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Bekki-Nozaki Amplitude Holes in Hydrothermal Nonlinear Waves
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We present and analyze experimental results on the dynamics of hydrothermal waves occurring in
a laterally heated fluid layer. We argue that the large-scale modulations of the waves are governed
by a one-dimensional complex Ginzburg-Landau equation (CGLE). We determine quantitatively
all the coefficients of this amplitude equation using the localized amplitude holes observed in the
experiment, which we show to be well described as Bekki-Nozaki hole solutions of the CGLE.
[S0031-9007(99)08940-1]
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The status and nature of the so-called amplitude eq
tions which can be derived in the vicinity of symmetry
breaking instabilities is now well established [1,2]. The
are “universal” insofar as they essentially depend on t
symmetries of the physical system and of its bifurcated s
lutions, but also because they often remain valid, at le
at a qualitative level, even far away from the instabilit
threshold [3,4]. However, determining accurately the c
efficients of the underlying relevant amplitude equatio
from experimental data remains a difficult task, especia
in these far-from-threshold regimes.

The complex Ginzburg-Landau equation (CGLE
which describes the large-scale modulations of the bif
cated solutions near oscillatory instabilities, is perha
the most-studied amplitude equation [1]. This privilege
situation is due to both its relevance to many experimen
situations and to the variety of its dynamical behavio
in particular, its spatiotemporal chaos regimes. One
the landmarks of the CGLE is that it possesses localiz
“defect” solutions. Even in one space dimension, whe
no topological constraint exists, numerical simulations
the CGLE [5,6] and analytical [7,8] work have reveale
the existence and importance of various amplitude h
solutions, which can often be seen as the “building block
of the complex spatiotemporal dynamics observed.
particular, the one-parameter family of traveling ho
solutions discovered by Bekki and Nozaki [9] has be
shown to play an important dynamical role in a larg
portion of parameter space including in regions whe
they are linearly unstable [5]. Similar objects have be
identified in various experimental contexts ofa priori
relevance, e.g., Rayleigh-Bénard convection and coup
wakes [10]. However, to our knowledge, there is still n
case where a direct comparison with known solutions
the CGLE could be achieved.

In this Letter, we present a quantitative compariso
of localized amplitude holes observed in an experime
with hole solutions of the CGLE, the relevant amplitud
equation. We use the observed holes to fully determ
the coefficients of the underlying CGLE. This provide
clear-cut evidence of Bekki-Nozaki holes in an expe
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mental context. Our system is a long, straight, and na
row convection cell in which a thin fluid layer with a free
surface is subjected to a horizontal temperature gradie
Hydrothermal nonlinear waves appear via a direct Ho
bifurcation, indicating the relevance of the CGLE. Th
spatiotemporal dynamics of the waves exhibits localize
amplitude holes. The basic scales of the equivalent CGL
are determined using the regular part of the wave train
Data collected in the vicinity of amplitude holes show tha
they have the structure of Bekki-Nozaki solutions. Thi
also provides estimates of the remaining coefficients
the CGLE, an approach which, we argue, could be ef
cient in other experimental contexts. Finally, the overa
consistency of our results is checked.

The experimental setup is schematically described
Fig. 1. A layer of fluid [silicon oil of viscosityn 
0.65 cS (centistoke) and Prandtl numberP  10] of height
h is confined between two copper blocks maintained
fixed temperaturesT1 andT2 by thermostated water circu-
lation, and a bottom glass plate. This forms a straight, na
row channel of lengthLx  25 cm and widthLy  2 cm.
As soon as the temperature differenceDT  T1 2 T2 is
not zero, a basic flow sets in. It consists of a surface flo
towards the cold side with a bottom recirculation. Increa
ing DT , the basic flow becomes unstable to traveling hy
drothermal waves [11] via a supercritical Hopf bifurcation
[12]. We observe these waves by low-contrast shadowg
phy, which captures the vertical average of the temperatu

FIG. 1. Experimental cell and basic wave pattern. Above
Schematic side view. Below: Top view and instantaneou
shadowgraphic image of the wave pattern.
© 1999 The American Physical Society
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gradient variations (surface waves exist, but their effect
negligible). In this geometry, the waves propagate aw
from a “source region” located arbitrarily on the cold wal
and the end boundaries atx  0, Lx act as sinks with no
apparent reflection (Fig. 1). Forh  1.2 mm, correspond-
ing to the experiment reported below, the source regi
emits curved waves which become planar further aw
(Fig. 1, bottom) and propagate along thex axis.

Figure 2a presents a typical spatiotemporal evoluti
as obtained from the acquisition, with a fixed-gain cam
era, of a single 512-pixel line (of negligible width) along
the x axis in the center of the cell. Here, the source a
pears as a rather ill-defined, erratic object. (Closer to t
Hopf bifurcation, steady, regular, evolution is observed
Fourier analysis of diagrams such as Fig. 2a reveals t
on each side of the source only waves propagating aw
from the source are present and that they are approxima
monochromatic (the second harmonic is 2 orders of ma
nitude smaller). More precisely, restricting ourselves
one side of the source (sayx $ 90 on Fig. 2a), we can
write the recorded physical variable:

V sx, td  Asx, td expfisk0x 2 v0tdg 1 c.c., (1)

FIG. 2. Spatiotemporal evolution of the wave pattern ath 
1.2 mm andDT  5.1 K (yielding a Marangoni number Ma.
950). Only a central portion of length 18.5 cm is shown durin
100 s. (a) Original data; (b) evolution of the modulusjAj
(black: jAj  0; white: jAj  1); and (c) phase gradientk
(dark: k , 0; bright: k . 0).
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where k0 is the dominant wavelength,v0 is the basic
frequency, andA is a one-dimensional complex field
describing the (large-scale) modulations of this wave. (O
the other side of the source, one has to change the s
of k0.)

Using complex demodulation techniques,A can be
extracted from the experimental data. Figures 2b and
show the space-time evolution ofjAj and k  q 6 k0,
where q  ≠x argsAd. In these pictures, the localized
deformations of the waves visible in Fig. 2a clearly appe
as propagating amplitude holes across which the pha
gradient varies rapidly. At some space-time points,jAj
even vanishes and the phase gradient diverges: A spa
time dislocation occurs (Fig. 2a). The amplitude hole
can be seen as the objects mediating the evolution to wa
patterns more regular than those emitted by the source.

Our system clearly calls for a one-dimensional mode
The waves arise via a supercritical Hopf bifurcation
Away from the source, they propagate only in one direc
tion. All of this indicates that the evolution ofA could be
governed by a single CGLE on each side of the sourc
even though the regime studied here takes place at a fin
distance from threshold (forh  1.2 mm, DTc . 4.3 K,
and thus the relative distance to threshold is´  0.19 for
DT  5.1 K). We thus suppose thatA obeys

t0s≠t 2 yg≠xdA  ´A 1 j2
0s1 1 iad≠xxA

2 gs1 1 ibd jAj2A , (2)

whereyg is the group velocity of the waves,t0 andj0 are
the basic time and length scales of the wave modulation
andg is a real number. Below, we estimate, from the da
of Fig. 2, all of the coefficients of Eq. (2) and check the
overall consistency of our hypothesis.

The linear part of the variation of the local frequencyv

with the local wave numberk yields our estimate of the
group velocity: yg  ≠vy≠k . 21.16 mmys (Fig. 3a).
This is consistent with the average value of the veloci
of small perturbations, estimated at21.15 6 0.25 mmys,
to be compared to the phase velocityyf  v0yk0 .
22.8 mmys. This confirms that the source is indeed
source, since perturbations do propagate outward.

Figure 3b shows the variation ofjAj with k as deter-
mined from the portion of Fig. 2 at the left of the source
(x # 90 mm). The maximum amplitude is observed fo
the basic wave number:k0 . 21.11 mm21. Space-time
points away from the localized amplitude holes corre
spond to the largejAj (say, jAj . 0.5) portion of the
curve. Locally, around these points, the solution of (2
is expected to be close to one of the phase-winding so
tions of wave vectorq  k 1 k0 (see, e.g., [1]):

A  Aq expfisqx 2 vqtdg with A2
q  s´ 2 j2

0q2dyg

and vq  f´b 1 sa 2 bdj2
0q2gyt0 2 ygq . (3)

The linear variation ofjAj2 with q2 is confirmed in
Fig. 3c, yielding j0y

p
´ . 2.53 mm and

p
´yg .

0.00054 (a.u.). Note that we thus haveLx ¿ j0y
p

´ ø
3253
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FIG. 3. Analysis of the data of Fig. 2 situated at the left of th
source (x # 90 mm). (a)–(c) For each bin around a givenk
value, all the corresponding space-time points were determin
and averages calculated on each bin. (a) Local frequencyv vs
local wave numberk; the slope of a linear fit gives the group
velocity yg. (b) Local amplitudejAj vs k; solid line: see text.
(c) jAj2 vs q2 [same data as in (b)]. (d) Two instantaneou
profiles of jAj sxd near the source taken at time 0 and 30
inset: lnjAj vs x and linear fit (thin line).

3yk0: The cell is effectively “infinite” and the variations
of A occur on scales significantly larger than the bas
lengthk21

0 .
Time scalet0 can be estimated from the real part of th

spatial linear growth rate of waves near the source, which
equal tó yt0yg [4]. From Fig. 3d, we findt0y´ . 8.5 6

0.5 s, about 4 times the basic period2pyv0 . 2.03 s,
confirming that the variations ofA are slow compared to
the basic oscillations. Note thatt0 is of the same order as
the viscous diffusion timeh2yn  2.2 s.

At this stage, all of the basic scales of Eq. (2) have be
estimated. To determine the remaining two parametersa

andb, global quantities deriving from the “wave part” of
the data could, in principle, be sufficient. For example
Fig. 3a could be used to extract the expected variati
of vq with q. But the data is too noisy to yield any
meaningful estimate ofa andb. Moreover, as long as the
source is not controlled, the “input” waves cannot be varie
at will to explore the family of solutions (3), contrary to
other experimental situations [4]. We now focus instea
on the localized amplitude holes already mentioned.

Many localized, propagating objects connecting tw
phase-winding solutions have been observed numerica
in the one-dimensional CGLE [5]. Analytical methods ar
largely limited, so far, to solutions depending only on th
reduced variablej  x 2 yht, whereyh is the (constant)
velocity of the object [7,8]. Using this ansatz, the CGLE
reduces to a third-order ordinary differential equatio
3254
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(ODE) whose fixed points are the phase-winding solutio
(3). Localized objects connecting two such solutions
wave vectorqL and qR appear, within the ansatz, a
homoclinic (qL  qR) or heteroclinic (qL fi qR) orbits.

The holes observed in Fig. 2 are not stable structu
connecting two infinite phase-winding solutions, but th
subsist long enough, and can be sufficiently isolated
reveal that their wings are indeed well described by pha
winding solutions. (As a matter of fact, we repeated
assimilated, above, the large-amplitude regions separa
the holes to portions of these solutions.) Figure 4 sho
an isolated hole extracted from Fig. 2. One can meas
rather accurately the two wave numbersqL  0.13 and
qR  20.32 (in the CGLE frame) connected by th
central hole, which can thus be tentatively seen as
heteroclinic orbit in the ODE ansatz.

All sufficiently localized structures on Fig. 2 als
connect two different wave numbers. This rules out t
homoclinic holes recently studied by van Hecke [6], a
leave, as possible candidates, the family of hole solutio
found by Bekki and Nozaki [9]. The explicit form of
these solutions is too lengthy to be given here (see, e
[8]). They form a one-parameter family (at fixeda,
b) which can be parametrized by, e.g., the velocityyh
of the hole. They take the shape of an exponentia
localized amplitude hole with a minimum amplitudejAjmin

accompanied by a rapid phase shifts.
To compare data such as that of Fig. 4 to the

solutions, we need to determine the values ofa andb and
the “optimal” solution of the corresponding family. W
proceed as follows: We estimateqL, qR, andjAjmin from
the data since we found these were the characteristic
the hole for which the most accurate measurement can
made. We find, for all values of thesa, bd plane where it
exists, the Bekki-Nozaki hole solution with the measur
value of qL 1 qR. We then select the (codimensio
1) subsets of thesa, bd plane where, moreover, this
hole solution possesses the measured value ofqL or the
estimated value ofjAjmin (Fig. 5, dashed lines). Thes
two lines intersect, yielding the desired values ofa andb.
Taking into account the error bars onqL, qR, and jAjmin,
we finda  21.5 6 0.5 andb  20.4 6 0.05. By the
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FIG. 4. Amplitude hole. Solid lines: Experimental data e
tracted from a cut of Fig. 2 att  60 s. Dashed lines: Corre-
sponding Bekki-Nozaki hole solution of the equivalent CGL
(rescaled variablex0  x

p
´yj0).
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FIG. 5. Parameter plane of the CGLE. STI: spatiotempor
intermittency regions (from [5]). B-F: Benjamin-Feir line
below which all solutions (3) are unstable. Dashed lines: s
text (grey areas: error bars). Circle: estimatedsa, bd values.

same token, the hole solution is also uniquely determin
(Fig. 4, dashed lines). Its velocityyh, its width, and its
phase shifts are all found consistent with the data.

We repeated the procedure for other amplitude hol
found in Fig. 2. We found almost the samea and b

values, to the accuracy of the estimates. This strengthe
the confidence in the results, since different objects movin
at different velocities, connecting different wave number
all yield the same parameter values. We also perform
a final check, by plotting, for the estimated values o
a and b, the variation of jAjmin with the local phase
gradient at the “bottom” of the hole along the family o
solutions (Fig. 3b, solid line). The agreement with th
small-jAj values measured on Fig. 2 is very good. This
an additional indication that all of the low-amplitude point
are indeed located “inside” Bekki-Nozaki holes.

For the estimated values ofa andb, the CGLE is in the
parameter region where the phase-winding solutions (
are linearly stable forjqj small enough, and no sustained
spatiotemporal disorder exists in one space dimensi
[5]. Moreover, the Bekki-Nozaki amplitude holes are
linearly unstable [13]. This is not in contradiction with
the dynamics observed in the experiment: the Bekk
Nozaki holes, although unstable, exist, and can constitu
important building blocks of even chaotic dynamics [5]
The waves emitted by the source can be locally attract
to this family of unstable fixed points before escapin
along its unstable manifold (a mechanism also invoked b
van Hecke in [6]). The tendency of the waves trains t
become more regular away from the source (see Fig. 2)
consistent with disorder being only transient in the CGL
with the estimated parameter values.

In summary, we have presented experimental results
the dynamics of the nonlinear hydrothermal waves tra
eling in a laterally heated fluid layer. We have show
that, although the regime studied here is rather far fro
the onset of waves, the large-scale modulations of the b
sic pattern are governed by a one-dimensional compl
Ginzburg-Landau equation and we estimated its full set
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coefficients. This was made possible by showing that th
localized amplitude holes observed experimentally corre
spond to the Bekki-Nozaki hole solutions of the CGLE.
The overall consistency of our results was checked. Sinc
the operating regime of the CGLE at the estimated pa
rameter values does not exhibit sustained disorder,
would be interesting to analyze experimental data co
lected at other parameter values in the hope of reachin
spatiotemporal chaos regimes of the type exhibited by th
CGLE. This is left for future work, together with an at-
tempt to obtain a better control of the system by forcing
the behavior of the source. More generally, we believ
that using the localized structures or defects of pattern
forming systems to determine quantitatively their relevan
amplitude equations can be a rewarding approach to th
difficult experimental problem.
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