase for large depths. Th
lack of homogeneity of the heating also affects the criti
wave number since forb5200,kc has larger values than th
ones obtained forb5` ~see Table II!.

An important feature of the eigenvalue curve rises
increasing depths. It consists of the appearance of com
eigenvalues fork which is one-half of that of the stationar
patterns but that does not destabilize at the reported de
We find that ifb is not infinite and depth takes larger valu
this effect is favored. In Fig. 5, for uniform heating compl
eigenvalues do not appear even after the primary bifurca
However, if b5200 for depth d52.5 mm, h
520 W/ (m2 °C), andDT53 °C a complex branch appea
in the maximum eigenvalue curve. Although a primary
furcation to traveling waves has not been proven it could
possible that the complex branch of the eigenvalue cu
makes them appear as secondary ones.

It is not possible to make a direct quantitative compari
with experiments because in them several parameters ar
known, i.e., theh and b numbers. In Ref.@9# for d52 a
transition to longitudinal rolls appears forDTc'17 °C and
we obtain this transition atDTc51.68 °C, 0.75°C, and
2.11 °C forb5200 andh520, 124, and 1240 W/ (m2 °C),
respectively. AsDTc increases whenh decreases, probably
w
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-
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n
un-

lower value ofh would fit better with the experimental re
sults. However, some qualitative features are recovered
the experiments described in Ref.@9# the decreasing depen
dence of the temperature thresholds while the depth incre
is qualitatively the same as ours. On the other hand, in
experimental results traveling waves are possible for a w
number half the stationary one. This happens for high dep
Although we do not prove such a bifurcation we find a co
plex branch in the eigenvalue curve for the appropriate w
numbers.

Our results indicate that the stationary patterns are
interface motions which are excluded from the beginni
but bulk motions. The mechanisms of instability are buo
ancy and thermocapillarity, but the patterns are not produ
only on the surface, but influence the whole layer of fluid
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Pérez-Garcı´a, A. Garcimartı´n, D. Maza, and H. Mancini for
useful comments and discussions. H. H. thanks the Dep
ment of Applied Mathematics of the University Compluten
of Madrid, where a part of this work was done. This wo
was partially supported by a Research Project PIUNA~Uni-
versity of Navarra! and DGICYT ~Spanish Government!
Grant Nos. PB95-0578 and PB96-0534 and by the Univer
of Castilla-La Mancha.
t

G.

J.
@1# N.D. Kazarinoff and J.S. Wilkowski, Phys. Fluids A2, 1797
~1990!; 1, 625 ~1989!.

@2# D. Schwabe, R. Velten, and A. Scharmann, J. Cryst. Gro
99, 1258~1990!.

@3# W. Kayser and J. Berg, J. Fluid Mech.57, 739 ~1973!.
@4# R. Anthore, P. Flambet, P. Gouesbet, M. Rhazi, and M. W

Appl. Opt. 21, 2 ~1982!.
@5# M. E. Weill, M. Rhazi, and G. Gouesbet, J. Phys.~France! 46,

1501 ~1985!.
@6# J. Vince and M. Dubois, Europhys. Lett.20, 505 ~1992!.
@7# E. Ringuet, C. Roze, and G. Gouesbet, Phys. Rev. E47, 1405
h

l,

~1993!; E. Ringuet, S. Meunier-Guttin-Cluzel, C. Roze, and
Gouesbet, J. Phys.~France! II 4, 1243~1994!.

@8# A.M. Mancho, H. Herrero, and J. Burguete, Phys. Rev. E56,
2916 ~1997!.

@9# J. Burguete, H. Mancini, and C. Pe´rez-Garcı´a, Europhys. Lett.
23, 401 ~1993!; D. Maza, J. Burguete, and H. Mancini, Int.
Bifurcation Chaos Appl. Sci. Eng.4, 1353~1994!; J. Burguete,
H. Mancini, D. Maza, and C. Pe´rez-Garcı´a ~unpublished!; J.
Burguete and H. Mancini~unpublished!; J. Burguete, Ph.D.
thesis, Universidad de Navarra, 1995.


