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Phase instabilities in hexagonal patterns(∗)
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PACS. 47.20Ky – Nonlinearity (including bifurcation theory).
PACS. 42.65Sf – Dynamics of nonlinear optical systems; optical instabilities, optical chaos and

complexity, and optical spatio-temporal dynamics.

Abstract. – The general form of the amplitude equations for a hexagonal pattern including
spatial terms is discussed. At the lowest order we obtain the phase equation for such patterns.
The general expression of the diffusion coefficients is given and the contributions of the new
spatial terms are analysed in this paper. From these coefficients the phase stability regions in
a hexagonal pattern are determined. In the case of Bénard-Marangoni instability our results
agree qualitatively with numerical simulations performed recently.

Several systems out of equilibrium exhibit hexagonal patterns. Historically, the cellular
patterns reported by Bénard almost a century ago were the first nonequilibrium system showing
this planform [1]. More recently, hexagonal patterns were obtained in front solidification [2], in
Rayleigh-Bénard convection with non-Boussinesquian effects [3], in Faraday crispation [4], in a
nonlinear Kerr medium [5], in a liquid-crystal valve device [6], in chemical Turing patterns [7],
in ferrofluids [8] and in vibrating granular layers [9]. Although the physical mechanism
responsible for these patterns is different in each system, they can be described within a
common framework. A hexagonal pattern can be seen as the superposition of three systems
of rolls at 2π/3 rad, so that the resonance condition k1 + k2 + k3 = 0 is satisfied. The main
aim of this paper is to discuss the form of the evolution equations of the amplitudes of those
three modes, i.e. the so-called amplitude equations, as well as the most general linear phase
equation for a hexagonal pattern and the corresponding stability regions.

From symmetry arguments one can deduce [10] that the normal form for the amplitude of
the modes forming the hexagonal pattern is

∂tA1 = εA1 + α0Ā2Ā3 − γ(|A2|
2 + |A3|

2)A1 − |A1|
2A1 . (1)

(The overbar denotes complex conjugation. The equations for A2 and A3 are obtained by
rotating the subindices.) Spatial variations can be included following the Newell-Whitehead
technique (see ref. [11]). Up to the third order in the amplitudes the linear spatial variations of
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Fig. 1. – Unitary vectors: ni parallel and τi perpendicular to the wave numbers in a hexagonal pattern.

each system of rolls is in the form (n̂1 · ∇)2A1, a term that must be added to eq. (1). Here n̂1

indicates a unitary vector in the direction of the first system of rolls. Until recently, as in the
case of a pattern of rolls, only this term was considered. Brand [12] discussed the possibility
of including terms in the form (A∇A). Considering the hexagonal symmetries (reflections on
X-axis and Y -axis, and 2π/3 rad rotations) this author deduced that a term in the form

iβ1[Ā3(n̂2 · ∇)Ā2 + Ā2(n̂3 · ∇)Ā3] (2)

(β1 is a real coefficient) could also be added to eq. (1). However, as noticed by several
authors [13,14], in the same order another term can appear, namely

iβ2[Ā3(n̂3 · ∇)Ā2 + Ā2(n̂2 · ∇)Ā3] (3)

(again β2 is a real coefficient). It can easily be seen that this term also remains invariant under
the hexagonal group transformations [15].

Then, for perturbations up to the third order a generalized amplitude equation that accounts
for spatial variations in a hexagonal pattern is

∂tA1 = εA1 + (n̂1 · ∇)2A1 + α0Ā2Ā3 +

+iβ1[Ā3(n̂2 · ∇)Ā2 + Ā2(n̂3 · ∇)Ā3] + iβ2[Ā3(n̂3 · ∇)Ā2 + Ā2(n̂2 · ∇)Ā3]−

−γ(|A2|
2 + |A3|

2)A1 − |A1|
2A1 . (4)

The gradient terms in eqs. (2) and (3) are a consequence of quadratic resonances and
therefore their influence is essentially two-dimensional. (It should be noticed that, at the same
order, terms in the form |A|2∇A could be included, but for the sake of simplicity we will not
consider them in this paper). To gain some physical insight into the problem, it is useful to
express the derivatives in eq. (3) in terms of the unitary vectors of the corresponding mode,

i.e. n̂2 = − 1
2 n̂3 +

√
3

2 τ̂ 3 in the first term and n̂3 = − 1
2 n̂2−

√
3

2 τ̂ 2 in the second, where τ̂ i stands
for the unitary vectors perpendicular to the direction of the wave number of the corresponding
system of rolls (see fig. 1). Notice that the gradient terms (eqs. (2) and (3)) can be added to
give

iα1[Ā3(n̂2 · ∇)Ā2 + Ā2(n̂3 · ∇)Ā3] + iα2[Ā2(τ̂ 3 · ∇)Ā3 − Ā3(τ̂ 2 · ∇)Ā2] (5)

with α1 = β1 −
1
2β2 and α2 =

√
3

2 β2. Terms in this form have been discussed by Gunaratne et
al. [13] for chemical reactions, Kuznetsov et al. [14] for Rayleigh-Bénard convection and Bra-
gard and Golovin et al. [16] for Bénard-Marangoni convection. A term with the coefficient α1

accounts for distortions in the direction of the rolls and it therefore corresponds to dilatations
of hexagons (it slightly changes the volume in Fourier space), while the terms with α2 account
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Fig. 2. – a) Dilatations and b) distortions of a hexagonal pattern.

for distortions of the hexagonal form. In fig. 2 we represent the action of these two terms in
Fourier space. As discussed by Kuznetsov et al. [14], α0 and α1 vanish when the bifurcation
that leads to the hexagonal pattern is supercritical, while in the subcritical case the three
coefficients α are, in general, different from zero. The term with α1 will stabilize patterns with
|k| 6= |kc| while the term with α2 would stabilize nonequilateral hexagons.

With the transformation in eq. (5), eq. (4) becomes

∂tA1 = εA1 + (n̂1 · ∇)2A1 + α0Ā2Ā3 +

+iα1[Ā3(n̂2 · ∇)Ā2 + Ā2(n̂3 · ∇)Ā3] + iα2[Ā2(τ̂ 3 · ∇)Ā3 − Ā3(τ̂ 2 · ∇)Ā2]−

−γ(|A2|
2 + |A3|

2)A1 − |A1|
2A1 . (6)

Now let us consider solutions with a wave number k slightly different from kc, i.e. Ai = Âie
iqi ·r

with qi = ki − kc. We are interested in homogeneous and stationary solutions of the last
equation in the form of hexagons Â1 = Â2 = Â3 = H 6= 0 for which the amplitude must be

H =
(α0 + 2qα1) +

√
(α0 + 2qα1)2 + 4(ε− q2)(1 + 2γ)

2(1 + 2γ)
. (7)

The stability of this solution is determined considering perturbations in the form Ai =
Heiqi·xi(1 + ri + iφi), where ri is the amplitude and φi is the phase of the perturbation.
After introducing these perturbations in eq. (6) and linearizing, one arrives at the following
system of equations:

∂tr1 = ∂2
1r1 − 2q∂1φ1 + (α0 + 2qα1)H(r2 + r3 − r1) +H

(
α1 +

α2√
3

)
(∂2φ2 + ∂3φ3) +

+α2H(∂3φ2 + ∂3φ3)− 2H2r1 − 2γH2(r2 + r3) , (8)

∂tφ1 = 2q∂1r1 + ∂2
1φ1 − (α0 + 2qα1)H(φ1 + φ2 + φ3) +H

(
α1 +

α2√
3

)
(∂2r2 + ∂3r3) +

+
2
√

3
α2H(∂2r3 + ∂3r2) , (9)

where we have used the following notation: ∂i = n̂i · ∇. We assume that the amplitudes ri
and the total phase Φ = φ1 + φ2 + φ3 are fastly decaying variables and therefore they can be
eliminated adiabatically. As a result, the dynamics is dominated by two of the phases. Instead
of using φ2 and φ3 one can take a vector ~φ = [−(φ2 + φ3), 1√

3
(φ2 − φ3)] and the resulting

equation will have the most general form of a linear diffusion equation in 2D,

∂t
~φ = D⊥∇

2~φ+ (D‖ −D⊥)∇(∇ · ~φ) . (10)
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Fig. 3. – Stability region of hexagonal cells with α1 = α2 = 0. Notice that this region is symmetrical
with respect to the vertical axis. The phase instabilities are represented by a solid (D‖ = 0) and a
dashed line (D⊥ = 0).

This is the linear phase equation of a pattern of hexagons. The form of the coefficients
in this equation has been chosen by analogy with that in the wave equation in an elastic
solid [17]. (The velocity of the transversal waves ct corresponds here to D⊥, while the velocity
for the longitudinal waves cl is replaced by D‖.) Using this analogy, we split the phase
~φ into a longitudinal part ~φl and a transversal ~φt, that satisfy ∇ × ~φl = 0 (rhomboidal

phase perturbations) and ∇ · ~φt = 0 (rectangular phase perturbations). It can be proved
straightforwardly that these components satisfy

∂t
~φl = D‖∇

2~φl, ∂t
~φt = D⊥∇

2~φt. (11)

A linear stability analysis of these equations shows that the system is stable to phase pertur-
bations provided that D⊥ > 0 and D‖ > 0. After tedious calculations one arrives to a general
expression of these coefficients:

D⊥ =
1

4
−
q2

2u
+
H2

8u
(α1 −

√
3α2)2 , (12)

D‖ =
3

4
−
q2(4u+ v)

2uv
+
H2

8u
(α1 −

√
3α2)2 −

H2α1

v
(α1 +

√
3α2) +

+
Hq

v
(3α1 +

√
3α2) (13)

with the relationships

u = H2(1− γ) + (α0 + 2α1q)H > 0 , (14)

v = 2H2(1 + 2γ)− (α0 + 2α1q)H > 0 . (15)

The curves D⊥ = 0 and D‖ = 0 determine the stability of a regular hexagonal pattern
to rhomboid and rectangular phase perturbations, respectively, while u = 0 determines the
region where the hexagons are unstable to amplitude perturbations. Let us mention that
we have assumed that the homogeneous stationary solution H is positive, so α0 + 2qα1 > 0.
Otherwise, the hexagons become unstable to a global phase change from 0 to π (up-hexagons to
down-hexagons). It is interesting to examine the influence of the different parameters in phase
stability. We first consider the particular case in which the nonlinear spatial terms are absent
(α1 = α2 = 0). This case has been considered by several authors [18–20]. The results are given
in fig. 3 in a (q, ε) representation, where the shaded area corresponds to the stability region of
the hexagonal pattern. Notice that due to the symmetry q → −q in the diffusion coefficients
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Fig. 4. – Stability region of a hexagonal pattern when all spatial terms are included. a) Closed case
(α0 = 1, α1 = α2 = 0.5, γ = 4). b) Open case (α0 = 1, α1 = 1, α2 = 2.5, γ = 4).

and in u and v this figure is symmetrical with respect to the vertical axis. Near threshold
rhomboidal phase perturbations destabilize the pattern (D‖ = 0), but for higher supercritical
conditions the pattern becomes unstable by rectangular phase perturbations (D⊥ = 0). These
two curves intersect at the values of q that correspond to the conditions D⊥ = D‖ = 0,

i.e. q = ±α0

2γ

√
(1 + γ)/2. (For (α1, α2) 6= 0 these points are quantitatively but not qualitatively

modified.) Both curves are tangent at q = 0 with the upper amplitude stability curve u = 0.
From eqs. (13)-(15) one can deduce the following symmetry properties:

H(α1, q) = H(−α1,−q); u(α1, q) = u(−α1,−q); v(α1, q) = v(−α1,−q) , (16)

D‖(α1, α2, q) = D‖(−α1,−α2,−q); D⊥(α1, α2, q) = D⊥(−α1,−α2,−q).

These symmetry expressions imply that the stability curves for a particular value of (α1, α2)
become reflected in a (q, ε) representation with respect to the vertical axis under the transfor-
mation α1 → −α1, α2 → −α2.

The stability curves are qualitatively modified when the gradient terms are present. In
general, for (α1, α2) 6= 0 the stability regions are no longer symmetrical with respect to the
ε-axis. An example of this situation is given in fig. 4a). Several cases are possible. We see that
for (α1, α2) > 0 the phase instability curves (D‖ = 0, D⊥ = 0) are decentered to the right,
while the minimum of amplitude instability curve u = 0 is decentered to the left in the (q, ε)
plane. The phase instability and the amplitude instability curves are tangent at q = 0 when
the two conditions D⊥ = 0 and u = 0 are met simultaneously. This leads to the condition
α1 =

√
3α2. (Notice that the two phase instability curves are tangent at the same point). But

in many cases the phase and amplitude instability curves intersect at two points, namely

q = −
α0(α1 −

√
3α2)

2[α1(α1 −
√

3α2))± (γ − 1)]
. (17)

However, when the following condition |α1(α1−
√

3α2)| ≥ (γ−1) is satisfied the curve D⊥ = 0
is not closed and the phase and amplitude instability curves do not intersect themselves in the
q ≥ 0 quadrant. (Such a situation is represented in fig. 4b).)

When convection is due to surface-tension variations with the temperature (Bénard-Maran-
goni (BM) convection) the condition α1 > 0 is satisfied [21]. Two examples of the the phase
stability region for (α1, α2) ≥ 0 are given in fig. 3. We notice that the stability regions
in figs. 3a) and 3b) are in qualitative agreement with the numerical results obtained by
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Bestehorn [22] for the BM problem. We shall mention that in experiments performed by
Koschmieder [23] the number of cells increases (q increases) with the supercritical heating
in BM convection. The corresponding values are fitted quite well with the line of maximal
growth rate obtained numerically by Bestehorn [22]. (This line remains inside the phase
stability region.) This asymmetry could explain why in that system the transition between
hexagons and rolls is not observed near threshold.

From the general form of the amplitude equations we derived the phase equation for a
hexagonal pattern which is formally similar to the wave equation in an elastic solid. The
expressions of the coefficients in this equation allow to determine the stability diagram. Un-
fortunately, experimental results on these phase instabilities are not available yet. We hope
that the present results will suggest new experiments to study the wave number selection
mechanisms in hexagonal patterns in different physical systems.
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