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Controlling and synchronizing space time chaos
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Control and synchronization of continuous space-extended systems is realized by means of a finite number
of local tiny perturbations. The perturbations are selected by an adaptive technique, and they are able to restore
each of the independent unstable patterns present within a space time chaotic regime, as well as to synchronize
two space time chaotic states. The effectiveness of the method and the robustness against external noise is
demonstrated for the amplitude and phase turbulent regimes of the one-dimensional complex Ginzburg-Landau
equation. The problem of the minimum number of local perturbations necessary to achieve control is discussed
as compared with the number of independent spatial correlation lengths.@S1063-651X~99!00806-5#
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In the last decade, control and synchronization of ch
have attracted the attention of the scientific community.
both cases, a chaotic dynamics is conveniently disturbed
means of an external perturbation~usually small as com-
pared with the unperturbed dynamics!, in order to force the
appearence of a goal behaviorg(t) compatible with the natu-
ral evolution of the system. In the former case, the goal
namics corresponds to one unstable periodic orbit embed
within the chaotic attractor@1#, in the latter case it corre
sponds to compensating for the difference of the same
tem due to different initial conditions.

Since the first proposals for control@2# and synchroniza-
tion @3# of chaos, many other approaches have been s
gested for chaos control@4,5#, while the concept of chaotic
synchronization has been recently extended to that of ph
synchronization@6# and lag synchronization@7#. The transi-
tion between different types of synchronization processes
been extensively studied in a pair of symmetrically coup
chaotic oscillators@7,8#. On the other hand, the control o
chaos has been shown to be effective even in the cas
delayed dynamical systems@9#, by the use of the adaptativ
technique@5#.

The huge body of literature devoted to these issue
justified by the large interest that they have in practical
plications, such as communicating with chaos@10#, secure
communication processes@11,12#, and experimental contro
of chaos in many areas such as, e.g., chemistry@13#, laser
physics @14#, electronic circuits@15#, and mechanical sys
tems@16#.

Only recently, control mechanisms have been investiga
in space-extended systems. After some preliminary attem
@17# to control spatiotemporal chaos, attention has been
rected to the control of two-dimensional patterns@18#,
coupled map lattices@19,20#, or particular model equations
such as the complex Ginzburg-Landau equation@21# and the
Swift-Hohenberg equation for lasers@22#. Furthermore, syn-
chronization has been proved in extended systems with
directional~drive-response! configuration@23#.

However, while for concentrated systems the differe
proposed techniques have easily found experimental ve
cations, in the extended case there are not yet experime
PRE 591063-651X/99/59~6!/6574~5!/$15.00
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counterparts to the quite large body of theoretical propos
@17–23#. The main reason for this lack of experiments is th
almost all proposed methods used space-extended pert
tions, that is, perturbations which had to be applied at a
point of the system. The few examples of global control@19#,
or control with a finite number of local perturbations@20#,
have so far been limited to discrete systems, i.e., to coup
map lattices. The most relevant problem in passing fr
concentrated to space-extended continuous systems a
indeed, when considering that an extended continuous
tem is an intrinsically infinite dimensional system. Therefo
while control or synchronization of a concentrated syst
implies a perturbation on a single control parameter, o
single state variable, in the case of a continuous exten
system it is still unclear whether the perturbation its
should be extended in space, i.e., should affect all point
the considered system. This last requirement would, inde
be very difficult to realize experimentally, thus frustratin
the possibility of implementing control and/or synchroniz
tion of space time chaotic states.

In this paper, we show that both control and synchroni
tion can be achieved in a continuous extended system
means of afinite number of local controllers, i.e., by a finit
number of nonextended perturbations, each affecting a
ferent point in the system. The minimum number of contr
lers will be derived, and the robustness of both proces
against the presence of noise will be verified.

For the sake of exemplification, and without lack of ge
erality, we refer to the one dimensional complex Ginzbu
Landau equation

Ȧ5A1~11 im1!Axx2~11 im2!uAu2A, ~1!

whereA(x,t)[r(x,t)eic(x,t) is a complex field of amplitude
r and phasec, and the dot denotes a temporal derivativ
Axx stands for the second derivative ofA with respect to the
space variable 0<x<L, where L represents the system
length, andm1, andm2 are suitable real control parameter
The boundary conditions are chosen to be periodic.

Equation~1! describes the universal dynamical features
an extended system close to a Hopf bifurcation@24#, and it
6574 ©1999 The American Physical Society
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PRE 59 6575CONTROLLING AND SYNCHRONIZING . . .
has been used to describe many different situations in l
physics@25#, fluid dynamics@26#, chemical turbulence@27#,
bluff body wakes@28#, etc. Different chaotic regimes wer
identified in Eq. ~1! in different regions of the paramete
space (m1 ,m2) @29#. In fact, Eq.~1! has plane wave solution
of the type

Aq5A12q2ei (qx1vt), ~2!

where 21<q<1, q being the wave number in Fourie
space, and the dispersion relation is

v52m22~m12m2!q2. ~3!

In the parameter regionm1m2.21, there exists
a critical value of the wave number qc

5A(11m1m2)/@2(11m2
2)111m1m2#, such that all the

plane waves in the range2qc<q<qc are linearly stable.
Outside this range, they become unstable through the
called Eckhaus instability@30#. Since qc vanishes as the
productm1m2 approaches21, all plane waves become un
stable when crossing from below the linem1m2521 in pa-
rameter space. Such a line is called the Benjamin-Fei
Newell line. Above this line, Ref.@29# identifies three differ-
ent turbulent regimes—namely, phase turbulence~PT!, am-
plitude turbulence~AT!, or defect turbulence—and bichao
In the following we will concentrate on PT and AT, sinc
they have received special attention in the scientific comm
nity @31#.

PT is the dynamical regime encountered just above
Benjamin-Feir line, and it is characterized by the fact that
chaotic behavior ofA(x,t) is essentially dominated by th
dynamics of the phasec(x,t), whereas the amplituder(x,t)
changes smoothly, and is always bounded away from z
By further moving away from the Benjamin-Feir line, a tra
sition is encountered toward AT, wherein the amplitude d
namics becomes dominant over the phase dynamics, lea
to large amplitude oscillations which can occasionally dr
r(x,t) to zero. The vanishing ofr causes the occurrence o
a space-time defect.

Both PT and AT are characterized by the fact that
spatial autocorrelation function decays exponentially with
spatial correlation lengthj which is smaller than the system
sizeL, that is,

C~x,x8!5^A~x,t !A* ~x8,t !& t.e2ux2x8u/j, ~4!

where ^ & t denotes the temporal average. In two spatial
mensions it has been theoretically predicted@25# and experi-
mentally verified@32# that defects have a dynamical role
mediating the shrinking process ofj, thus in the passag
from regular to turbulent behavior.

Within a domain of sizej, the dynamics remains spac
correlated. Therefore, oncej has been measured, the ma
features of the space time chaotic dynamics can be capt
by considering a collection ofN5 int(L/j)11 uncorrelated
domains. A single local perturbation within each domain
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sufficient to assure the collapse ofA(x,t) onto any goal pat-
terng(x,t) compatible with the natural evolution of the sy
tem.

In fact, we expect that the number of local perturbatio
necessary to slaveA(x,t) to a general goal patterng(x,t) be
smaller thanN, because of nonlinear constraints within th
system, which make each correlation domain interact
with all the others. Therefore, in the following, we first dem
onstrate that the above sufficient condition holds for a ju
cious choice of the local perturbations, and then we w
move to show that the necessary condition for the con
can, in fact, be obtained with a number of local controlle
smaller thanN.

Let us begin with the problem of control of space tim
chaos. For this purpose, we setm152.1 andm2521.3 in
Eq. ~1! in order to enter the AT regime. In the following, w
will numerically solve Eq.~1! with L564, periodic boundary
conditions, and random initial conditions. The numeric
code is based on a semi-implicit scheme in time with fin
differences in space. The precision of the code is first or
in time and second order in space. In all the simulations
use a space discretizationdx50.125~512 mesh points! and a
time step for the integrationdt50.001. For the selectedm1
andm2, the spatial correlation length isj54.39, correspond-
ing roughly to 35 points of the mesh (N517). Control of
space time chaos here implies the emergence of some
stable periodic pattern out from the AT regime. In this ca
the goal patterng(x,t) is represented by any of the plan
wave solutions~2!, which are unstable in AT.

In order to control the system to the desired goal patte
to the right hand side of Eq.~1! we add a perturbative term
U(x,t) of the type

U~x,t !50 for xÞxi

~5!

U~x,t !5Ui~ t ! for x5xi

where i 51, . . . ,M andxi511( i 21)n are the positions of
M local controllers, mutually separated by a distan
n (xi 112xi5n).

For the time being, we will usen5j, so thatM5N, in
order to show that a sufficient condition for a robust cont
is that the number of controllers equals the number of co
lation domains. Later on, we will show that control can al
be achieved forn.j (M,N), and we will therefore prove
that the minimum requested number of local controllers is
fact, smaller than the number of correlation domains, th
making our approach of some help for overcoming the
countered difficulties in practical experimental implemen
tions.

The strength of theM perturbationsUi(t) is selected by
the following algorithm. At each controller positionxi and at
each integration timetn , the i th controller measures the dis
tanced i(tn) between the actual dynamicsA(xi ,tn) and the
goal patterng(xi ,tn):

d i~ tn!5A~xi ,tn!2g~xi ,tn!. ~6!



-
-

n

In
t-
o

us
y
to

ho

d
th

n
-
m
th
e

T
e

ho
on

er
e
ig

th

on.

m
ce

s
e

d in

olu-
is

fter

ith
h
arts

s

6576 PRE 59S. BOCCALETTI, J. BRAGARD, AND F. T. ARECCHI
Then the controller evaluates the local variation rates

l i~ tn!5 lnU d i~ tn!

d i~ tn21!
U, ~7!

and selects the perturbation as

Ui~ tn!5Ki~ tn!„g~xi ,tn!2A~xi ,tn!…, ~8!

where

1

Ki~ tn!
5

1

K0
@12tanh„sl i~ tn!…#, s.0, K0.0. ~9!

The algorithm of Eqs.~6!–~9! is an extension of the adap
tive algorithm introduced in Ref.@5#, and successfully ap
plied also to chaos synchronization@12#, targeting of chaos
@33#, filtering of noise from chaotic data sets@34#, and con-
trol of delayed dynamical systems@9#.

The adaptive nature of the algorithm is clear when o
considers that the strength of the perturbation in Eq.~8! de-
pends adaptively on the local dynamics of the system.
deed, whenA(xi ,tn) naturally tends to shadow the goal pa
terng(xi ,tn), this implies a temporal decreasing behavior
d i(t), and a consequently negativel i(t), and therefore a
reduction of the weight factorKi(t) in Eq. ~9!. Conversely,
whenever the natural evolution of the dynamics tends to p
the system away from the goal pattern, this is reflected b
growth ofKi(t). In other words the perturbation is adapted
the local dynamics, since the further~closer! the system is to
the goal pattern, the larger~smaller! is the weight given to
the perturbation. It should be remarked that the limits→0
of the above algorithm recovers the Pyragas’ control met
of Ref. @4#, implying a constant weightK0 in Eq. ~9!. The
positive quantitys represents the sensitivity of the metho
and it plays a crucial role in assuring the smallness of
perturbations as well as the effectiveness of the control@5#.

Figure 1 reports the control of one of the unstable pla
waves~2! for s50.1 andK051. The control procedure im
plies the suppression of the defects, until the controlled a
plitude relaxes to a constant value. The arrow indicates
instant at which control is switched on. The control proc
dure is effective for a large range ofs andK0 values.

The control process here introduced works also in P
with similar features as in Fig. 1. In this case, the absenc
defects allows an even larger range ofs andK0 values for
the effectiveness of the control procedure.

Let us now discuss the robustness of the control met
against white noise. For this purpose, in addition to the c
trol perturbationU(x,t), to the right hand side of Eq.~1! we
add a Gaussian noisep(x,t) with zero average andd corre-
lated in space and time @^p(x,t)& t50 and
^p(x,t)p* (x8,t8)&5gd(x2x8)d(t2t8)]. The results are
shown in Fig. 2. for a noise strength of 1% of the unp
turbed dynamicsA. The control process still leads to th
appearance of the desired goal pattern for relatively h
noise strengths~up to 4%!. The lower part of the right pic-
ture shows that noise cancellation is effective only at
controller points.
e

-

f

h
a

d

,
e

e

-
e

-

,
of

d
-

-

h

e

Finally, we discuss the problem of chaos synchronizati
In this case we consider two complex fieldsA1(x,t) and
A2(x,t), each obeying Eq.~1! with the same parametersm1

and m2 as in the above case. The two fields evolve fro
different random initial conditions, thus producing two spa

FIG. 1. Space~horizontal!–time~vertical! plots of the real part
of A ~left! and the modulus ofA ~right!. Time increases downward
from 1000 to 1800~u.t.!. The first 1000 time units correspond to th
transient before the system reaches the chaotic~AT! domain start-
ing from random initial conditions. The patterns have been code
256 gray levels~white corresponds to maxima!. The parameters are
m152.1, m2521.3, dt50.001, L564, anddx50.125. The con-
trol (s50.1, K051) starts atT51400 ~indicated by an arrow!.
The goal dynamics is chosen to be the particular plane wave s
tion ~2! havingq50.589~corresponding to six wavelengths for th
system size!. The associated frequency and amplitude arev50.12
andAq50.808. Under these conditions, the control is reached a
a very fast transient and with onlyM517 controllers.

FIG. 2. Same as Fig. 1 with the addition of Gaussian noise w
a standard deviation 0.013Aq /A2 to all points of the mesh at eac
time step. This noise is added to both the real and imaginary p
of the fieldA(x,t). The trace of theM517 equispaced controller
is now visible on the modulus.
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PRE 59 6577CONTROLLING AND SYNCHRONIZING . . .
and time unsynchronized AT dynamics. In this case, the
gorithm of Eqs.~6!–~9! is used in order to select the pertu
bations at each controller pointxi . Now, the goal dynamics
for A1(x,t) is A2(x,t), and vice versa. In other words, th
local controllers symmetrically force each complex field
collapse into the other one. The results are shown in Fig
for s50.1 andK051. The arrow indicates the instant
which the controllers become active. Rather than suppres
the defects, here the final synchronized stateA1(x,t)
5A2(x,t) remains amplitude turbulent, but the process
termines the synchronization of the defects as shown by
equality of the amplitudesA1 andA2. Also in this case, the
process is effective in PT, and it is robust against exter
noise up to 4% of the amplitude of both complex fields.

It is important to point out that, while the proposed co
trol process crucially relies on a knowledge of the goal pla
wave, here the synchronization procedure is independen
any previous knowledge of the system, since the local g
values for the two fields can be directly measured by
same controllers at any time and at any controller location
the control case, one should first individuate the coefficie
m1 andm2 in Eq. ~1! by using a preliminary learning task o
the unperturbed system. Then, the use of the dispersion

FIG. 3. Synchronization of two identical systemsA1(x,t) ~left
column! andA2(x,t), both in the AT regime~same parameters as i
Fig. 1!. The right columns display the differences between the t
patterns~upper, real parts; lower, moduli!. The time runs from 1000
to 1600~u.t!, and the synchronization starts atT51300 ~indicated
by an arrow!.
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tion ~3!, and of the expression ofAq in Eq. ~2! allows one to
calculate the desired plane wave at all times and at all sp
locations. Conversely, the synchronization process can
implemented without any kind of previous knowledge on t
system.

Let us now discuss the problem of the minimum numb
of requested local perturbations. In Fig. 4 we report the tr
sient timeTt for achieving control of the same plane wav
and in the same parameter conditions as in Fig. 1, as a f
tion of M. Looking at Fig. 4 one easily realizes thatTt di-
verges to1` for M,8. Recalling thatL564 andj54.39,
so thatN517, Fig. 4 actually tells us that control is possibl
unless associated with a larger transient time, even wit
controller distancen.2j, that is, with a number of control
lers about one half the number of correlation domains. T
improvement suggests that our adaptive method can o
come the difficulties encountered so far for experimen
implementations of control of space time chaotic states.

In conclusion, we have shown that control and synch
nization of a space-extended system can be realized
means of a finite number of local controllers, affecting d
ferent points of the system, which can be mutually separa
by more than a space correlation length. Therefore, the m
mum controller number comes out to be smaller than
number of correlation domains. The robustness of the pro
dure against external noise has been proved in the sp
case of the amplitude and phase turbulent regimes of a
dimensional complex Ginzburg-Landau equation.

The work was partially supported by the Integrated A
tion Italy-Spain HI97-30. S.B. acknowledges financial su
port from the EU under Contract No. ERBFMBICT98346
J.B. benefitted from the EU Network under Grant N
FMRXCT960010 ‘‘Nonlinear Dynamics and Statistic
Physics of Spatially Extended Systems.’’

o

FIG. 4. Plot of the transient timeTt before achieving control as
a function of the numberM of equidistantly spaced controllers
Same parameters as in the caption of Fig. 1:m152.1, andm25
21.3, AT regime. The proposed method fails forM,8, whereas a
controller for each double correlation length is enough to achi
control.
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