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Abstract

Control of chaos refers to a process wherein a tiny perturbation is applied to a chaotic system, in order
to realize a desirable (chaotic, periodic, or stationary) behavior. We review the major ideas involved in
the control of chaos, and present in detail two methods: the Ott}Grebogi}Yorke (OGY) method and the
adaptive method. We also discuss a series of relevant issues connected with chaos control, such as the
targeting problem, i.e., how to bring a trajectory to a small neighborhood of a desired location in the chaotic
attractor in both low and high dimensions, and point out applications for controlling fractal basin
boundaries. In short, we describe procedures for stabilizing desired chaotic orbits embedded in a chaotic
attractor and discuss the issues of communicating with chaos by controlling symbolic sequences and of
synchronizing chaotic systems. Finally, we give a review of relevant experimental applications of these ideas
and techniques. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.45.#b
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1. Introduction

1.1. The control of chaos: exploiting the critical sensitivity to initial conditions
to play with chaotic systems

A deterministic system is said to be chaotic whenever its evolution sensitively depends on the
initial conditions. This property implies that two trajectories emerging from two di!erent closeby
initial conditions separate exponentially in the course of time. The necessary requirements for
a deterministic system to be chaotic are that the system must be nonlinear, and be at least three
dimensional.

The fact that some dynamical model systems showing the above necessary conditions possess
such a critical dependence on the initial conditions was known since the end of the last century.
However, only in the last thirty years, experimental observations have pointed out that, in fact,
chaotic systems are common in nature. They can be found, for example, in Chemistry
(Belouzov}Zhabotinski reaction), in Nonlinear Optics (lasers), in Electronics (Chua}Matsumoto
circuit), in Fluid Dynamics (Rayleigh}BeH nard convection), etc. Many natural phenomena can also
be characterized as being chaotic. They can be found in meteorology, solar system, heart and brain
of living organisms and so on.

Due to their critical dependence on the initial conditions, and due to the fact that, in general,
experimental initial conditions are never known perfectly, these systems are instrinsically un-
predictable. Indeed, the prediction trajectory emerging from a bonaxde initial condition and the real
trajectory emerging from the real initial condition diverge exponentially in course of time, so that
the error in the prediction (the distance between prediction and real trajectories) grows exponenti-
ally in time, until making the system's real trajectory completely di!erent from the predicted one at
long times.

For many years, this feature made chaos undesirable, and most experimentalists considered such
characteristic as something to be strongly avoided. Besides their critical sensitivity to initial
conditions, chaotic systems exhibit two other important properties. Firstly, there is an in"nite
number of unstable periodic orbits embedded in the underlying chaotic set. In other words, the
skeleton of a chaotic attractor is a collection of an in"nite number of periodic orbits, each one being
unstable. Secondly, the dynamics in the chaotic attractor is ergodic, which implies that during its
temporal evolution the system ergodically visits small neighborhood of every point in each one of
the unstable periodic orbits embedded within the chaotic attractor.

A relevant consequence of these properties is that a chaotic dynamics can be seen as shadowing
some periodic behavior at a given time, and erratically jumping from one to another periodic orbit.
The idea of controlling chaos is then when a trajectory approaches ergodically a desired periodic
orbit embedded in the attractor, one applies small perturbations to stabilize such an orbit. If one
switches on the stabilizing perturbations, the trajectory moves to the neighborhood of the desired
periodic orbit that can now be stabilized. This fact has suggested the idea that the critical sensitivity
of a chaotic system to changes (perturbations) in its initial conditions may be, in fact, very desirable
in practical experimental situations. Indeed, if it is true that a small perturbation can give rise
to a very large response in the course of time, it is also true that a judicious choice of
such a perturbation can direct the trajectory to wherever one wants in the attractor, and to produce
a series of desired dynamical states. This is exactly the idea of targeting.
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The important point here is that, because of chaos, one is able to produce an in"nite number of
desired dynamical behaviors (either periodic and not periodic) using the same chaotic system, with
the only help of tiny perturbations chosen properly. We stress that this is not the case for
a nonchaotic dynamics, wherein the perturbations to be done for producing a desired behavior
must, in general, be of the same order of magnitude as the unperturbed evolution of the dynamical
variables.

The idea of chaos control was enunciated at the beginning of this decade at the University of
Maryland [1]. In Ref. [1], the ideas for controlling chaos were outlined and a method for
stabilizing an unstable periodic orbit was suggested, as a proof of principle. The main idea
consisted in waiting for a natural passage of the chaotic orbit close to the desired periodic behavior,
and then applying a small judiciously chosen perturbation, in order to stabilize such periodic
dynamics (which would be, in fact, unstable for the unperturbed system). Through this mechanism,
one can use a given laboratory system for producing an in"nite number of di!erent periodic
behavior (the in"nite number of its unstable periodic orbits), with a great #exibility in switching
from one to another behavior. Much more, by constructing appropriate goal dynamics, compatible
with the chaotic attractor, an operator may apply small perturbations to produce any kind of
desired dynamics, even not periodic, with practical application in the coding process of signals.

1.2. From the Ott}Grebogi}Yorke ideas and technique to the other control methods

It is reasonable to assume that one does not have complete knowledge about the system
dynamics since our system is typically complicated and has experimental imperfections. It is better,
then, to work in the space of solutions since the equations, even if available, are not too useful due
to the sensitivity of the dynamics to perturbations. One gets solutions by obtaining a time series of
one dynamically relevant variable. The right perturbation, therefore, to be applied to the system is
selected after a learning time, wherein the dependence of the dynamics on some external control is
tested experimentally. Such perturbation can a!ect either a control parameter of the system, or
a state variable. In the former case, a perturbation on some available control parameter is applied,
in the latter case a feedback loop is designed on some state variable of the system.

The "rst example of the former case is reported in Ref. [1]. Let us draw the attention on a chaotic
dynamics developing onto an attractor in a D-dimensional phase space. One can construct
a section of the dynamics such that it is perpendicular to the chaotic #ow (it is called PoincareH
section). This (D!1)-dimensional section retains all the relevant information of the dynamics,
which now is seen as a mapping from the present to the next intersection of the #ow with the
Poincare' section. Any periodic behavior is seen here as a periodic cycling among a discrete number
of points (the number of points determines the periodicity of the periodic orbit). Since all periodic
orbits in the unperturbed dynamics are unstable, also the periodic cycling in the map will be
unstable. Furthermore, since, by ergodicity, the chaotic #ow visits closely all the unstable periodic
orbits, this implies that also the mapping in the section will visit closely all possible cycles of points
corresponding to a periodic behavior of the system. Let us then consider a given periodic cycle of
the map, such as period one. A period one cycle corresponds to a single point in the PoincareH
section, which repeats itself inde"nitely. Now, because of the instability of the corresponding orbit,
this point in fact possesses a stable manifold and an unstable manifold. For stable (unstable)
manifold we mean the collection of directions in phase space through which the trajectory
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approaches (diverges away from) the point geometrically. The control of chaos idea consists in
perturbing a control parameter when the natural trajectory is in a small neighborhood of the
desired point, such that the next intersection with the PoincareH section puts the trajectory on the
stable manifold. In this case, all divergences are cured, and the successive natural evolution of
the dynamics, except for nonlinearities and noise, converges to the desired point (that is, it stabilizes
the desired periodic behavior). Selection of the perturbation is done by means of a reconstruction
from experimental data of the local linear properties of the dynamics around the desired point.

In some practical situations, however, it may be desirable to perform perturbations on a state
variable accessible to the operator. This suggests the development of some alternative approaches.
The "rst was introduced in Ref. [2]. It consists in designing a proper feedback line through which
a state variable is directly perturbed such as to control a periodic orbit. This second method
requires the availability of a state variable for experimental observation and for the perturbations.
In such a case, a negative feedback line can be designed which is proportional to the di!erence
between the actual value of the state variable, and the value delayed of a time lag ¹. The idea is
that, when ¹ coincides with the period of one unstable periodic orbit of the unperturbed system,
the negative feedback pushes to zero the di!erence between the present and the delayed dynamics,
and the periodic orbit is stabilized. Furthermore, as soon as the control becomes e!ective, this
di!erence goes e!ectively to zero, so that the feedback perturbation vanishes. Moreover, as before,
a preliminary learning time is needed, for learning the periods of the unstable periodic orbits. In the
above mechanism, the proportionality constant entering in the feedback loop is given in Ref. [3]
where an adaptive technique has been introduced which automatically selects this constant by
adaptively exploiting the local dynamics of the system.

Many other techniques have been introduced with the aim of establishing control over chaos
that will be referred to and described along this Report. Among the many available reviews, books,
and monographies on this matter, here we address the reader the most recent ones, contained in
Refs. [4}8]. In face of this huge number of theoretical studies, experimental realizations of chaos
control have been achieved with a magnetoelastic ribbon [9], a heart [10,11], a thermal convection
loop [12,13], a yttrium iron garnet oscillator [14], a diode oscillator [15], an optical multimode
chaotic solid-state laser [16], a Belousov}Zhabotinski reaction di!usion chemical system [17], and
many other experiments.

While control of chaos has been successfully demonstrated experimentally in many situations,
the control of patterns in space-extended systems is still an open question. This is the reason why
most of the interest has moved actually from the control of periodic behaviors in concentrated
systems, to the control of periodic patterns in space-extended systems, with the aim of controlling
in"nite dimensional chaos, or even space}time chaos. The applications would be enormous,
ranging from the control of turbulent #ows, to the parallel signal transmission and computation to
the parallel coding-decoding procedure, to the control of cardiac "brillation, and so forth.

1.3. Targeting desirable states within chaotic attractors

One of the major problems in the above process is that one can switch on the control only when
the system is su$ciently close to the desired behavior. This is warranted by the ergodicity of chaos
regardless of the initial condition chosen for the chaotic evolution, but it may happen that the
small neighborhood of a given attractor point (target) may be visited only infrequently, because
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of the locally small probability function. Thus the unperturbed dynamics may take a long time to
approach a given target, resulting in an unacceptably large waiting time for the operator to apply
the control of chaos process.

E$cient targeting methods can, instead, reduce the waiting time by orders of magnitude, and so
they can be seen as a preliminary task for chaos control, independent of the particular control
algorithm that one applies. In this Report, we devote Section 4 to the problem of targeting of chaos,
since it is crucial for the realization of the control procedure, and summarize the di!erent proposed
methods for directing chaotic trajectories to target points in the attractor.

1.4. The control of chaotic behaviors, and the communication with chaos

Another section of this Report is devoted to the problem of the control of desired chaotic
behaviors and its major applications. The critical sensitivity to initial conditions of a
chaotic system can, indeed, be exploited not only to produce a large number of possible
periodic behaviors (the di!erent unstable periodic orbit), but, much more generally, any
desired behavior compatible with the natural evolution of the system. Therefore, one can imagine
to select suitable perturbations to slave the chaotic system toward a particular `desireda chaotic
behavior.

Among the practically unlimited possible applications of the control of chaotic behavior,
herewith we concentrate on two applications, which have attracted considerable attention in the
scienti"c community over the past few years; namely the control of chaotic behavior for com-
municating with chaos and for the synchronization of chaotic systems for various communication
schemes. In the "rst case, a chaotic system is conveniently perturbed, in order to give rise to
a particular chaotic trajectory carrying a given message. In the second case, the process of chaos
synchronization is applied to a communication line between a message sender and a message
receiver, allowing the synchronization between them.

There is a simple connection between chaos and communication theory. Chaotic systems can be
viewed, indeed, as information sources that naturally produce digital communication signals. The
formal connection between chaotic dynamics and information theory began with the introduction
of the concept of measure-theoretic entropy in ergodic theory [18}20]. Chaotic systems are, indeed,
characterized by having positive entropies and thus they are information sources. By assigning
a discrete alphabet to the system state space using the formalism of symbolic dynamics, the chaotic
system becomes a symbol source, and because it is a continuous-time waveform source, it is also
a digital signal source. A chaotic system is, therefore, a natural source of digital communication
signals. This concept has been recently shown to be more than formal [24]. Controlling the output
of an oscillator via small guiding current pulses allows for the transmission of a desired message
without e!ectively altering the time-evolution equations for the system. As an example, a very
simple chaotic electrical oscillator can produce a seemingly random sequence of positive and
negative (bipolar) voltage peaks [21]. If these bipolar peaks are assigned binary symbols 0 and 1,
respectively, then the signal can be viewed as a binary communication waveform. We can
furthermore encode any desired message into the waveform by using small perturbing pulses to
control the sequence of peaks representing the symbols 0 and 1. More sophisticated waveforms and
encodings are possible, but this example su$ces to convey the basic concept. In this Report, we also
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summarize the most relevant achievements in communicating with chaos, and we suggest some
problems still unsolved.

The control of chaotic behavior has another important application, namely, the synchronization
of chaotic systems. If one consider two identical chaotic systems starting from di!erent initial
conditions, then the critical sensitivity to initial conditions implies that their di!erence grows
exponentially in time, and that they will evolve in an unsynchronized manner. The feeding of the
right signal from one system to another can, however, reduce to zero such di!erence, and push
the two systems into a synchronized manifold, wherein the chaotic motion is now developed so as
the system are in step during the course of time. This proposal was intensively pushed forward
at the beginning of this decade [22]. In the present Report, we simply summarize a possible
application of synchronization of chaos, consisting in making secure the transmission of a signal
between a message sender and a receiver along a communication line.

1.5. The experimental verixcations of chaos control

Finally, we devote a section to summarize the most relevant experimental applications of the
above ideas and techniques. Since it would be unrealistic to cover the whole body of experimental
implementations of chaos control, herewith we limit ourselves to focus on few prototypical
experiments, and we suggest to the interested reader to the most relevant literature.

The OGY ideas found experimental applications in several di!erent "elds, such as mechanical
oscillations (magnetoelastic ribbon), electronic circuits (diode resonator), chemical systems
(Belouzov}Zhabotinski reaction), nonlinear optics (multimode laser). Di!erent control techniques
were also experimentally tested on #uid dynamical systems leading to the control of convective
instabilities, and on biomechanical systems for the control of the cardiac activity in a rabbit heart,
and of the neuronal activity of an hippocampal slice. In every experimental example, we point out
the relevance of the achievements, the di$culties for the practical realization of the theoretical
proposals, and the perspective opened by such implementations.

1.6. Outline of the Report

The present Report is organized as follows.
In Section 2, the OGY method is illustrated with applications to one-dimensional and

two-dimensional mappings. The pole placement technique is then discussed for the control of
higher-dimensional situations. In Section 3, we discuss alternative schemes for chaos control, and
we describe in detail the adaptive strategy with application to delayed dynamical systems, since it
constitutes a bridge between concentrated and spatially extended systems. Section 4 is devoted to
the discussion of the targeting problem. We show how the OGY criterion and adaptivity can
provide suitable tools for directing the chaotic trajectories to desired targets. Furthermore, we
show a possible application for the control of fractal basin boundaries. In Section 5, we discuss
the issue of stabilizing desirable chaotic trajectories, and we point out two main applications: the
communication with chaos, and communication through chaos synchronization. Section 6 sum-
marizes the main experimental work in chaos control, and points out the perspective open in
di!erent "elds by this process.
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2. The OGY method of controlling chaos

2.1. The basic idea

Besides the occurrence of chaos in a large variety of natural processes, chaos may also occur
because one may wish to design a physical, biological or chemical experiment, or to project an
industrial plant to behave in a chaotic manner. The idea of Ott, Grebogi, and Yorke (OGY) is that
chaos may indeed be desirable since it can be controlled by using small perturbation to some
accessible parameter [1,23] or to some dynamical variable of the system [24].

The major key ingredient for the control of chaos [1,23] is the observation that a chaotic set, on
which the trajectory of the chaotic process lives, has embedded within it a large number of unstable
low-period periodic orbits. In addition, because of ergodicity, the trajectory visits or accesses the
neighborhood of each one of these periodic orbits. Some of these periodic orbits may correspond to
a desired system's performance according to some criterion. The second ingredient is the realiz-
ation that chaos, while signifying sensitive dependence on small changes to the current state and
henceforth rendering unpredictable the system state in the long time, also implies that the system's
behavior can be altered by using small perturbations [1,23]. Then, the accessibility of the chaotic
systems to many di!erent periodic orbits combined with its sensitivity to small perturbations
allows for the control and the manipulation of the chaotic process. Speci"cally, the OGY approach
is then as follows. One "rst determines some of the unstable low-period periodic orbits that are
embedded in the chaotic set. One then examines the location and the stability of these orbits and
chooses one which yields the desired system performance. Finally, one applies small control to
stabilize this desired periodic orbit. However, all this can be done from data [1,23] by using
nonlinear time series analysis for the observation, understanding and control of the system. This is
particularly important since chaotic systems are rather complicated and the detailed knowledge of
the equations of the process is often unknown.

In what follows, we "rst give a pedagogical example of controlling chaos by using a simple
one-dimensional map. We describe a general method for two-dimensional maps. Issues of noise
and the average time of achieve control will also be discussed. We then describe the pole-placement
method for controlling high-dimensional chaos, and we discuss how controlling chaos can be done
when the equations of the systems are not available.

2.2. A one-dimensional example

The basic idea of controlling chaos can be understood [25] by considering the following
one-dimensional logistic map, one of the best studied chaotic systems:

x
n`1

"f (x
n
, r)"rx

n
(1!x

n
) , (1)

where x is restricted to the unit interval [0,1], and r is a control parameter. It is known that this
map develops chaos via the period-doubling bifurcation route. For 0(r(1, the asymptotic state
of the map (or the attractor of the map) is x"0; for 1(r(3, the attractor is a nonzero "xed point
x
F
"1!1/r; for 3(r(1#J6, this "xed point is unstable and the attractor is a stable period-2

orbit. As r is increased further, a sequence of period-doubling bifurcations occurs in which
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successive period-doubled orbits become stable. The period-doubling cascade accumulates at
r"r

=
+3.57, after which chaos can arise.

Consider the case r"3.8 for which the system is apparently chaotic. An important characteristic
of a chaotic attractor is that there exists an inxnite number of unstable periodic orbits embedded
within it. For example, there are a "xed point x

F
+0.7368 and a period-2 orbit with components

x(1)+0.3737 and x(2)"0.8894, where x(1)"f (x(2)) and x(2)"f (x(1)).
Now suppose we want to avoid chaos at r"3.8. In particular, we want trajectories resulting

from a randomly chosen initial condition x
0

to be as close as possible to the period-2 orbit,
assuming that this period-2 orbit gives the best system performance. Of course, we can choose the
desired asymptotic state of the map to be any of the in"nite number of unstable periodic orbits.
Suppose that the parameter r can be "nely tuned in a small range around the value r

0
"3.8, i.e., r is

allowed to vary in the range [r
0
!d, r

0
#d], where d;1. Due to the nature of the chaotic

attractor, a trajectory that begins from an arbitrary value of x
0

will fall, with probability one, into
the neighborhood of the desired period-2 orbit at some later time. The trajectory would diverge
quickly from the period-2 orbit if we do not intervene. Our task is to program the variation of
the control parameter so that the trajectory stays in the neighborhood of the period-2 orbit as long
as the control is present. In general, the small parameter perturbations will be time dependent. We
emphasize that it is important to apply only small parameter perturbations. If large parameter
perturbations are allowed, then obviously we can eliminate chaos by varying r from 3.8 to 2.0 for
example. Such a large change is not interesting.

The logistic map in the neighborhood of a periodic orbit can be approximated by a linear
equation expanded around the periodic orbit. Denote the target period-m orbit to be controlled as
x(i), i"1,2, m, where x(i#1)"f (x(i)) and x(m#1)"x(1). Assume that at time n, the trajectory
falls into the neighborhood of component i of the period-m orbit. The linearized dynamics in the
neighborhood of component i#1 is then:

x
n`1

!x(i#1)"
Rf
Rx[x

n
!x(i)]#

Rf
Rr*r

n

"r
0
[1!2x(i)][x

n
!x(i)]#x(i)[1!x(i)]*r

n
, (2)

where the partial derivatives are evaluated at x"x(i) and r"r
0
. We require x

n`1
to stay in the

neighborhood of x(i#1). Hence, we set x
n`1

!x(i#1)"0, which gives

*r
n
"r

0

[2x(i)!1][x
n
!x(i)]

x(i)[1!x(i)]
. (3)

Eq. (3) holds only when the trajectory x
n

enters a small neighborhood of the period-m orbit, i.e.,
when Dx

n
!x(i)D;1, and hence the required parameter perturbation *r

n
is small. Let the length of

a small interval de"ning the neighborhood around each component of the period-m orbit be 2e. In
general, the required maximum parameter perturbation d is proportional to e. Since e can be
chosen to be arbitrarily small, d also can be made arbitrarily small. As we will see, the average
transient time before a trajectory enters the neighborhood of the target periodic orbit depends on
e (or d). When the trajectory is outside the neighborhood of the target periodic orbit, we do not
apply any parameter perturbation, so the system evolves at its nominal parameter value r

0
. Hence
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we set *r
n
"0 when *r

n
'd. Note the parameter perturbation *r

n
depends on x

n
and is time

dependent.
The above strategy for controlling the orbit is very #exible for stabilizing di!erent periodic orbits

at di!erent times. Suppose we "rst stabilize a chaotic trajectory around a period-2 orbit. Then we
might wish to stabilize the "xed point of the logistic map, assuming that the "xed point would
correspond to a better system performance at a later time. To achieve this change of control, we
simply turn o! the parameter control with respect to the period-2 orbit. Without control,
the trajectory will diverge from the period-2 orbit exponentially. We let the system evolve at the
parameter value r

0
. Due to the nature of chaos, there comes a time when the chaotic trajectory

enters a small neighborhood of the "xed point. At this time we turn on a new set of parameter
perturbations calculated with respect to the "xed point. The trajectory can then be stabilized
around the "xed point [25].

In the presence of external noise, a controlled trajectory will occasionally be &kicked' out of the
neighborhood of the periodic orbit. If this behavior occurs, we turn o! the parameter perturbation
and let the system evolve by itself. With probability one the chaotic trajectory will enter the
neighborhood of the target periodic orbit and be controlled again. The e!ect of the noise is to turn
a controlled periodic trajectory into an intermittent one in which chaotic phases (uncontrolled
trajectories) are interspersed with laminar phases (controlled periodic trajectories) [1,23]. It is
easy to verify that the averaged length of the laminar phase increases as the noise amplitude
decreases [25].

It is interesting to ask how many iterations are required on average for a chaotic trajectory
originating from an arbitrarily chosen initial condition to enter the neighborhood e of the target
periodic orbit. Clearly, the smaller the value of e, the more iterations that are required. In general,
the average transient time SqT before turning on control scales with d as:

SqT&d~c , (4)

where c'0 is a scaling exponent. For one-dimensional maps, the probability that a trajectory
enters the neighborhood of a particular component (component i) of the periodic orbit is given by

P(e)"P
x(i)`e

x(i)~e
o[x(i)] dx+2eo[x(i)] , (5)

where o is the frequency that a chaotic trajectory visits a small neighborhood of the point x on the
attractor. We have SqT"1/P(e)&e~1&d~1, and therefore c"1. For higher-dimensional chaotic
systems, the exponent c can be related to the eigenvalues of the periodic orbit to be controlled.

A major advantage of the controlling chaos idea [1,23] is that it can be applied to experimental
systems in which a priori knowledge of the system is usually not known. A time series found by
measuring one of the system's dynamical variables in conjunction with the time delay embedding
method [26,27], which transforms a scalar time series into a trajectory in phase space, is su$cient
to determine the desired unstable periodic orbits to be controlled and the relevant quantities
required to compute parameter perturbations [1,23]. The theoretical issue of using delay-coordi-
nate embedding technique to control chaos will be detailed in Section 2.4. Another advantage of
the OGY paradigm of controlling chaos is its #exibility in choosing the desired periodic orbit to be
controlled, as we have detailed in the example of the logistic map.
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2.3. Controlling chaos in two dimensions

The general algorithm for controlling chaos for two-dimensional invertible maps (or three-
dimensional autonomous #ows that can be reduced to two-dimensional maps on the PoincareH
surface of section) can be formulated in a similar way. Consider the following map:

x
n`1

"F(x
n
, p) , (6)

where x
n
3R2, F is a smooth function of its variables, and p3R is an externally accessible control

parameter. We restrict parameter perturbations to be small:

Dp!p6 D(d , (7)

where p6 is some nominal parameter value, and d;1 de"nes the range of parameter variation. We
wish to program the parameter p so that a chaotic trajectory is stabilized when it enters an
e-neighborhood of the target periodic orbit. In the sequel, we "rst discuss the simple case of
stabilizing a "xed point of the map F. We then give a method for stabilizing higher-period periodic
orbits.

2.3.1. Stabilizing a xxed point
2.3.1.1. A linear control law. Let x

F
(p6 ) be one of the "xed points of the map (6) at the nominal

parameter value p6 that we wish to stabilize. In general, the location of the "xed point in the phase
space depends on the control parameter p. Upon application of a small perturbation *p, we have
p"p6 #*p. Since *p is small, we expect x

F
(p) to be close to x

F
(p6 ). We write

x
F
(p)+x

F
(p6 )#u*p , (8)

where the vector u is given by

u,

Rx
F
Rp K

p/p6
+

x
F
(p)!x

F
(p6 )

*p
. (9)

The vector u needs to be determined before a control law can be derived to stabilize the "xed point
x
F
(p6 ).
The simplest way to formulate an applicable control law is to make use of the fact that the

dynamics of any smooth nonlinear system is approximately linear in a small e-neighborhood of
a "xed point. Thus, near x

F
(p6 ), we can use the linear approximation for the map:

[x
n`1

!x
F
(p)]+M[x

F
(p)] ) [x

n
!x

F
(p)] , (10)

where M[x
F
(p)] is the 2]2 Jacobian matrix of the map F(x,p) evaluated at the "xed point x

F
(p),

which is de"ned as follows:

M[x
F
(p)]"

RF
Rx Kx

F (p)

+M[x
F
(p6 )]#

RM
Rp K

p/p6
*p . (11)

Note that *p&e and D[x
n
!x

F
(p)]D&e, where e is the size of the small neighborhood in which the

linear approximation (10) is valid. Writing x
F
(p)+x

F
(p6 )#u*p [from Eq. (9)], substituting this
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relation and Eq. (11) into Eq. (10), and keeping only terms which are "rst-order in e, we obtain

x
n`1

!x
F
(p6 )+u*p#M[x

F
(p6 )] ) [x

n
!x

F
(p6 )!u*p] . (12)

In Eq. (12), the Jacobian matrix M is evaluated at the "xed point x
F
(p6 ) of the unperturbed system,

which is the one to be stabilized. Since x
F
(p6 ) is embedded in the chaotic attractor, it is unstable

and it has one stable and one unstable direction [28]. Let e
4

and e
6

be the stable and unstable
unit eigenvectors at x

F
(p6 ), respectively, and let f

4
and f

6
be two unit vectors that satisfy

f
4
) e

4
"f

6
) e

6
"1 and f

4
) e

6
"f

6
) e

4
"0, which are the relations by which the vectors f

4
and f

6
can

be determined from the eigenvectors e
4

and e
6
. The vectors f

4
and f

6
are the contravariant basis

vectors associated with the eigenspace e
4
and e

6
[1,23]. The Jacobian matrix M[x

F
(p6 )] can then be

written as:

M[x
F
(p6 )]"j

6
e
6

f
6
#j

4
e
4

f
4

, (13)

where j
4

and j
6

are the stable and unstable eigenvalues in the eigendirections e
4

and e
6
,

respectively.
When the trajectory point x

n
falls into the small e neighborhood of the desired "xed point x

F
(p6 )

so that Eq. (10) applies, a small parameter perturbation *p
n

can be applied at time n to make the
"xed point shift slightly so that at the next iteration (n#1), x

n`1
falls on the stable direction of

x
F
(p6 ). That is, we choose the parameter control *p

n
such that

f
6
) [x

n`1
!x

F
(p6 )]"0 . (14)

If x
n`1

falls on the stable direction of x
F
(p6 ), we can then set the control perturbation to zero, and

the trajectory for subsequent time will approach the "xed point at the geometrical rate j
4
. Thus for

su$ciently small [x
n
!x

F
(p6 )], we can substitute Eq. (12) into Eq. (14) to obtain *p

n
"c

n
:

c
n
"

j
6

f
6
) [x

n
!x

F
(p6 )]

(j
6
!1) f

6
) u

,C ) [x
n
!x

F
(p6 )] . (15)

We assume in the above that the generic condition u ) f
6
O0 is satis"ed so that c

n
&Dx

n
!x

F
(p6 )D,

which is small. The considerations above apply only to a local small neighborhood of x
F
(p6 ).

Globally, one can specify the parameter perturbation *p
n
by setting *p

n
"0 if Dc

n
D is too large, since

the range of the parameter perturbation is limited by Eq. (7). Thus, practically, we can take *p
n

to
be given by

*p
n
"G

c
n

if Dc
n
D(d ,

0 if Dc
n
D5d ,

(16)

where in the de"nition of c
n

in Eq. (15), it is not necessary to restrict the quantity Dx
n
!x

F
(p6 )D to be

small.
Eqs. (15) and (16) are one formulation of the OGY-idea of controlling chaos [1,23]. There are

several practical factors which must be considered when applying this formulation in practical
situations. Among these are the following:

(a) The control situation is possible only if the quantity c
n
de"ned in Eq. (15) satis"es Dc

n
D(d. This

condition may be violated when the "xed point of the system is such that the vectors u and
f
6

are nearly orthogonal to each other. Such "xed points are therefore uncontrollable by using
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small perturbations. In principle, the magnitude of the control Dc
n
D can be made arbitrarily

small since Dx
n
!x

F
(p6 )D can be made arbitrarily small by waiting for the trajectory x

n
to be

su$ciently close to the desired "xed point x
F
(p6 ). However, the average waiting time for this to

occur can be signi"cantly longer. There is thus a trade-o! between the magnitude of the
perturbations and the average waiting time. There are also nonlinear corrections to Eq. (10)
which are typically quadratic in [x

n
!x

F
(p6 )]. The quadratic corrections are important in

determining the average waiting time, which is, the average length of the chaotic transient
experienced typically by trajectories before control is achieved.

(b) In real systems there is often noise present.
(c) There may be errors present in the measurements of the system states used in identifying the

system. The location of the coordinates of the "xed point we wish to control may thus di!er
from its true coordinates. Similarly, the quantities f

6
, f

4
, j

6
, and j

4
which are required to

compute the parameter perturbations may contain some error.

2.3.1.2. Time to achieve control. Let m
n
,(x

n
!x

F
(p6 )). We note that the control in Eq. (16) is

activated (i.e., *p
n
O0) only when Dc

n
D(d, which in turn, determines a narrow strip region, in the

phase space, along the stable direction of the "xed point to be stabilized:

Dm6
n
D(m

H
, (17)

where m6
n
,f

6
) m

n
, m4

n
,f

4
) m

n
, and m

H
can be determined by setting c

n
"d. We obtain

m
H
"dD(1!j~1

6
)u ) f

6
D . (18)

Thus, for small d, a typical trajectory resulting from a random initial condition will execute
a chaotic motion, unchanged from the uncontrolled case, until m

n
falls in the strip (Eq. (17)). Even

then, due to the nonlinearity not included in the linear expansion (10), the control may not be able
to bring the trajectory to the desired "xed point. In this case, the trajectory will leave the strip and
continue to wander chaotically as if there was no control. Since the trajectory on the uncontrolled
chaotic attractor is ergodic, which means that the trajectory will visit the neighborhood of every
point on the attractor in the course of time evolution, at some time the trajectory will eventually
come su$ciently close to the desired "xed point to satisfy Dc

n
D(d so that control is achieved. Thus,

in ideal situations (no noise and no imperfect identi"cation in the system parameter), applying
control creates a stable orbit, but, for a typical initial condition, it is preceded in time by a chaotic
transient in which the orbit is similar to orbits on the uncontrolled chaotic attractor. The lengths
of the chaotic transients are di!erent for di!erent initial conditions, and they can be regarded as
realizations of a random variable q with an exponential probability distribution:

P(q)&exp[!q/SqT] , (19)

where SqT is the average length of the chaotic transient. When d decreases, the size of the control
strip (Eq. (17)) decreases, so the average time to achieve control, or SqT, increases.

To understand the exponential distribution (19), imagine we choose a large number of points on
the chaotic attractor according to the natural measure [29,30]. Regarding the strip area surround-
ing the desired "xed point x

F
(p6 ) as an `escapinga region, we see that under the dynamics, each
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initial condition enters the escaping region in di!erent times. These times can be considered as the
lifetimes for trajectories to stay outside the escaping region. To "nd the probability distribution for
these lifetimes, we iterate the escaping region backward in time under the inverse dynamics. The
inverse images intersect the chaotic attractor along the stable foliations, creating a set of in"nite
number of gaps on the chaotic attractor (there are an in"nite number of inverse images) and leaving
behind a fractal set of points which never enters the escaping region. This fractal set is nonattract-
ing because a point in the vicinity of the set will eventually leave it and enter one of the gaps. Since
almost all points on the chaotic attractor fall into gaps, we see that the lifetimes for those points
are in fact the escaping times that the points leave the nonattracting fractal set. It is known that the
distribution of escaping times from a nonattracting fractal set is exponential [31,32]. Apparently,
di!erent choice of the control strip leads to di!erent fractal sets. There are, in fact, an in"nite
number of nonattracting fractal sets embedded in the chaotic attractor. Such nonattracting fractal
sets are also called chaotic saddles [33,34].

Following Refs. [1,23], we now derive the scaling law (4) and give a formula for the scaling
exponent c. Dotting the linearized map for m

n`1
, (Eq. (12)), with f

6
and then with f

4
, and using

Eqs. (13) and (15) which is appropriate for Dm6
n
D(m

H
, we obtain the following two relations for the

size of the controlling strip:

m6
n`1

+0 , (20)

m4
n`1

+j
0
m6
n
#j

4
m4
n

, (21)

where

j
0
,(1!j

4
)

j
6
u ) f

4
(j

6
!1)u ) f

6

.

Eqs. (20) and (21) are linearizations, and typically the lowest-order corrections to them are
quadratic. In particular, m4

n
is not restricted by Dm6

n
D(m

H
and thus may not be small when the

control condition is satis"ed. Thus we expect the correction that is quadratic in m4
n

to be most
signi"cant. Including such a correction in Eq. (20), we have

m6
n`1

+i(m4
n
)2 , (22)

where i is a constant. Thus, if DiD(m4
n
)2'm

H
, then Dm6

n`1
D'm

H
, and control is not achieved even

though Dm6
n
D(m

H
. Control is achieved when the trajectory falls in the small control parallelogram

P
#

given by

Dm6
n
D(m

H
, (23)

Dm4
n
D(Jm

H
/DiD . (24)

For very small m
H
, a trajectory will wander on the uncontrolled chaotic attractor for a long time

before it falls into the control parallelogram P
#
. At any given time step, the probability of falling in

P
#
is approximately the natural measure [29,30] of the uncontrolled chaotic attractor contained in

P
#
. If one distributes a large number of initial conditions on the chaotic attractor according to the

natural measure and then follows the trajectories resulting from these initial conditions, this
probability k(P

#
) gives the rate at which these orbits fall into the control parallelogram. Let N(n) be

the uncontrolled orbits remaining at time n. If the chaotic transient is long, we can treat the discrete
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time approximately as continuous. We obtain

dN(n)
dn

"!k(P
#
)N(n) .

Thus k(P
#
) is the inverse of the exponential decay time for N(n) so that we have

SqT~1"k(P
#
) . (25)

To obtain the natural measure k(P
#
), we make use of the de"nition of the pointwise dimensions

[29]. For the control parallelogram P
#
, since its sizes along the stable and unstable directions of

desired "xed point x
F
(p6 ) are Jm

H
/DiD and m

H
, respectively, we obtain the following scaling of k(P

#
)

with m
H
:

k(P
#
)&(m

H
)d6 (Jm

H
/DiD)d4&md6`(1@2)d4

H
&(m

H
)d6`(1@2)d4 ,

where d
4
and d

6
are the pointwise dimensions for the uncontrolled chaotic attractor at x

F
(p6 ) in the

stable and unstable directions, respectively. Since m
H
&*p, we obtain the scaling relation (4), where

the scaling exponent is given by

c"d
6
#1

2
d
4

. (26)

Usually, the chaotic attractor is e!ectively smooth in the unstable direction [29], which implies
d
6
"1. The pointwise dimension in the stable direction is given in terms of the stable and unstable

eigenvalues at x
F
(p6 ) as, d

4
"(lnDj

6
D/(lnDj

4
D~1)). Thus

c"1#
1
2

lnDj
6
D

ln(1/Dj
4
D)

. (27)

The above scaling for the average time to achieve control is obtained under the assumption that
the control is o! for Dm6

n
D'm

H
. It is possible, in some situations, to greatly reduce SqT by applying

small controls to the orbit in the region outside the control parallelogram. This is an example of
another general type of chaos control problem, the so-called target acquisition problem [35}38]. In
particular, the goal is to apply small perturbations to a chaotic trajectory so as to bring it from its
initial condition to a target region in which the desired "xed point (or periodic orbits) located in the
shortest possible time.

Note that in the above, the small neighborhood of the desired "xed point for turning on the
control is assumed to have the shape of a parallelogram. One can also consider a small circular area
around the desired "xed point. That is, the control is turned on when Dm

n
D(m

H
. This again yields

the algebraic scaling (4) but with a di!erent exponent: in this case the exponent is the pointwise
dimension (d

6
#d

4
). Note that this value of the exponent is larger than that given by Eq. (26) due to

the fact that the area of the circular region Dm
n
D(m

H
is much smaller than the control parallelogram

P
#
and is contained in P

#
. Thus, the times to achieve control become longer and, hence, in practice

it is more advantageous to consider the control parallelogram for turning on the control.

2.3.1.3. Ewect of noise. To study the e!ect of noise on control, we add a term ed
n
to the right-hand

side of the linearized equations for m
n`1

, (Eq. (12)), where d
n

is a random variable and e is a small
parameter specifying the intensity of the noise. To mimic environmental noise in a typical
experimental setting, we take the random variable d

n
to have zero mean (Sd

n
T"0), be independent
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(Sd
n
d
m
T"0 for mOn), have mean squared value unity (Sd2

n
T"1), and have a probability density

independent of n (stationary random variable). Due to noise, the quantity m6
n`1

, which is the dot
product between f

6
and m

n`1
(Eq. (12)), no longer vanishes when high-order nonlinear terms are

neglected. Instead, we have

m6
n`1

"ed6
n

, (28)

where d6
n
,f

6
) d

n
. If the noise is bounded, i.e., Dd6

n
D(d

.!9
, then the control will hardly be a!ected by

noise if d
.!9

is smaller than the width of the control parallelogram m
H
, i.e., if

ed
.!9

(m
H

. (29)

If Eq. (29) is not satis"ed or if the noise is unbounded (d
.!9

"R), then the noise can kick
a controlled trajectory which is in the control parallelogram P

#
into the region outside P

#
.

A situation often encountered in practice is that the probability for large noise intensity is
extremely low, such as the case where the noise distribution is Gaussiana. In this case, the loss of
control due to noise-induced kick-outs (out of P

#
) are rare because they are caused by low-

probability tails on the probability density and, hence, the average time S¹T for a controlled
trajectory to be kicked out of P

#
will be long. Thus a trajectory will typically alternate between

epochs of chaotic motion of average time SqT in which it is far from the desired "xed point, and
epochs of average length S¹T in which the orbit is e!ectively controlled and lies in the control
parallelogram. If S¹T is much greater than SqT, then the trajectory spends most of its time in the
controlled epochs, and the control can be regarded as being e!ective.

The average time S¹T for which control is maintained can be computed as follows. Let the
probability density of the random variable d6

n
be P(d6

n
). The quantity S¹T is then the time for d6

n
to

become larger than d
H
,m

H
/e, which is the inverse of the probability for d6

n
to lie outside the strip

Dd
H
D. Thus, we have

S¹T"CP
~dH

~=

P(d6
n
) dd6

n
#P

=

dH
P(d6

n
) dd6

nD
~1

. (30)

If P(d6
n
) is Gaussian and if d

H
is several times the standard deviation, then the kick-outs will

correspond to d6
n

in the far tails of the probability density. In this case, S¹T will be large.

2.3.2. Stabilizing a periodic orbit of higher period
Let the desired period-m orbit be x(1, p6 )Px(2, p6 )P2Px(m, p6 )Px(m#1, p6 )"x(1, p6 ). The

linearized dynamics in the neighborhood of component i#1 of the period-m orbit is

x
n`1

!x(i#1, p6 )"A ) [x
n
!x(i, p6 )]#B *p

n
, (31)

where *p
n
"p

n
!p6 , *p

n
4d, A is a 2]2 Jacobian matrix, and B is a two-dimensional column

vector:

A"D
9
F(x, p)

@x/x(i),p/p6
,

B"D
p
F(x, p)

@x/x(i),p/p6
.

(32)

In two dimensions, there exist a stable and an unstable directions at each component (point) of
an unstable periodic orbit. The stable (unstable) direction is a direction along which points
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approach (leave) the periodic orbit exponentially. (For higher-dimensional maps, there may be
several stable and unstable directions.) Intuitively, the existence of both a stable and an unstable
directions at each point of a periodic orbit can be seen as follows. Choose a small circle of radius
e around an orbit point x(i). This circle can be written as dx2#dy2"e2 in the Cartesian
coordinate system whose origin is at x(i). The image of the circle under F~1 can be expressed as
Adx@2#Bdxdy@#Cdy@2"1, an equation for an ellipse in the Cartesian coordinate system
whose origin is at x(i!1). The coe$cients A, B and C are functions of elements of the inverse
Jacobian matrix at x(i). This deformation from a circle to an ellipse means that the distance along
the major axis of the ellipse at x(i!1) contracts as a result of the map. Similarly, the image of
a circle at x(i!1) under F is typically an ellipse at x(i), which means that the distance along the
inverse image of the major axis of the ellipse at x(i) expands under F. Thus the major axis of
the ellipse at x(i!1) and the inverse image of the major axis of the ellipse at x(i) approximate the
stable and unstable directions at x(i!1). We note that typically the stable and unstable directions
are not orthogonal to each other, and in rare situations they can be identical (nonhyperbolic
dynamical systems) [34,39].

The stable and unstable directions at each point of an unstable periodic orbit can be computed
using the algorithm developed in Ref. [34]. This algorithm can be applied to cases where the period
of the orbit is arbitrarily large. To "nd the stable direction at a point x, one "rst iterates this point
forward N times under the map F and obtains the trajectory F1(x), F2(x),2, FN(x). Now imagine
that a circle of small radius e is placed at the point FN(x). If this circle is iterated backward once, it
becomes an ellipse at the point FN~1(x), with the major axis along the stable direction of the point
FN~1(x). One can iterate this ellipse backwards continuously, while at the same time rescaling the
ellipse's major axis to be order e. When the ellipse is iterated back to the point x, it becomes very
thin with its major axis along the stable direction at the point x, if N is su$ciently large. For a short
period-m orbit, one can choose, say N"km, where k an integer. In practice, instead of using a small
circle, one takes a unit vector at the point FN(x), since the Jacobian matrix of the inverse map
F~1 rotates a vector in the tangent space of F towards the stable direction. Hence one iterates
a unit vector backward to the point x by multiplying by the Jacobian matrix of the inverse map
at each point on the already existing orbit. The vector is rescaled after each multiplication to unit
length. For su$ciently large N, the unit vector so obtained at x is a good approximation to the
stable direction at x.

Similarly, to "nd the unstable direction at point x, one "rst iterates x backward under the inverse
map N times to obtain a backward orbit F~j(x) with j"N,2, 1. One then chooses a unit vector at
point F~N(x) and iterates this unit vector forward to the point x along the already existing orbit by
multiplying by the Jacobian matrix of the map N times. (Recall that the Jacobian matrix of the
forward map rotates a vector towards the unstable direction.) The vector is rescaled to unit length
at each step. The "nal vector at point x is a good approximation to the unstable direction at that
point if N is su$ciently large.

The above method is e$cient. For instance, the error between the calculated and real stable or
unstable directions [34] is on the order of 10~10 for chaotic trajectories in the HeH non map [40] if
N"20.

Let e
4,i

and e
6,i

be the stable and unstable directions at x(i), and let f
4,i

and f
6,i

be the
corresponding contravariant vectors that satisfy the conditions f

6,i
) e

6,i
"f

4,i
) e

4,i
"1 and

f
6,i

) e
4,i
"f

4,i
) e

6,i
"0. To stabilize the orbit, we require that the next iteration of a trajectory point,
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after falling into a small neighborhood about x(i), along the stable direction at x(i#1, p6 ):

[x
n`1

!x(i#1, p6 )] ) f
6,i`1

"0 . (33)

Taking the dot product of both sides of Eq. (33) with f
6,i`1

and use Eq. (31), we obtain the following
expression for the parameter perturbations:

*p
n
"

MA ) [x
n
!x(i, p6 )]N ) f

6,i`1
!B ) f

6,i`1

. (34)

The general algorithm for controlling chaos for two-dimensional maps can thus be summarized
as follows:

(a) Find the desired unstable periodic orbit to be stabilized.
(b) Find a set of stable and unstable directions, e

4
and e

6
, at each component of the periodic orbit.

The set of corresponding contravariant vectors f
4

and f
6

can be found by solving
e
4
) f

4
"e

6
) f

6
"1 and e

4
) f

6
"e

6
) f

4
"0.

(c) Randomly choose an initial condition and evolve the system at the parameter value p6 . When
the trajectory enters the e neighborhood of the target periodic orbit, calculate parameter
perturbations at each time step according to Eq. (34).

2.4. Pole placement method of controlling chaos in high dimensions

We consider the following discrete-time high-dimensional dynamical system:

x
n`1

"F(x
n
, p

n
) , (35)

where x
n
3RN, F is a smooth vector function, p

n
is an accessible parameter that can be externally

perturbed. Continuous dynamical systems can be regarded as discrete maps on the PoincareH
surface of section. Periodically driven dynamical systems have a natural PoincareH surface of section
at the period of the driver. However, for autonomous dynamical systems such a section may not
exist, or it may be singular if some of the trajectories take arbitrarily long time to return to it. One
might need then, in order to discretize the dynamical process, to select some other kind of section
whose choice typically depends on the particular system. We conceive using only small controls, so
we restrict p to lie in some small interval, as in the control of low-dimensional chaos:

Dp
n
!p6 D(d , (36)

where p6 is a nominal parameter value. As in the low-dimensional case, if p
n

is outside this interval,
we set p

n
"p6 . Assuming that the dynamical system F(x

n
, p6 ) possesses a chaotic attractor, the goal is

to vary the parameter p
n

within the range (p6 !d, p6 #d) in such a way that for almost all initial
conditions in the basin of the chaotic attractor, the dynamics of the system converges onto
a desired time periodic orbit contained in the attractor. To do this we consider a small neighbor-
hood of size comparable to d of the desired periodic orbit. In this neighborhood, the dynamics is
approximately linear. Since linear systems are stabilizable if the controllability assumption is
obeyed, it is reasonable to assume that the chosen periodic orbit can be stabilized by feedback
control. The ergodic nature of the chaotic dynamics guarantees that the state trajectory enters the
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neighborhood. Once inside, we apply the stabilizing feedback control law to keep the trajectory in
the neighborhood of the desired orbit.

For simplicity we describe the method as applied to the case where the desired orbit is a "xed
point of the map F. Consideration of periodic orbits of period larger than one is straightforward
[41]. Let x

H
(p6 ) be an unstable "xed point on the attractor. For values of p

n
close to p6 and in the

neighborhood of the "xed point x
H
(p6 ), the map can be approximated by the linear map:

x
n`1

!x
H
(p6 )"A[x

n
!x

H
(p6 )]#B(p

n
!p6 ) , (37)

where A is the N]N Jacobian matrix and B is an N-dimensional column vector:

A"DxF(x, p) ,

B"D
p
F(x, p) .

(38)

The partial derivatives in A and B are evaluated at x"x
H

and p"p6 . To calculate the time-
dependent parameter perturbation (p

n
!p6 ), we assume that it is a linear function of x:

p
n
!p6 "!K T[x

n
!x

H
(p6 )] , (39)

where the 1]n matrix K T is to be determined so that the "xed point x
H

becomes stable.
Substituting Eq. (39) into Eq. (37), we obtain

x
n`1

!x
H
(p6 )"(A!BK T)[x

n
!x

H
(p6 )] , (40)

which shows that the "xed point will be stable if the matrix (A!BK T) is asymptotically stable; that
is, all its eigenvalues have modulus smaller than unity.

The solution to the problem of determining K T, such that the eigenvalues of the matrix
(A!BK T) have speci"ed values, is known from control systems theory as the `pole placement
techniquea [42]. In this context, the eigenvalues of the matrix (A!BK T) are called the `regular
polesa. The following results give a necessary and su$cient condition for a unique solution of the
pole placement problem to exist, and also a method for obtaining it (Ackermann's method) [42]:
(1) The pole placement problem has a unique solution if and only if the N]N matrix

C"(BFABFA2BF2FAn~1B) ,

is of rank N, where C is the controllability matrix; and (2) the solution of the pole placement
problem is given by

K T"(a
N
!a

N
,2, a

1
!a

1
)T~1 ,

where T"CW and

W"A
a
N~1

a
N~2 2 a

1
1

a
N~2

a
N~3 2 1 0

F F F F

a
1

1 2 0 0

1 0 2 0 0
B .
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Here Ma
1
,2, a

N
N are the coe$cients of the characteristic polynomial of A:

DsI!AD"sN#a
1
sn~1#2#a

N
,

and Ma
1
,2, a

N
N are the coe$cients of the desired characteristic polynomial (A!BK T).

The condition for the matrix C to be of rank N is too strong as far as stabilizability of a closed
loop system is concerned. In fact, the pole placement technique only requires a set of N points,
placed symmetrically with respect to the real axis in the complex plane. Then there exists
a feedback matrix K T such that the poles of the closed-loop system are the above set of points. It
should be pointed out that there is a large class of control systems, in particular those arising in
physical situations, which do not have a controllable linearization as indicated in Eq. (40). One has
then to choose another control that obeys the controllability assumption if one wishes to use linear
control. In particular, special care should be exercised when dealing with pole placement technique
for nonautonomous systems. It should be noted that the control Eq. (39) is based on the linear
Eq. (37) and therefore it is only valid in the neighborhood of the desired "xed point x

H
(p6 ). The size

of this valid neighborhood is determined by the limitation in the size of the parameter perturbation
d. Combining Eqs. (36) and (39), we obtain

DK T[x
n
!x

H
(p6 )]D(d . (41)

This de"nes an invariant slab of width 2d/DK TD in RN. We choose to activate the control according
to Eq. (41) only when the trajectory falls into the slab, and we leave the control parameter at its
nominal value p6 when the trajectory is outside this slab. It should also be noted that the matrix
K T can be chosen in many di!erent ways. In principle, a choice of regulator poles inside the unit
circle, which does not violate the controllability condition, works [41]. The OGY method consists
of setting the unstable poles equal to zero while leaving the stable ones as they are. With the OGY
choice of regulator poles, the trajectory approaches the "xed point geometrically along the stable
manifold after the control is turned on.

Since the control is turned on only when the trajectory enters the thin slab about the desired
"xed point, one has to wait for some time for this to occur if the trajectory starts from a randomly
chosen initial condition. Even then, because of nonlinearity not included in the linearized Eq. (37),
the control may not be able to keep the trajectory in the vicinity of the "xed point. In this case the
trajectory will leave the slab and continue to wander chaotically as if there was no control. Since
a chaotic trajectory on the uncontrolled chaotic attractor is ergodic, at some time it will eventually
reenter the slab and also be su$ciently close to the "xed point so that control is achieved. As
a result, we create a stable orbit, which, for a typical initial condition, is preceded by a chaotic
transient [32,43] in which the orbit is similar to orbits on the uncontrolled chaotic attractor. Of
course, there is a probability zero Cantor-like set of initial conditions which never enters the slab.
In Ref. [41], it is shown that the OGY choice for the regulator poles yields the shortest chaotic
transient or, equivalently, the shortest average time to achieve control.

As a typical higher-dimensional physical system, we consider the double rotor map which is
a four-dimensional map describing the time evolution of a mechanical system known as the kicked
double rotor [41,44]. The double rotor consists of two thin, massless rods as shown in Fig. 1. The
"rst rod of length l

1
pivots about P

1
("xed), and the second rod of length 2l

2
, pivots about

P
2

which moves. A mass m
1

is attached at P
2
, and two masses m

2
/2 are attached to each end of the

second rod. The end of the second rod (P
3
) receives vertical periodic impulse kicks of period ¹ and
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Fig. 1. From Ref. [41]. The double rotor.

strength f
0
. The motion is in the horizontal plane so that gravity can be neglected. The double rotor

is also subject to friction at P
1

and P
2

which is proportional to the angular velocity dh
1
(t)/dt and

dh
2
(t)/dt!dh

1
(t)/dt with proportional constants l

1
and l

2
, respectively. Due to the periodic

forcing, the set of di!erential equations describing the double rotor can be reduced to the following
four-dimensional map by using the stroboscopic sectioning technique [41,44]:

A
X
n`1

Y
n`1
B"A

MY
n
#X

n
LY

n
#G(X

n`1
)B , (42)

where X"(x1,x2)T, Y"(y1, y2)T, x1 and x2 are the angular positions of the rods at the instant of
the kth kick, and y1 and y2 are the angular velocities of the rods immediately after the kth kick.
L and M are constant 2]2 matrices de"ned by

L"

2
+
j/1

W
j
ejj¹, M"

2
+
j/1

W
j

ejj¹!1
j
j

, (43)

W
1
"A

a b

b dB, W
2
"A

d !b

!b a B ,

a"1
2
(1#(l

1
/D)), d"1

2
(1!(l

1
/D)), b"!l

2
/D ,

j
1,2

"!1
2
(l

1
#l

2
$D), D"Jl2

1
#4l2

2
.

The function G(X) is given by

G(X)"A
c
1

sinx1

c
2

sinx2B , (44)
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Fig. 2. From Ref. [41]. Double rotor map: successive control of unstable "xed points embedded in the chaotic attractor.
The arrows indicate the times of switching.

where c
1
"f

0
l
1
/I, c

2
"f

0
l
2
/I, and I"(m

1
#m

2
)l2
1
"m

2
l2
2
. For illustrative purposes we "x

l"¹"I"m
1
"m

2
"l

2
"1 and l

2
"1/J2. For f

0
"9.0, the double rotor map has a chaotic

attractor with two positive Lyapunov exponents. There are 32 unstable "xed points embedded in
this chaotic attractor [41].

To apply the pole-placement technique, we choose f
0

as the control parameter so it can be varied
about its nominal value f

0
"9.0. Let (X

H
, Y
H
) be a "xed point to be stabilized. The quantities

required in the application of the pole-placement technique are as follows:

A"A
I
2

M

H(X
H
) L#H(X

H
)MB , (45)

H(X
H
)"

f
0
I A

l
1

cosx1
H

0

0 l
2

cosx2
H
B ,

BT"(0, 0, l
1

sinx1
H
/I, l

2
sinx2

H
/I) ,

C"(BFABFA2BF2FAn~1B), T"CW ,

W"A
a
3

a
2

a
1

1

a
2

a
1

1 0

a
1

1 0 0

1 0 0 0B ,

K T"(a
4
!a

4
, a

3
!a

3
, a

2
!a

2
, a

1
!a

1
)T~1 .

Fig. 2(a) and (b) show how the method works to stabilize di!erent unstable "xed points embedded
in the chaotic attractor. Control of the "rst "xed point was turned on when the trajectory enters its
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slab de"ned by (41) with switches to control other "xed points occurring at later times. In the
"gures, the state variables x1 and x2 of an orbit are plotted. The times at which the control is
switched from stabilizing one "xed point to stabilizing another are labeled by the arrows in the
"gures. The magnitude of the parameter perturbation is chosen as d"1.0, which is roughly 10% of
the nominal f

0
value. A smaller d would increase the average time to achieve control. The "gures

clearly illustrate the #exibility o!ered by the method in controlling di!erent periodic motions
embedded in the attractor.

2.4.1. Use of delay coordinates
In most experimental situations, a detailed knowledge of the system's equations is not known.

One usually measures a time series of a single scalar state variable, say u(t), and then uses the delay
coordinates [26] to represent the system state. A delay-coordinate vector in the m-dimensional
embedding space can be formed as follows:

x(t)"(u(t), u(t!t
D
), u(t!2t

D
),2, u(t!(m!1)t

D
)) ,

where t is the continuous time variable, and t
D

is some conveniently chosen delay time. The
embedding theorem [26] guarantees that for m52N, where N is the phase-space dimension of
the system, the vector x is generically a global one-to-one representation of the system state. Since
we only require x to be one-to-one in the small region near the "xed point, the requirement for
the embedding dimension is actually m"N!1 [1,23]. To obtain a map, one can take a PoincareH
surface of section. For the often encountered case of periodically driven systems, one can de"ne
a `stroboscopic surface of sectiona by sampling the state at discrete time t

n
"n¹#t

0
, where ¹ is

the driving period. In this case the discrete state variable is x
n
"x(t

n
).

As pointed out in Ref. [45], in the presence of parameter variation, delay coordinates lead to
a map of a di!erent form than Eq. (1). For example, in the periodically forced case, since the
components of x

n
are u(t!it

D
) for i"0, 1,2, (m!1), the vector x

n`1
must depend not only on p

n
,

but also on all previous values of the parameter that are in e!ect during the time interval
(t
n
!(m!1)t

D
)4t4t

n
. In particular, let r be the smallest integer such that mt

D
(r¹. Then the

relevant map is in general of the form:

x
n`1

"G(x
n
, p

n
, p

n~1
,2, p

n~r
) . (46)

We now discuss how the OGY method can be applied to the case of delay coordinates. For
simplicity we consider r"1. In this case, we have

x
n`1

"G(x
n
, p

n
, p

n~1
) . (47)

Linearizing as in Eq. (37) and again restricting attention to the case of a "xed point, we have

x
n`1

!x
H
(p6 )"A[x

n
!x

H
(p6 )]#B

a
(p

n
!p6 )#B

b
(p

n~1
!p6 ) , (48)

where A"DxG(x, p, p@), B
a
"D

p
G(x, p, p@), B

b
"D

p{
G(x, p, p@), and all partial derivatives in A, B

a
,

and B
b
are evaluated at x"x

H
(p6 ) and p"p6 "p@. One can now de"ne a new state variable with one

extra component by

x6
n`1

"A
x
n`1
p
n
B , (49)
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and introduce the linear control law

p
n
!p6 "!K T[x

n
!x

H
(p6 )]!k(p

n~1
!p6 ) . (50)

Combining Eqs. (48) and (50), we obtain

x6
n`1

!x6
H
(p6 )"(AM !BK T)[x6 !x6

H
(p6 )] , (51)

where

x6
H
(p6 )"A

x
H
(p6 )

p6 B, AM "A
A B

b
0 0 B, BM "A

B
a

1 B, KM "A
K

k B .

Since Eq. (51) is now of the same form as Eq. (40), the method of pole placement can be applied.
A similar result holds for any r'1. Although the explicit form for the function G(x

n
, p

n
, p

n~1
) is not

known, the quantities required for computing the parameter perturbations in Eq. (51) can usually
be extracted directly from the measurement [9]. The location of the periodic orbits are obtained by
looking at recurrences in the embedded space [46,47]. The matrix A in Eq. (48) and the correspond-
ing eigenvalues and eigenvectors are obtained by looking at the same recurrences about the desired
periodic orbit and "tting an a$ne transformation x

n`1
"Ax

n
#b, since the dynamics is approx-

imately linear close to the periodic orbit. The vectors B
a

and B
b

in Eq. (48) are obtained by
perturbing the control parameter of the system [1,23,45,48].

2.5. Discussion

The OGY method described above applies to invertible maps. In general, dynamical systems
that can be described by a set of "rst-order autonomous di!erential equations are invertible,
and the inverse system is obtained by letting tP!t in the original set of di!erential equations.
Hence, the discrete map obtained on the PoincareH surface of section also is invertible. Most
dynamical systems encountered in practice fall into this category. Noninvertible dynamical systems
possess very distinct properties from invertible dynamical systems [49,50]. For instance, for
two-dimensional noninvertible maps, a point on a chaotic attractor may not have a unique stable
(unstable) direction. A method for determining all these stable and unstable directions is not
known. If one or several such directions at the target unstable periodic orbit can be calculated, the
OGY method can in principle be applied to noninvertible systems by forcing a chaotic trajectory to
fall on one of the stable directions of the periodic orbit.

The transient phase where the orbit wanders chaotically before locking into a controlled orbit
can be greatly shortened by applying a `targetinga technique [35}38] so that a trajectory can be
rapidly brought to a target region on the attractor by using small control perturbations. The idea is
that, since chaotic systems are exponentially sensitive to perturbations, careful choice of even small
control perturbations can, after some time, have a large e!ect on the trajectory location and can be
used to guide it. Thus the time to achieve control can, in principle, be greatly reduced by properly
applying small controls when the orbit is far from the neighborhood of the desired periodic orbit.

We have considered the case where there is only a single control parameter available for
adjustment. While generically a single parameter is su$cient for stabilization of a desired periodic
orbit, there may be some advantage to utilizing several control variables. Therefore, the single
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control parameter p becomes a vector. In particular, the added freedom in having several control
parameters might allow better means of choosing the control so as to minimize the time to achieve
control, as well as the e!ects of noise.

We emphasize that full knowledge of the system dynamics is not necessary in order to apply the
OGY idea [1,23]. In particular, we only require the location of the desired periodic orbit, the
linearized dynamics about the periodic orbit, and the dependence of the location of the periodic
orbit on small variation of the control parameter. Delay-coordinate embedding has been success-
fully utilized in experimental studies to extract such information purely from observations of
experimental chaotic orbits on the attractor without any a priori knowledge of the equations of the
system, and such information has been utilized to control periodic orbits [9].

The OGY idea of controlling chaos gives #exibility. By switching the small control, one can
switch the time asymptotic behavior from one periodic orbit to another. In some situations, where
the #exibility o!ered by the ability to do such switching is desirable, it may be advantageous to
design the system so that it is chaotic. In other situations, where one is presented with a chaotic
system, the method may allow one to eliminate chaos and achieve greatly improved behavior at
relatively low cost.

Finally, we point out that the OGY method is not restricted to the control of unstable periodic
orbits. The success of the method relies on the existence of distinct stable and unstable directions
at trajectory points. It can be applied to stabilizing any desirable chaotic trajectory embedded in
a chaotic attractor [51}53] and, consequently, it is also applicable to pseudo-periodic orbits which
are chaotic trajectories coming arbitrarily close to some unstable periodic orbits. This observation
has a number of potential applications. One can use this to synchronize two chaotic systems [51],
to convert transient chaos into sustained chaos [52], to communicate with chaos by controlling
symbolic dynamics [21,24,54}57], and to select a desirable chaotic state from intermittent chaotic
signal [53], etc.

3. The adaptive method for control of chaos

3.1. The basic idea

Many alternative approaches to the OGY method have been proposed for the stabilization of
the unstable periodic orbits (UPO) [47] of a chaotic dynamics. In general the strategies for the
control of chaos can be classi"ed into two main classes, namely: closed loop or feedback methods
and open loop or non feedback methods.

The "rst class includes those methods which select the perturbation based upon a knowledge of
the state of the system, and oriented to control a prescribed dynamics. Among them, we here recall
(besides OGY) the so called occasional proportional feedback (OPF) simultaneously introduced
by Hunt [15] and Showalter [17], the method of Huebler [58], and the method introduced by
Pyragas [2], which apply a delayed feedback on one of the system variables. All these methods
are model independent, in the sense that the knowledge on the system necessary to select the
perturbation can be done by simply observing the system for a suitable learning time.

The second class includes those strategies which consider the e!ect of external perturbations
(independent on the knowledge of the actual dynamical state) on the evolution of the system.
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Periodic [59] or stochastic [60] perturbations have been seen to produce drastic changes in the
dynamics of chaotic systems, leading eventually to the stabilization of some periodic behavior.
These approaches, however, are in general limited by the fact that their action is not goal oriented,
i.e. the "nal periodic state cannot be decided by the operator.

In what follows, we will try to summarize one of the possible closed-loop approach for the
stabilization of UPO. Although it belongs to the same class of OGY, it can be considered as
alternative, insofar as it consists in perturbing a state variable of the system, instead of a control
parameter. This may result preferable in all cases in which the control parameters are strongly
in#uenced by the environmental conditions, and a variation of them is not easy to be performed.

3.2. The algorithm for adaptive chaos control

In the following we will then discuss the general problem of forcing a dynamical system

x5 "F(x,k) (52)

toward a desired goal dynamics u(t), by the use of a feedback perturbation ;(t) acting on one of
its state variables. Here dot denotes temporal derivative, k is a vector of control parameters,
x(t),(x

1
(t),x

2
(t),2,x

m
(t)) is a m-dimensional vector of the state variables, F is a suitable

nonlinear function, and u(t),(g
1
(t),g

2
(t),2, g

m
(t)) is the m-dimensional desired dynamics. The

further hypothesis here is that it exists a scalar state variable (e.g., x
1
) out from x that is accessible

for measurements and perturbations. The problem is to select a suitable additive perturbation to
the x

1
equation so that the whole system evolves asymptotically to yield Dx(t)!u(t)D"0.

In general u(t) can be any desired dynamics compatible with the natural evolution of the
system. However, along this section, we will consider u(t) to equal a particular UPO of period
¹(u(t),x(t!¹)) so that the above condition corresponds to the stabilization of that UPO.

The "rst attempt to solve this problem was provided by Pyragas [2], who introduced an additive
feedback perturbation in the equation for the observable variable x

1
given by

;(t)"K(g
1
(t)!x

1
(t))"K(x

1
(t!¹)!x

1
(t)) , (53)

K being a suitable parameter setting up the weight of the perturbation. This perturbation is
nothing but a time-delayed continuous feedback on the state variable x

1
, with the e!ect of forcing

x
1
(t) to follow g

1
(t). In practice, the method transform a system of ordinary di!erential equations

into a delayed dynamical system. This implies to increase its dimensionality so as the desired UPO
(which was unstable in the original ordinary di!erential equation system) becomes now stable in
the new delayed dynamical system.

The two crucial parameters in Ref. [2] are ¹ and K. The "rst can be experimentally detected
by observing the unperturbed evolution of the system for a while, and applying e.g. the standard
topological techniques for the detection of UPOs [61]. Once ¹ has been properly detected, the
operator begins with di!erent K values in order to extract the range for which the desired UPO
comes out to be stabilized (the so called controllability range).

The above technique has been later elaborated in Refs. [62] and by the same Pyragas in
Ref. [63], by rede"ning the correction perturbation ;(t) as a sum of the contributions at all
previous multiple p¹ (p integer) of the UPOs period.
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An improvement of the Pyragas' technique has been recently o!ered, based on an adaptive
recognition [64] and control [3] method, allowing a natural selection of the weighting factor K in
Eq. (53), which becomes now function of time and it is selected exploiting the local information of
the dynamics. The method, originally introduced for the stabilization of UPOs in chaotic systems,
has been later extended for solving the problem of chaos synchronization [65], targeting of chaos
[66], "ltering noise from experimental chaotic data sets [67], and for the control of defects and
space-like structures in delayed dynamical systems [68].

The adaptive algorithm can be summarized as follows. In Eq. (52), at each time t
n

at which the
perturbation must be applied, one measures the distance d(t

n
) between the dynamics of the

observable x
1
(t
n
) and the goal dynamics g

1
(t
n
)

d(t
n
)"x

1
(t
n
)!g

1
(t
n
) . (54)

Then, one evaluates the local variation rate

j(t
n
)"log K

d(t
n
)

d(t
n~1

) K , (55)

measuring how the distance between actual and desired dynamics evolves in time, and selects the
perturbation as

;(t
n
)"K(t

n
) (g

1
(t
n
)!x

1
(t
n
)) , (56)

where

1
K(t

n
)
"

1
K

0

(1!tanh(pj(t
n
))), p'0, K

0
'0 . (57)

The adaptive nature of the algorithm is clear when one considers that the strength of the
perturbation in Eq. (56) now adaptively depends on the local dynamics of the system. Namely,
when x

1
(t) naturally tends to shadow the goal pattern g

1
(t), this is re#ected by a temporal

decreasing behavior of d(t), implying a negative value of j(t) and therefore a shrinking of the
weighting factor K(t) in Eq. (57). On the contrary, whenever the natural evolution of the dynamics
tends to push the system away from the goal dynamics, this is re#ected by an increasing process for
K(t). In other words the perturbation is adapted to the local dynamics, since the far (close) the
system is to the goal dynamics, the big (small) is the weight given to the perturbation. It should
be remarked that the limit pP0 of the above algorithm recovers the Pyragas' control method of
Ref. [2], implying a constant weighting factor K

0
in Eq. (57), which then equals Eq. (53).

While this process solves the problem of encountering the controllability range (the weighting
factor K is now not constant as far as pO0 and it is automatically selected by the adaptive
algorithm), there are here two crucial parameters, namely p and K

0
.

We have already pointed out that pP0 leads the adaptive algorithm to be equivalent to the
Pyragas'method. On the other hand, a too big p may cause stability problems in Eq. (57). In order
to have a reasonable K dynamics, avoiding undesirable saturation e!ects of the function tanh, one
immediately see that p should be selected as to be su$ciently smaller than the maximum j, in order
that the product pj(t

n
) lies within the linear region of the function tanh for all times t

n
.

130 S. Boccaletti et al. / Physics Reports 329 (2000) 103}197



Therefore, a preliminary observation of the unperturbed dynamics may be in order so as to have
statistics of the typical j values occurring in the unperturbed dynamics, leading to the natural
choice of the sensitivity parameter.

As for K
0
, while there are no upper limit in the choice, a lower limit should be taken into

account. Indeed, Eq. (57) allows variations of K(t) in the range from 0 (when j"#R) to 2K
0

(when j"!R). Therefore one should assure that this range overlaps conveniently the controlla-
bility range, through a judicious choice of K

0
. Even though one could then be tempted to take

a very large K
0
, this can result in an undesirably large initial perturbation, leading to practical

problems in the implementation of the method. In practice, the optimal K
0

for the adaptive
technique can be always easily individuated.

A further remark is in order. Eq. (57) can be rewritten as

K(t
n
),1/q(t

n
)

q(t
n
)"q

0
(1!tanh(pj(t

n
))) .

(58)

Since the perturbation is additive on the right-hand side of the model equation, q(t
n
) and q

0
must

be time intervals. The original adaptive method (Ref. [64]) was indeed introduced for the
recognition of chaos, and it consisted in selecting the appropriate time interval in order to minimize
the second variations of the dynamics. In that case, the evolution equation for q(t

n
) was

q(t
n
)"q(t

n~1
) (1!tanh(pj(t

n
))) , (59)

that is, substituting in Eq. (58) a "xed reference time interval q
0

with a recursive search in the time
intervals. The obtained irregular sequence of time intervals was used to extract suitable chaotic
indicators, such as the periods of the UPOs [3] and a discriminator between chaos and stochastic-
ity [67].

It is important to remark that the recursive formula implies a direct choice of the optimal q in
Eq. (58), thus of the optimal K in Eq. (57), while the selection of a "xed reference time interval
q
0

implies an overconstraints to the search for the optimal perturbation. However, the former
mechanism can be only applied when the switch on of the process is done close to the UPO to be
controlled. In practice, this would imply a preliminary learning task for an initial targeting
procedure. We will come back to this point in the following of the present Report.

When, instead, one wants to switch on the control on an arbitrarily selected region of the
attractor, then the latter strategy would be preferable, insofar as the former one can have
limitations due to initial large #uctuation of the q

n
which can eventually drive the q sequence away

from the controllability range. This, of course, can be cured by a reliable choice of the sensitivity,
but the whole process may result quite complicate to implement. This is the main reason for which
we will focus on the latter strategy, which, though being less complete, has the merit of being easily
implementable.

3.3. Application to high-dimensional systems

While applications to low-dimensional dynamics are straightforward, and we here address the
reader to the available literature contained in Ref. [3], in the following we provide an example
of the reliability of the above algorithm when used for the stabilization of periodic motions in
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high-dimensional systems. The natural framework for this is the application to delayed dynamical
systems (DS), which was provided in Ref. [68], and represents an intermediate stage between the
control of concentrated systems (CS) and that of space-extended systems (ES).

DS are systems ruled by

y5 "F(y, y
$
) , (60)

where y"y(t) is a m dimensional real vector, dot denotes temporal derivative, F is a nonlinear
function, and y

$
,y(t!¹), ¹ being a time delay.

Experimental evidence of the analogy between DS and ES was provided for a CO
2

laser with
delayed feedback [69] and supported by a theoretical model [70]. Most of the statistical indicators
for DS, such as the fractal dimensions, are extensive parameters proportional to ¹, which thus
plays a role analogous to the size for the extended case [71].

The conversion from the DS to ES is based on a two variable time representation, de"ned by

t"p#h¹ , (61)

where 04p4¹ is a continuous space-like variable and the integer h plays the role of a discrete
temporal variable [69]. By such a representation the long-range interactions introduced by the
delay are reinterpreted as short-range interactions along the h direction, since now y

$
,y(p, h!1).

In this framework, the formation and propagation of space}time structures, as defects and/or
spatiotemporal intermittency can be identi"ed [69,70].

When ¹ is su$ciently larger than the oscillating period of the system, the behavior of a delayed
system is analogous to that of a one-dimensional extended system. In particular, it may display
phase defects, i.e. points where the phase suddenly changes its value and the amplitude goes to zero.

For sake of exempli"cation, let us make reference to the following particular delayed dynamics:

AQ "eA#b
1
A2(t!¹)A#b

2
A4(t!¹)A , (62)

e5"k
2AS!

k
1

k
2

e!kA2B . (63)

Here, all quantities are real. A is an order parameter, e is a time-dependent linear gain,
b
1
,b

2
, k

1
, k are suitable "xed parameters, k

2
is a measure of the ratio between the characteristic

time scales for A and e, and S is a measure of an external pumping to the system.
Eq. (63) are rather general. For instance, when ¹"0, S(0, b

1
'0, b

2
(0, k

2
'0, k

1
'0,

k'0, they model an excitable system, producing the so called Leontovitch bifurcation, evidence of
which has been shown experimentally on a CO

2
laser with intracavity saturable absorber [72].

For ¹O0, they are similar to the models already used to describe self-sustained oscillations of
con"ned jets [73], or memory induced low frequency oscillations in closed convection boxes [74],
or even the pulsed dynamics of a fountain [75]. It should be here remarked that control of Eq. (63)
with the OGY method can be complicated because of the extreme high dimensionality of this
particular situation, requiring a very high dimensional embedding space wherein reconstructing
the local stability properties of the UPOs. This is therefore the typical case in which alternative
approaches may provide a less costly strategy for the stabilization of UPOs.

Eq. (63) has been found also a good model for the temperature evolution in a well controlled
time-dependent convection experiment [76], done with a cylindrical layer of silicon oil heated from
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Fig. 3. (a) Cross-section of the experimental setup. A hot drop (thermal) is dragged by the #ow and then reinjected into
the heating region after having completed a round trip of the cell in a mean time ¹. P indicates the point where
temperature is measured. (b) Experimental time behavior of the temperature at the point P. Vertical axis reports the
temperature in arbitrary units, horizontal axis reports the time in seconds (¹"330 s). (c) Expanded view of the signal
within the arrows which exhibits a phase jump (solid line) and reference signal translated by ¹ (dashed line).

below by a square heater limited to the central part of the container (see Fig. 3a for a scheme of the
system). The heater is surrounded by the same insulating material of the vessel. A convective
instability driven simultaneously by buoyancy and temperature-dependent surface tension, called
BeH nard}Marangoni convection, grows as the heating is increased. A steady state is reached and
a stationary pattern composed of four convective cells appears in the hot region. Additional details
on this experiment can be found in Ref. [76].

By further increasing the heating, a time-dependent regime arises consisting in spatio-temporal
modulations, or thermals, generated at the bottom boundary layer and then dragged by the #ow
along the cell as can be seen in Fig. 3a. This con"guration provides a natural delayed interaction
insofar as it reiterates at each position the local value of the order parameter after a delay ¹,
corresponding to the time lag necessary for the trip of the cell. In this situation, an experimental
measurement of the temperature at the point P of Fig. 3a yields the data of Fig. 3b. The vertical axis
(temperature) can be taken as representative of the order parameter A. The main feature of this
experiment consists of trains of modulated oscillations, interrupted by localized events (phase
defects), wherein the phase of the signal changes suddenly and the amplitude decreases to zero.

Therefore, the relaxation oscillations are represented by the normal form of a Hopf bifurcation
(Eq. (63)), wherein the saturating terms are delayed to account for the transport of the convective
cell. Eq. (63) represents the slow evolution (k

2
(1) of the control parameter e, which is enhanced by
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the external pump S and depressed by the convective motion (!kA2) which would naturally
uniformize top and bottom temperatures.

Let us now see how phase defects emerge in Eq. (63). If one adjusts pump and delay parameters
(S and ¹) so that the system enters the chaotic region, one realizes that, in fact, chaos appears in
the system in two di!erent forms. For low ¹ values, chaos is due to a local chaotic evolution of the
phase, whereas no appreciable amplitude #uctuations are observed. This regime was called phase
turbulence (PT). By increasing ¹, one observes a transition toward amplitude turbulence (AT),
wherein the dynamics is dominated by the amplitude #uctuations, and a large number of defects is
present. Both PT and AT have counterparts in a one-dimensional complex Ginzburg}Landau
equation. Here the parameter space shows a transition from a regime of stable plane waves toward
PT (Benjamin}Fair instability), followed by another transition to AT with evidence of space}time
defects [77].

We now apply the adaptive method to this particular case. Here, the algorithm can be
conveniently reduced to an easily workable form. The application of the method can be sum-
marized by using Eqs. (54)}(57) and substituting x

1
(t) with A(t) and g

1
(t) with A(t!¹

H
) (¹

H
being

the Hopf period). The perturbation ;(t) is then applied as additive term to the right-hand side of
the "rst of Eq. (63).

A nice approximation holds in this case. Let us refer to Eq. (58), and let SqT denote the average of
the Mq

n
N set, then the second of Eq. (58) can be written as

q
n
KSqT(1!pj

n
) (64)

where (i) q
n

has been replaced with its ensemble average, and (ii) the tgh function has been
linearized. Point (i) corresponds to "xing once forever a reference time scale for the process under
study, while point (ii) corresponds to selecting a conveniently small g to keep gj

n`1
always within

the linear region of the tgh function. In the same way, the equation for j can also be linearized as

j(t)K
AQ (t)!AQ (t!¹

H
)

A(t)!A(t!¹
H
)

. (65)

Combining Eqs. (64) and (65) into Eq. (57), this reduces to

;(t)"K
1
(A(t!¹

H
)!A(t))#K

2
(AQ (t!¹

H
)!AQ (t)) (66)

with K
1
"1 and K

2
"g/SqT. The consequences of this approximation are interesting. First of all,

it is now evident that the case K
2
"0 (p"0) recovers the Pyragas control method [2]. However,

in the present case, K
1

and K
2

can be independently selected, and this introduces an extra degree of
freedom with respect to Ref. [2]. Now, the control is more active when the error is increasing and
vice versa, so reducing oscillations. Indeed, Eq. (66) performs as a proportional derivative control-
ler, the more usual action for stabilizing feedback linear systems, due to its e!ect which consists in
increasing the phase of the compensated system in a suitable frequency band.

This approximation constitutes the order-one approximation of the adaptive method, and it is
very easy to implement, consisting in a double feedback line, one in the observable variable, and
one in its derivative. We should point out, however, that not always this approximation leads to
positive results, and in some cases (as for example the control of patterns in extended media), one
should instead apply the whole adaptive strategy, without any approximation. It is straightforward
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Fig. 4. Space (p)}time (h) representation of the controlling process for Eqs. (63). b
1
"1, b

2
"!1/16, k

2
"0.8, k

1
"1,

k"11, S"5.5, ¹
H
"1.95. (a) ¹"15, PT regime. The chaotic dynamics results in a local turbulent phase of the Hopf

oscillation which is corrected by the controlling algorithm. K
1
"K

2
"0.2. Arrow indicates the instant at which control

is switched on. (b) ¹"50, AT regime. The dynamics is dominated by amplitude #uctuations, with the presence of defects.
The algorithm (K

1
"K

2
"0.2) suppresses the defects and restores the regular oscillation. Arrow indicates the instant at

which control is switched on.

Fig. 5. ¹"50, AT with 10% noise (a) and 20% noise (b). Control with K
1
"K

2
"0.2. Same stipulations and

parameters as in the caption of Fig. 4. Arrows indicate the instant at which control is switched on.

to understand that the range of validity of such approximation is having small j values, which
implies to be su$ciently close to the UPO to be controlled so as linear properties are valid.

In Fig. 4 we report the application of our method to Eq. (63). The desired oscillation, which in the
space}time representation gives rise to a roll set, is controlled in PT (Fig. 4a) and in AT (Fig. 4b).

Finally, let us discuss the robustness of our procedure against external noise. For this purpose,
we add white noise to the measured A values before the onset of the adaptive feedback control.
Notice that the noise does not act additively, insofar as it is reinjected into the nonlinear equations
through the control feedback, hence a!ecting dynamically the evolution of the system. A relevant
result is that our method is robust against large amounts of noise. In Fig. 5 the control is achieved
within AT for 10% noise (Fig. 5a) and for 20% noise (Fig. 5b). The controlled UPO is slightly
distorted by the action of the noise fed back into the system.
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1The relation between the uncertainty exponent and the box-counting dimension, a"N!D, was rigorously proven
for Axiom-A systems [86]. It was conjectured that the same relation holds for more general dynamical systems [78,79].

2 It should be noted that a riddled basin has dimension equal to N and its basin boundary is the basin itself. Thus, the
boundary also has dimension equal to N. However, its uncertainty exponent is not equal to zero, although in most cases
it is close to zero. Therefore, strictly speaking, the relation between the basin boundary dimension and the uncertainty
exponent D"N!a does not hold for riddled basins.

4. The problem of targeting

4.1. Targeting and controlling fractal basin boundaries

4.1.1. Introduction
It is common for nonlinear dynamical systems to exhibit multiple coexisting attractors, each

with its own basin of attraction [78}83]. The basin of attraction of an attractor is the set of initial
conditions in the phase space that asymptote to the attractor. In practical applications, when one of
the attractors according to some criteria would yield superior systems performance over the others,
it is important to be able to drive most trajectories to the desirable attractor in an e$cient and
economic way. That is, one wishes to drive trajectories to the desirable attractor rapidly by using
only small feedback control to an accessible parameter or state of the system. Previous work has
demonstrated that in periodically driven dynamical systems, multiple basins of attraction can be
eliminated by replacing the periodic driving by some appropriately chosen, but somewhat large-
amplitude chaotic driving [84].

We review a method to drive most trajectories to a desirable attractor by using only small
feedback control [85]. We emphasize the need to use small feedback control [1,23] since: (1) we do
not wish to alter the system substantially; and (2) large perturbations to the system may be costly.
As such, it is only possible to alter the fate of the trajectories resulting from initial conditions in the
vicinity of basin boundaries because, for a trajectory deep in the basin of an undesirable attractor,
small perturbations cannot change the attractor to which the trajectory is asymptoting. In this
regard, it is necessary to distinguish between smooth and fractal basin boundaries [78}83].
Imagine there is an N-dimensional chaotic system. Consider a phase space region that contains
part of the basin boundary. Assume that only small perturbations of magnitude e (e;1) to an
accessible system parameter or state are allowed. If the boundary is smooth, the dimension of the
boundary is D"N!1. Thus, the fraction of trajectories whose asymptotic attractors can be
altered by small e perturbation is on the order of magnitude of eN~D"e, which is also very small. If,
on the other hand, the basin boundary is fractal with box-counting dimension (capacity) D, where
D is a fractional number that satis"es (N!1)(D(N, the fraction of trajectories whose fate can
be manipulated using small perturbation is f (e)&ea, where a"N!D(1 is the uncertainty
exponent.1 Thus, if a;1, f (e) can be large. Fractal basin boundaries with a(1 are common in
dynamical systems [78}83], and a;1 are particularly common in high-dimensional systems
[87}89] or in systems with riddled basins2 [90}96]. Therefore, although the presence of fractal
basin boundaries with a(1 poses a fundamental di$culty to predict the asymptotic attractor of
the system because of the inevitable error in the speci"cation of initial conditions or system
parameters, these boundaries o!er a possibility for us to greatly increase the probability that
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3This bush-like structure of paths is somewhat di!erent from the tree structure of paths used in the targeting procedure
in Ref. [36]. In that case, there is only one root path to the target point on the attractor, and all paths to the target live on
the same chaotic attractor.

typical trajectories can be driven to the desirable attractor by using arbitrarily small perturbations,
provided that we are able to harness the system in an intelligent way. It was demonstrated in
Ref. [85] that this is indeed possible.

In the sequel, we discuss method of control and present numerical examples for a system with
fractal basin boundaries and a system with riddled basins.

4.1.2. Method of control
The setting of the problem is as follows. Let the dynamical system be described by an

N-dimensional #ow dx/dt"F(x, p) or an N-dimensional map x
n`1

"M(x
n
, p), where p is an

accessible system parameter. For concreteness, assume there are two distinct attractors for the
range of system parameter values of interest. Furthermore, assume that the coexistence of the two
attractors is structurally stable, i.e., small change in the parameter changes the behavior of
attractors and their basin structures only slightly. Denote the two distinct attractors by A and B.
For a given region R in the phase space that contains part of the basin boundary, a fraction of
initial conditions f

A
will yield trajectories that asymptote to attractor A, and the remaining initial

conditions, a fraction of f
B
,(1!f

A
), asymptote to attractor B. Without loss of generality, assume

that f
A

and f
B

are on the same order of magnitude. Suppose that one of the two attractors yields
much superior system performance than the other. We thus wish to increase f

A
as much as possible

so that most initial conditions asymptote to the attractor with better system performance. This will
not occur if no external perturbations to the system are applied. Our goal is to devise an algorithm
to increase substantially the fraction of initial conditions that asymptote to the desirable attractor,
given that p can be adjusted "nely around a nominal value p

0
: p3[p

0
#*p, p

0
!*p], where

*p/p
0
;1.

The idea is to build a hierarchy or `tree-likea structure of paths to the desirable attractor [36,85].
Speci"cally, let A be the desirable attractor. We "rst randomly choose an initial condition in R such
that it generates a trajectory to A. Call this trajectory the `roota path 1 to A and denote it by
X
0
, X

1
,2, X

A
, where X

A
is a point on A (or a point in the vicinity of A). We then choose a second

trajectory to A from an arbitrary initial condition Y
0

in R. But for this second path, we examine if it
approaches to A directly without coming close to root path 1, in which case we call it root path 2. It
is also likely that a point on this trajectory Y

n
call fall into a suitably small neighborhood of some

point along root path 1 before it comes close to A. In this case, we store Y
n
together with the path of

(n!1) points leading to Y
n
. We call Y

0
, Y

1
,2, Y

n
the secondary path of the root path 1. This

procedure can be repeated for initial conditions chosen on a uniform grid of size d in R. Of course, if
a trajectory goes to an undesirable attractor, we simply disregard this trajectory in the tree-building
process. Finally, with suitably chosen d, a hierarchy of paths to A in R can be built with, say,
N

R
root paths. On each root path i, there can be some secondary paths, and on each secondary

path there can be third-order paths, etc. We therefore obtain a tree of paths to A in a region that
contains the basin boundary, as schematically shown in Fig. 6. In fact, since there can be many root
paths, this is more like a `busha of paths leading to the desirable attractor.3 A remaining question is

S. Boccaletti et al. / Physics Reports 329 (2000) 103}197 137



Fig. 6. From Ref. [85]. A schematic illustration of the hierarchy of paths (bush) to the desirable attractor in the
phase space.

how "ne the grid from which initial conditions are chosen should be. Clearly, the size of the grid
d should be comparable to the magnitude of the allowed parameter perturbation *p, which is
approximately the size of controlling neighborhood around each point on the bush of paths. If
d<*p, most trajectories that originally go to the undesirable attractors will not come close to
bush of paths and therefore will not be controlled. If d;*p, the bush of paths may have contained
too many details and therefore may have used too much computer memory that is unnecessary for
realizing the control.

To control a trajectory to direct it to the desirable attractor after it comes close to a path on the
bush, we employ a simple feedback scheme. For simplicity we consider the N-dimensional map
x
n`1

"M(x
n
, p). Suppose a trajectory originated from a random initial condition x

0
falls into an

e-neighborhood of a point y
n
on the bush at some later time n, i.e., Dx

n
!y

n
D4e. Let y

n
, y

n`1
,2, y

A
be the path on the bush that starts at y

n
and ends at y

A
which is in the e-neighborhood of the

desirable attractor. In the vicinity of y
n
, we have the following linearized dynamics:

*x
n`1

"DM(x
n
, p)* x

n
#(RM/Rp)*p

n
, where * x

n
"x

n
!y

n
, *p

n
"p

n
!p

0
, and the Jacobian

matrix DM(x
n
, p) and the vector RM/Rp are evaluated at x

n
"y

n
and p

n
"p

0
. Choosing a unit

vector u in the phase space and letting u )* x
n`1

"0, we obtain for the required parameter
perturbation:

*p
n
"

!u )DM(x
n
, p) )* x

n
u ) (RM/Rp)

. (67)

In principle, the unit vector u can be chosen arbitrarily provided that: (i) it is not orthogonal to
x
n`1

; and (ii) the denominator in Eq. (67) is not close to zero. In practice, we de"ne a maximum
allowed magnitude for the parameter perturbation *p

.!9
&e. If the computed D*p

n
D exceeds *p

.!9
,

we set dp
n
"0. Doing this would cause lost of control occasionally. But it was found in numerical
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Fig. 7. From Ref. [85]. Basins of attraction for Eq. (68). Black and blank regions are the basins of the A
`

and
A

~
attractors, respectively. Parameter setting is: a"1.32, b"0.9, and J

0
"0.3.

experiments that robust control can still be achieved since setting *p
n
"0 is done only rarely [85].

Because * x
n

is small, *p
n

is also small. In the sequel, we present two numerical examples to
illustrate the control method.

4.1.3. Example 1: controlling fractal basin boundaries
We consider the following two-dimensional map [78,79]:

h
n`1

"h
n
#a sin(2h

n
)!b sin(4h

n
)!x

n
sin(h

n
) ,

x
n`1

"!J
0

cos(h
n
) ,

(68)

where x can be regarded as the radial distance from the center of an annulus, h is an angle variable
so that h and h#2p are equivalent, and a, b and J

0
are parameters. The system is invariant under

the symmetry hP2p!h. The determinant of the Jacobian matrix is J
0

sin2h(1 (for J
0
(1). At

the following parameter setting, a"1.32, b"0.9, J
0
"0.3, there are two attractors, located at

x"!0.3, h"0 (denoted by A
~

) and x"0.3, h"p (denoted by A
`

), respectively. The bound-
aries between basins of the two attractors are fractal, as shown in Fig. 7, where black dots represent
the basin of the A

`
attractor. The dimension of the basin boundary is approximately 1.8,

corresponding to an uncertainty exponent of a+0.2 [78,79].
Now assume that the attractor A

`
corresponds to a better system performance so that it is the

desirable attractor. Without control, the fraction of initial conditions that asymptote to A
`

is
about 50% for the phase-space region in Fig. 7. Assume a is an accessible parameter which can be
perturbed slightly around its nominal value a

0
"1.32. We "rst build a bush of paths to A

`
by

using a grid of 100]100 initial conditions in the region (04h4p, !0.54x40.5) (correspond-
ing to grid size d+3.3]10~2). We arbitrarily choose u"(1/J2)(1, 1) to compute the parameter
perturbation *a

n
from Eq. (67). Fig. 8a shows a controlled trajectory (solid line) to the desirable

attractor A
`

, where both the size of the controlling neighborhood e and the maximal allowed
parameter perturbation *p

.!9
are set to be 10~2. The trajectory would asymptote to the un-

desirable attractor without control, as shown by the dotted line in Fig. 8a. When control is applied
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Fig. 8. From Ref. [85]. (a) A controlled trajectory to the desirable attractor A
`

, where the size of the controlling
neighborhood e and the maximum allowed parameter perturbation *p

.!9
are both 10~2. The trajectory would

asymptote to the undesirable attractor A
~

without control. (b) At d&10~2, the fraction f` of initial conditions that
asymptote to A

`
versus log

10
e. (c) The three-dimensional plot of f` versus log

10
d and log

10
e. We see that the optimal

e value for which f ` reaches maximum is about 10~2. (d) The maximum value f `
.!9

versus log
10

d.

using these values of e and p
.!9

, about 70% of the initial conditions in the region
(04h4p, !0.54x40.5) asymptote to A

`
, increased by 20% as compared with the case

without control. Let d be the size of the covering when the bush is built. Clearly, the fraction
of initial conditions that asymptote to A

`
depends on both d and the size of the control-

ling neighborhood e. Fig. 8b shows, with the same bush of paths to A
`

as in Fig. 8a, f `
versus e (*p

.!9
"e) for d "xed at about 3.3]10~2 and 10~44e410~1. In the "gure, for each

value of e, N
0
"90 000 (300]300) initial conditions uniformly distributed in the region

(04h4p, !0.54x40.5) are chosen and the number of controllable initial conditions N
`

, i.e.,
those asymptote to A

`
via control, are recorded. The fraction f ` is approximated by N

`
/N

0
.

Since the grid size for building the bush is d&10~2, we see that when e;d, essentially no
improvement in f ` is achieved because it is unlikely for initial conditions originally asymptoting to
A

~
to fall in the vicinity of points along the bush. When e&10~2, maximum increase in f ` is

achieved because in this case, it is easy for trajectories to come close to the bush and to be
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controlled. However, if e'd, control may be lost for some initial conditions because the linearized
dynamics used to derive the parameter perturbation Eq. (67) no longer holds at large values of e,
although in this case it is easy for trajectories to fall in the e-neighborhood of the bush. Thus, we see
that f` starts to decrease as e increases about 10~2. To more clearly see the dependence of f` on
both d and e, we compute f` for systematically chosen d and e values. Fig. 8c shows the three-
dimensional plot of f` versus d and e for 10~2(d(10~0.4 and 10~4(e(10~1. Because of the
two-dimensional phase space region used to construct the bush, decreasing d to values below 10~2
leads to huge number of points on the bush and thus to numerical di$cults. Nonetheless, it is clear
from Fig. 8c that for the range of d values chosen, maximum improvement in f` occurs at e&10~2.

To understand why the optimal improvement in f` occurs at e&10~2, we note that the
maximum value f `

.!9
of f `, as e changes, depends on d. Generally, f `

.!9
is small if d is too large

because in this case, the basin boundaries are not adequately covered. As d decreases, f `
.!9

increases.
But if d becomes so small that the entire basin boundaries are covered by the bush, decreasing
d further does not help to increase f `

.!9
. Thus, f `

.!9
saturates as d decreases through a critical value.

This behavior is shown in Fig. 8d, where we see that f `
.!9

saturates at d+10~1.26. The saturated
value of f `

.!9
is about 0.706. At this d value, there are approximately N

c
"17 300 points on the

bush. These are the required points to cover the basin boundaries adequately. We ask, how many of
these points can be in#uenced by perturbations of magnitude e? The answer is &eaN

c
because the

fraction of basin boundary points that are uncertain with respect to perturbation e scales like ea.
Since these N

c
points on the bush provides a good covering of the basin boundaries, we have

ea
015*.!-

N
c
e2
015*.!-

&1, which gives e
015*.!-

&N~1@(2`a)
c

+1.2]10~2. This agrees with the numerical
observation in Figs. 8b and c.

4.1.4. Example 2: controlling riddled basins
We "rst brie#y review the concept of riddled basins. Riddled basins usually occur in dynamical

systems with a simple type of symmetry. The existence of symmetry often leads to invariant
subspace in the phase space. The description of riddled basins was introduced in Ref. [90] where it
was shown that for certain class of dynamical systems with an invariant subspace: (i) if there is
a chaotic attractor in the invariant subspace; (ii) if there is another attractor in the phase space; and
(iii) if the Lyapunov exponent transverse to the subspace is negative, then the basin of the chaotic
attractor in the invariant subspace can be riddled with holes belonging to the basin of the other
attractor. That is, for every initial condition that asymptotes to the chaotic attractor in the
invariant subspace, there are initial conditions arbitrarily nearby that asymptote to the other
attractor. Rigorous results on the dynamics of riddled basins for discrete maps were presented in
Refs. [90,91]. The dynamics of riddled basins was subsequently investigated in [92] using a more
realistic physical model. A more extreme type of basin structure referred to as `intermingled
basinsa in which the basins of more than one chaotic attractors are riddled, was also studied using
both discrete maps [90] and a more realistic physical system [93]. Riddled basins have been
veri"ed in experiments conducted using coupled electrical oscillators [94,95]. The mechanism
for riddling to occur, and the basin structure associated with the riddling, were investigated by
Ashwin et al. [95,96]. We consider the following two-dimensional map [85]:

x
n`1

"g(x
n
)#by2

n
,

y
n`1

"ax
n
y
n
#y3

n
,

(69)
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Fig. 9. From Ref. [85]. (a) Riddled basin of the y"0 attractor for Eq. (69). The parameter setting is r"3.8, a"1.7 and
b"0.1. (b) For d"10~5, f` versus log

10
e. (c) The three-dimensional plot of f ` versus log

10
d and log

10
e. (d) The

maximum value f `
.!9

versus log
10

d.

where g(x) is a chaotic map, b and a are parameters. The invariant subspace is the one-dimensional
line de"ned by y"0 since if y

0
"0, then y

n
"0 for n51. For simplicity we choose g(x) to be

the logistic map g(x)"rx(1!x) with a chaotic attractor. The transverse Lyapunov exponent is
given by

K
M
" lim

L?=

1
¸

L
+
n/0

ln K
Ry

n`1
Ry

n
K
yn/0

K"Paxo(x) dx , (70)

where o(x) is the invariant density of the chaotic attractor produced by the logistic map. We choose
r"3.8 and obtain a

c
+1.725 where K

M
50 for a5a

c
and K

M
(0 for a(a

c
. For a(a

c
, there

are two attractors, one is y"0 and another is DyD"R. The basin of the y"0 attractor is riddled.
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Fig. 9a shows part of the basin of the y"0 attractor (black dots) for a"1.7(a
c

and b"0.1,
where a grid of 600]600 initial conditions is chosen in the region 04x41 and 0(y40.2.
Examination of the "gure on "ner and "ner scales reveals that there are white regions (basin of the
y"R attractor) near every black dots, a typical feature of riddling.

Now assume that the y"0 chaotic attractor is the desirable attractor and the y"R attractor
is the undesirable one. To facilitate numerical computation, we choose to control trajectories
starting from initial conditions on a line, say, y"0.1. Without control, about 56% of the initial
conditions on this line go to the desirable attractor. We build a bush of trajectories starting from
y"0.1 with size d, i.e., we use d~1 points on y"0.1 to determine the points that asymptote to the
desirable attractor. A di$culty here is that it typically takes many iterations for a trajectory
starting at y"0.1 to reach the desirable attractor (numerically a trajectory is regarded as having
y"0 if it says within 10~12 of y"0 for certain prescribed number of iterations). Thus, for small
grid size the number of points on the bush can be very large. It then becomes computationally
di$cult to determine whether a trajectory point is close to the bush. To make the computation
feasible, we adopt the following strategy. For a random initial condition chosen from the line at
y"0.1, we examine whether it falls in an e-neighborhood of a starting point of a path on the bush.
If yes, we control it. Otherwise we let it evolve without control. Assume r in the logistic map is the
accessible parameter to be perturbed. The parameter perturbations can be computed from Eq. (67).
Fig. 9b shows f ` versus log

10
e for d"10~5, where f` is the fraction of initial conditions that

asymptote to the desirable attractor. The plot exhibits similar feature to that of Fig. 8b. We see that
no improvement in f` is achieved if e is too small because there are almost no points that come
close to the bush. If e is too large, although many trajectories would fall in the e-neighborhood of
the bush, control can get lost because Eq. (67) is only a linear control law. The optimal e value for
which f ` reaches maximum is about 10~3.5, and the maximum possible value of f` is about 0.86,
a substantial improvement in f ` compared with the case of no control. Fig. 9c shows the
three-dimensional plot of f` versus d and e. We see that for d(10~2, f` reaches maximum at
e
015*.!-

+10~3.5. Fig. 9d shows f `
.!9

versus log
10

d. For 10~2(d(10~1, f `
.!9

is about the same as
if there were no control. It then increases rapidly as d is decreased from 10~2 and starts to increase
slowly as d decreases through 10~4. Compared with the example of controlling fractal basin
boundaries, we see that the maximum value of f `

.!9
can be higher. This is due to the feature of

riddled basins where the uncertainty exponent a is close to zero. The reason that we obtain
e
015*.!-

+10~3.5 can be understood by noting that for d+10~4, there are about 5560 points on
y"0.1 that belong to the bush. Thus we have e1`a

015*.!-
N&1. Since a+0, this gives e

015*.!-
&10~3.7.

4.1.5. Discussions
We have reviewed an algorithm [85] to drive trajectories to a desirable attractor by using small

feedback control for dynamical systems with multiple coexisting attractors. The basic idea is to
build a bush-like structure of paths to the target attractor and to stabilize a trajectory around one
of the many paths on the bush so that the trajectory asymptotes to the desirable attractor. Such
a structure of paths, in principle, can be built up even in more realistic applications. For instance,
an experimentalist could run the system "rst, measure time series resulting from many initial
conditions, and build the bush of paths to the desirable attractor in the reconstructed phase space
by using the delay-coordinate embedding technique. One can then use techniques such as the direct
proportional feedback control [97,98] to compute the required parameter perturbations as it may
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be a formidable task to apply Eq. (67) in practice. But of course, at present there is no guarantee
that the method can be applied to practical applications. We stress, however, that from a more
general theoretical point of view, the success of the method relies on the region in the phase
space to which the bush extends. As such, the method is particularly e!ective when there are fractal
basin boundaries with large values of fractal dimension (or small values of the uncertainty
exponent a) in the phase space region of interest. In contrast, there is no uncertainty exponent
a) in the phase space region of interest. In contrast, there is no appreciable increase in the
probability for a trajectory to be driven to the desirable attractor if the basin boundaries are
smooth. One could, therefore, deliberately build into the system fractal basin boundaries or riddled
basins in order to drive most initial conditions to the desirable attractor. While there is
a great uncertainty in determining the asymptotic attractor for individual initial conditions when
there are fractal basin boundaries or riddled basins, the uncertainty is greatly reduced for a path
that consists of a large number of points in the phase space. Therefore, insofar as a trajectory can be
stabilized around a path on the bush, the fate of the trajectory is almost certain, i.e., the desirable
attractor.

Theoretically, there is no reason for restricting the control to a bush. For instance, one may
obtain more optimal results in the following way. Assume that for a map M we have basin of
attraction D for a desirable attractor A. For perturbation of magnitude e, let Be (D) be the union of
all e-balls around all points in D (the e-parallel body of D). Consider the union of all the preimages
of the Be (D). This union would give the largest possible domain (always an open set) for which there
exist e-pseudo orbits of the map that eventually asymptote to the desirable attractor A. If
a practical method can be devised to cover this union and to drive trajectories in this union to A, we
would expect to achieve an absolute maximum size for the basin of attraction of A under arbitrarily
small perturbations. At present, how to cover such a union and how to devise a control algorithm
to achieve this theoretical maximum remain unknown.

The central problem in controlling dynamical systems with multiple coexisting attractors is how
to maximize the probability of being able to control an arbitrary initial condition. Thus, it is
important to assess how this probability varies with the maximum allowed perturbation and the
dimension of the basin boundaries. To obtain this information, we now imagine an `ideala
controller. We restrict to situations where only the initial conditions near basin boundaries are
accessible to control. For a given initial condition, the ideal controller would evolve the system to
see if the asymptotic attractor is the desirable one. If not, small parameter perturbation e is applied
and the system is evolved from the same initial condition. The controller would then check if the
initial condition yields the desirable attractor. It could repeat this procedure for a given number of
time, insofar as the asymptotic attractor is not the desirable one. In this case, the probability for
driving an arbitrary initial condition to the desirable attractor is proportional to the fraction of
uncertain initial conditions, which scales with the perturbation as ea. Thus, we see that for "xed a,
increasing e would increase the desired probability. For "xed e(1, increasing the dimension of the
basin boundary, which is equivalent to decreasing the uncertainty exponent a, would increase the
desired probability. This, of course, holds only for the ideal controller. In more practical situation,
we see that there exists an optimal e value for achieving the desired probability (see Figs. 8 and 9).
This optimal e value depends on many factors including the dimension of the basin boundaries.
Nonetheless, high desired probability can be achieved if the dimension of the basin boundaries is
large (or a is small). In cases where the basin-boundary dimension is close to the phase-space
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dimension (or a is close to zero, such as in riddled basins), one expects to achieve higher desired
probability as in such a case, most initial conditions are near the basin boundaries.

Finally, we emphasize that the control method reviewed here represents only one possible
approach to solve the general problem of controlling dynamical systems with multiple basins of
attraction. There will undoubtedly be better methods that await for future investigation.

4.2. The adaptive targeting of chaos

Targeting of chaos means judiciously perturb a chaotic system with the aim of directing the orbit
emerging from a given point to a neighborhood of some other prespeci"ed point (called target) on
the attractor within a "nite and speci"ed time (called target time). As already mentioned in the
Introduction, even though ergodicity assures that all point on the attractor are shadowed regard-
less on the initial conditions chosen for the chaotic evolution, in many cases a small neighborhood
of a given attractor point may be visited infrequently; thus, the unperturbed dynamics may take
a long time to approach a given target. Thence, the necessity of implementing e$cient targeting
methods, which can reduce strongly the waiting time [35,36,99}101].

The targeting procedure may be seen as a preliminary task for chaos control, because, as we have
already pointed out, the control algorithms (see, e.g. [1}3]) use linearizations of the dynamics that
are valid only in a rather small neighborhood of the desired saddle point, and therefore need the
system to target such a small neighborhood before the switch on.

The "rst targeting method was introduced by Shinbrot et al. [35], who have suggested to use
the exponential sensitivity of a chaotic process to tiny perturbations in some accessible control
parameter. This technique was successfully applied to one-dimensional mappings both theoret-
ically [99] and experimentally [100] and then extended to three-dimensional chaotic #ows [101].

Later, Kostelich et al. [36] faced the problem of targeting hyperchaos, that is extending the
above procedure to cases where there is more than one positive Lyapunov exponent associated
with typical orbits on the attractor. (See Ref. [102] for a review of these procedures.)

The basic algorithm in [36] applies tiny perturbations for performing two successive changes of
a control parameter (or one change of two parameters). The perturbations are selected to move the
image of the initial condition onto the stable manifold of the target. The robustness of this method
against the presence of a small amount of noise or a small modeling error has been proved, and
further developments have pointed out how it can help in switching between controlled unstable
periodic orbits even in higher-dimensional chaotic situations [103].

However, there are two main limitations for the application of such a technique, namely: (1) the
above method is only applicable to invertible mappings, and (2) it needs full a priori information on
the stable and unstable manifolds of the target.

The latter requirement can give rise to serious drawbacks in all cases in which the target
corresponds to an attractor point whose neighborhood is rarely visited by the natural evolution of
the system, insofar as one needs a long data acquisition time to obtain points whose orbits closely
visit the target.

Alternative methods have been proposed [104] to increase the number of visits to a target by
making small perturbations of the state variables of the system.

The application of the adaptive technique for the targeting of chaos was realized in Ref. [66],
either for the case in which all state variables are accessible for detections and perturbations, and
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for the case in which the operator may rely on a single state variable, whereas the others are hidden,
and not accessible for measurements and perturbations. We summarize herebelow the main results
of Ref. [66].

We start from the general problem of considering a chaotic process ruled by

x5 "f (x, k) , (71)

where x is a D-dimensional vector (D53), f is a nonlinear function of x, dot denotes temporal
derivative, and k is a vector of parameters. The targeting strategy consists of two distinct parts: (1)
an algorithm that slaves the chaotic dynamics x(t) to a given goal dynamics u(t) with the only use of
small perturbations, and (2) an algorithm detecting and constructing a goal dynamics u

T
(t) that

brings the trajectory to a small neighborhood of the target within the desired target time starting
from a given initial condition u

T
(0)"u

0
in a way compatible with the unperturbed evolution of the

system. The point u
0

is chosen so as to lie on the attractor, and typically its neighborhood is visited
frequently by the unperturbed dynamics.

While for point (1) one can naturally rely on the existent slaving techniques (and here we will use
the adaptive methods of Eqs. (54)}(57)), point (2) has found a solution in Ref. [66].

The main improvement o!ered by Ref. [66] with respect to other targeting techniques, is that
there the extraction of the goal dynamics is done with a single visit of the target. This way, one
minimizes the learning time, in all cases in which the target is rarely visited by the unperturbed
dynamics (which are, indeed, the most interesting cases, since when the target is frequently visited
by the natural dynamics, the whole targeting procedure would not be needed).

Let us then consider the following two cases: (i) the system allows detection and perturbation of
all its state variables; and (ii) only a single state variable is available for observation.

Let us start with case (i) and discuss the problem of constructing the goal dynamics u
T
(t) from

a preliminary observation of the unperturbed behavior of the system.
Following Ref. [66], we will describe the targeting procedure with reference to the three-

dimensional RoK ssler system [105]

x5 "!z!y, y5 "x#ay, z5 "b#z(x!c) , (72)

with a"b"0.2 and c"5.7. One "rst constructs a partition of the three-dimensional phase space
in parallelograms of sides e,(e

1
, e

2
, e

3
). For that purpose, one de"nes

I(x
0
, y

0
, z

0
, e)"M(x, y, z): x

0
(x(x

0
#e

1
, y

0
(y(y

0
#e

2
and z

0
(z(z

0
#e

3
N . (73)

By letting system (72) evolve from the initial condition x(0)"y(0)"1, z(0)"4, a chaotic set is
realized, a portion of which is contained in the parallelogram I

T
(4.655146,!6.691886, 0.013528, e),

where e,(0.205382, 0.186303, 0.228361).
It is important to remark that this choice of e corresponds to a box whose sides are 10~2 as long

as the corresponding sides of the smallest parallelogram containing the attractor for
t'9743.658203 (from now on t"t

T
"9743.658203 will be the time at which the unperturbed

trajectory "rst enters I
T
).

By registering the natural evolution of the system from the above initial conditions up to the "rst
visit to the target, and by using this portion of the natural trajectory, one constructs a web of paths
compatible with the unperturbed dynamics, each of which connecting di!erent parallelograms to
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Fig. 10. Procedure for the construction of the goal dynamics u(t). Each bubble represents the neighborhood of a point in
the phase space. I

T
: target; P(I

T
): unique preimage of the target; P

j
(P(I

T
)), j"1, 2, 3: multiple preimages of P(I

T
); I

F
:

most frequently visited neighborhood. The selected path is shown as a thick line.

Fig. 11. (a) An (x, y) projection of the unperturbed RoK ssler dynamics (dots) and path followed by the perturbed dynamics
to reach the target (thick dashed line). The path is inside the chaotic attractor. (b) Zoom of (a): the path (solid line) moves
from high probability regions of the attractor toward lower probability regions, until reaching I

T
(indicated as Target in

the "gure). Initial conditions and control parameters as in the text.

I
T
. Precisely, one follows few trajectories for a given observation interval. Suppose to call P(I

T
) the

preimage of I
T
. Since the recorded trajectory visits the target only once, P(I

T
) is univocally

determined. One then records the portions of the observed trajectories that lie in I
T

and P(I
T
) and

determines successive preimages of P(I
T
), which, in most cases, have been visited previously by the

portions of the observed trajectories.
Going backward in time, one selects from the observations a path starting from the most

frequently visited parallelogram I
F

and leading to the box I
T
. Fig. 10 schematically illustrates the

obtained web of paths. At the end of this process, one can make use of the observed path from I
F

to
I
T
, as goal function for the application of the adaptive control procedure. Since the natural

measure of I
F

is large (that is, it is frequently visited by the unperturbed dynamics), the target can be
reached quickly regardless of the initial conditions.

Fig. 11a reports the results of applying the adaptive method of Eqs. (54)}(57) to the system of
Eqs. (72), using as goal dynamics the reconstructed path. I

F
is reached by the unperturbed

dynamics for the "rst time when t"30.9 s, and then I
T

is reached by the perturbed dynamics only
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4 In most cases, and also in ours, M
R

and M
E

both coincide with the metric de"ning the Euclidean distance between
points.

1.6 s later. Thus, the total waiting time required to reach I
T

is reduced from 9743 to 32.5 s, implying
a total speedup of two orders of magnitude.

Fig. 11b illustrates the mechanism that leads the system to the target: the trajectory followed by
the perturbed evolution moves from high probability sections of the attractor toward lower and
lower probability sections, up to the target.

What described above requires that all state variables be accessible for measurements and
perturbations. Therefore, its applicability can be seriously limited in experimental situations, where
often only a single state variable of the system is accessible, whereas the others are in general
hidden, or not accessible. It is convenient then to reformulate the adaptive targeting strategy in the
more realistic case, in which measurements can be done only to one of the state variables of the
RoK ssler system (say the x variable) and perturbations can be applied only to the "rst of Eqs. (72).

In this case, one immediately realizes that the problem is to retrieve a suitable scalar goal
dynamics g(t) from the observations compatible with the unperturbed evolution of the system and
coming at least once within a suitable neighborhood of the target. To do this, one can make use of
the time delay embedding technique [26], allowing to reconstruct the attractor from a time series of
measurements of a single variable, say x(t), from Eqs. (72).

The above problem was solved again in Ref. [66], by selecting a suitable delay time q8 , and
considering the D-dimensional embedding space of the vectors x(t)"(x(t),x(t!q8 ),2,
x(t!(D!1)q8 )) (D"3 in the present case). One of the main feature of the embedding technique is
to retain the basic metric properties of the original phase space description. In other words, this
means that points that are neighbors in the original phase space with respect to a given metric
M

R
remain neighbors in the embedding space with respect to some new metric M

E
.4 q8 "5.71157

was chosen in Ref. [66], corresponding to the inverse frequency of the largest peak in the power
spectrum of the signal x(t). The target point in the original phase space is now mapped into the
point x

T
"(x

T
(t
T
),x

T
(t
T
!q8 ),x

T
(t
T
!2q8 ))"(4.727415, 4.295067, 4.929038). The idea is to retrieve

a scalar goal dynamics g(t) with the following properties: g(t
0
)"x

T
(t
T
!2q8 ), g(t

0
#q8 )"

x
T
(t
T
!q8 ), and g(t

0
#2q8 )"x

T
(t
T
). Here t

0
is the instant at which the unperturbed x(t) "rst

satis"es x
T
(t
T
!2q8 )!e

1
/2(x(t)(x

T
(t
T
!2q8 )#e

1
/2 (e

1
"0.205382).

By these requirements, one immediately realizes that the perturbations move the trajectory to
the target within the target time t

0
#2q8 , regardless on the particular initial conditions for the

evolution of the dynamics.
The simplest choice of the goal function would be the recorded unperturbed evolution of x from

t
T
!2q8 to t

T
. But this choice is not the optimal one. Indeed, since in the present case the

observations are limited to a one-dimensional subspace, there is no certainty that at t"t
0

the
other hidden variables are within a su$ciently small distance from their values at t

T
!2q8 .

The process could therefore result in an unacceptably large initial perturbation, and another choice
of g would be necessary. For instance, the evolution of x(t) could be exploited more thoroughly by
constructing two successive webs of 1-dimensional paths, the "rst connecting x

T
(t
T
!2q8 ) to

x
T
(t
T
!q8 ), and the second connecting x

T
(t
T
!q8 ) to x

T
(t
T
).

But here the selection of a goal dynamics is further complicated by the requirement that paths
reach from a given point to another given point within a speci"ed time. This constraint motivates

148 S. Boccaletti et al. / Physics Reports 329 (2000) 103}197



Fig. 12. From Ref. [66]. (a) An (x, y) projection of the unperturbed RoK ssler dynamics (dots) and path followed by the
perturbed dynamics to reach the target (thick dashed line). In this case the perturbation acts only on the x variable of
Eqs. (72). Again, the path is inside the chaotic attractor; thus it is compatible with the natural evolution of the system and
it goes from higher to lower probability regions. (b) Temporal evolution of the perturbation during the targeting process.
The range spanned by ; is less than 1% of the range spanned by the x dynamics. Initial conditions and control
parameters as in the text.

the choice of q8 in Ref. [66] as the reciprocal of the frequency of the main peak in the power
spectrum. This time is, more or less equivalent to the return time of the system onto its PoincareH
section. For su$ciently long observations, ergodicity of chaos assures a covering of all the states
and guarantees the existence of at least one path from any initial state to any "nal state within
observation interval.

However, these concerns are largely obviated by a suitable choice of pO0 in the adaptive
control algorithm. In the present case, it is su$cient to choose g(t) as the unperturbed dynamics
from t

T
!Nq8 to t

T
(N'2). While the integer N should be selected as small as possible to minimize

the waiting time, larger values of N improve the robustness of the method. Fig. 12a reports the new
phase space results for N"6.

The system is left unperturbed from t"0 (same initial conditions as before) until t"t
0
"12.9.

Here t
0

is the instant at which the unperturbed dynamics "rst enters the e
1

interval containing
x(t

T
!6q8 ). The adaptive scalar perturbation assures a convergence to the target within a target

time of t
0
#6q8 , which again is more than two orders of magnitude smaller than t

T
.

It is important to visualize accuracy of the adaptive method in targeting the desired I
T

in the real
phase space, even with this simple choice of g. Fig. 12b shows the range of #uctuations of the
perturbations, and Fig. 12a shows the range spanned by the unperturbed x dynamics.

5. Stabilizing desirable chaotic trajectories and application

5.1. Stabilizing desirable chaotic trajectories

5.1.1. Overview
We consider the following situation: suppose there is a nonlinear dynamical system whose

trajectories lie on a chaotic attractor. Suppose further that one of the uncountably in"nite number
of chaotic orbits embedded in the chaotic attractor corresponds to a desirable operational state of
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the system. Our goal is to apply only small feedback control to keep trajectories originating from
random initial conditions in the vicinity of the desirable chaotic orbit. In what follows, we present
a general method to achieve this goal and demonstrate that the idea can be applied to synchroniza-
tion of chaotic systems.

Our method to stabilize a desirable chaotic orbit is based on OGY's method of controlling
chaos. We "rst select the desirable orbit (the target) according to our needs. Di!erent methods
can be used to construct such a target orbit in di!erent contexts. We then stabilize a trajectory
originated from a random initial condition around the target orbit. This can in fact be achieved if
the target chaotic orbit is a trajectory generated by the evolution equations of the dynamical
system. Such target orbit possesses a local hyperbolic structure of stable and unstable directions at
almost all points, which is rather typical for chaotic orbits. Finally, we apply small feedback control
to stabilize the target chaotic orbit. The construction of such a target orbit is, therefore, a crucial
step in the controlling method. This will be detailed in numerical examples.

5.1.2. Method for stabilizing a desirable chaotic orbit
Our method for stabilizing a desirable chaotic orbit is based on the OGY idea of stabilizing

a desirable unstable periodic orbit. Intuitively, the orbit to be stabilized has a period equal to the
length of the orbit. Consider chaotic systems described by two-dimensional maps on the PoincareH
surface of section:

x
n`1

"F(x
n
, p) , (74)

where x
n
3R2, p is an externally controllable parameter. In the spirit of the OGY ideas, we require

that the parameter perturbations be small:

D*pD,Dp!p
0
D(d , (75)

where p
0

is some nominal parameter value, d is a small number de"ning the range of parameter
perturbations. Let My

n
N (n"0, 1, 2,2, N) be the target chaotic orbit. Now generate a trajectory

Mx
n
N to be stabilized around the target orbit. Randomly pick an initial condition x

0
, assume that

the trajectory point x
n

(n50) falls in a small neighborhood of the point y
k

of the target orbit at
time step n. Without loss of generality, we set k"n on the target orbit. In this small neighborhood,
linearization of Eq. (74) is applicable. We have

x
n`1

(p
n
)!y

n`1
(p

0
)"J ) [x

n
(p

0
)!y

n
(p

0
)]#K *p

n
, (76)

where *p
n
"p

n
!p

0
, D*p

n
D4d, J is the 2]2 Jacobian matrix and K is a two-dimensional column

vector:

J"DxF(x,p)Dx/y
n ,p/p0

, K"D
p
F(x, p)Dx/y

n ,p/p0
. (77)

Without control, i.e., *p
n
"0, the trajectory x

i
(i"n#1,2) diverges from the target orbit

y
i

(i'n) geometrically. The task is to program the parameter perturbations *p
n

so that
Dx

i
!y

i
DP0 for subsequent iterates i'n.

For almost all points on the target orbit, there exist both a stable and an unstable direction [34].
These directions can be calculated by using the numerical method in Ref. [34]. The calculated
stable and unstable directions are stored together with the target orbit, and this information is used
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to compute the parameter perturbations applied at each orbit point for i'n. Let e
4(n)

and e
6(n)

be the stable and unstable directions at y
n
, and f

4(n)
and f

6(n)
be two dual vectors orthogonal

to e
6(n)

and e
4(n)

, respectively. The vectors f
4(n)

and f
6(n)

satisfy f
6(n)

) e
6(n)

"f
4(n)

) e
4(n)

"1 and
f
6(n)

) e
4(n)

"f
4(n)

) e
6(n)

"0. To stabilize Mx
n
N around My

n
N, we require the next iteration of x

n
, after

falling into a small neighborhood around y
n
, to lie on the stable direction at y

(n`1)
(p

0
):

[x
n`1

(p
n
)!y

(n`1)
(p

0
)] ) f

6(n`1)
"0 . (78)

Substituting Eq. (76) into Eq. (78), we obtain the following expression for the parameter per-
turbation:

*p
n
"

MJ ) [x
n
(p

0
)!y

n
(p

0
)]N ) f

6(n`1)
!K ) f

6(n`1)

, (79)

where if *p
n
'd, we set *p

n
"0.

In stabilizing unstable periodic orbits, the average transient (`waitinga) time to achieve the
control scales with the maximum allowed parameter perturbation d as q&d~c, where the scaling
exponent c can be computed in terms of the stable and unstable eigenvalues of the unstable periodic
orbits [1,23]. For cases where c'1, the transient time can be signi"cantly reduced if somewhat
larger parameter perturbations are allowed. The problem of transient time is much less severe here,
since the target orbit is long. In principle, when the trajectory enters the neighborhood of any one
of the points on the target orbit, parameter control based on Eq. (79) can be applied. Thus, even if
the size of every neighborhood around the target orbit is small, the transient time required can be
signi"cantly reduced by increasing the length of the target orbit.

5.1.3. Synchronization of low-dimensional chaotic systems by control
Chaos is characterized by a sensitive dependence of system's dynamical variables on initial

conditions. Trajectories starting with slightly di!erent initial conditions diverge from each other
geometrically. Consequently, synchronization seems unlikely even for two perfectly identical
chaotic systems, if trajectories start from initial conditions that di!er slightly. Moreover, in
practical applications the existence of noise (both external and internal) and system imperfect
identi"cation makes the hope of synchronizing two chaotic systems even more remote. Nonethe-
less, it was demonstrated by Pecora and Carroll [22] that synchronization of chaotic dynamical
systems is not only possible but it is believed to have potential applications in communication
[22,106}108].

In the feedback control approach to synchronize chaotic systems [51], as opposed to the open
loop synchronization method in Refs. [22,106}108], it is not required that the system under study
be divided into subsystems, and both noise and a small amount of system parameter mismatch are
allowed. Speci"cally, the OGY strategy is extended to stabilize a chaotic trajectory of one system
about a chaotic orbit of the other system to achieve synchronization of the two systems. It should be
noted that the idea of stabilizing chaotic orbits by using OGY method was also proposed by Metha
and Henderson [109]. Their approach is to construct an arti"cial dynamical system evolving errors
between the system's output and the target chaotic orbit. If the arti"cial system has a zero "xed
point, parameter perturbations based on the OGY algorithm are then applied to stabilize the
arti"cial system around its zero "xed point, which means that the original system's output is
brought to the desired chaotic orbit. They illustrated their method by using one-dimensional
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Fig. 13. From Ref. [51]. A schematic illustration of the strategy to synchronize two chaotic systems. Some dynamical
variables of two systems are measured, based on which temporal parameter perturbations are calculated and applied to
the system B. We assume that before the synchronization, some information about the geometrical structure of the
chaotic attractor (e.g., the Jacobian matrices along a long chaotic trajectory that practically covers the whole attractor)
has been obtained.

maps. Construction of the arti"cial map for more general dynamical systems may be nontrivial.
In Ref. [51], on the other hand, parameter perturbations are applied directly to the original
dynamical system and the method makes use of the geometrical structure of the chaotic trajectory.

To synchronize two chaotic systems which we call A and B, we imagine that some parameter of
one system (assume B) is externally adjustable. The strategy is illustrated schematically in Fig. 13,
where we assume that some state variables of both systems A and B can be measured. Based on this
measurement and our knowledge about the system (we can, for example, observe and learn the
system "rst), when it is determined that the state variables of A and B are close, we calculate a small
parameter perturbation based on the OGY algorithm and apply it to system B. Two systems can
then be synchronized, although their trajectories are still chaotic. Under the in#uence of external
noise, there is a "nite probability that the two already synchronized trajectories may lose
synchronization. However, with probability one (due to the ergodicity of chaotic trajectories), after
a "nite amount of transient time, the trajectories of A and B will get close and are synchronized
again. In this sense, the synchronization method is robust against small external noise.

We consider two almost identical chaotic systems that are described by two-dimensional maps on
the PoincareH surface of section:

x
n`1

"F(x
n
, p

0
) [A], y

n`1
"F( y

n
, p) [B] (80)

where x
n
, y

n
3R2, F is a smooth function in its variables, p

0
for system A is a "xed parameter value

and, p for system B is an externally controllable parameter. For the purpose of synchronization, we
require that the dynamics should not be substantially di!erent for systems A and B. Equivalently,
we require that the parameter perturbations be small, i.e., Dp!p

0
D(d, where d is a small number

de"ning the range of parameter variation. Suppose that the two systems start with di!erent initial
conditions. In general, the resulting chaotic trajectories are completely uncorrelated. However, due
to ergodicity, the two trajectories can get arbitrarily close to each other at some later time n

c
.

Without control, the two trajectories will separate from each other exponentially again. We then
program the parameter p using the method in Section 2 so that D y

n
!x

n
DP0 for n5n

c
, which

means that A and B are synchronized for n5n
c
.

We now illustrate the synchronization algorithm by using the HeH non map: (x, y)P(a!x2#
0.3y,x), where a is the control parameter. Consider two such HeH non systems. One has "xed
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Fig. 14. From Ref. [51]. Synchronizing two HeH non systems [(x, y)P(a!x2#0.3y,x)]. In system A, the parameter a is
"xed at a

0
"1.4. In system B, a is allowed to vary in [1.39,1.41]. (a) The uncorrelated and synchronized chaotic

trajectories of the two systems before and after the parameter control is turned on and, (b) part of the time series of the
di!erence *x"x

2
!x

1
corresponding to (a). The synchronization neighborhood is chosen to be a circle of radius 0.01

(see text).

parameter value (a"a
0
"1.4) which serves as the `targeta and, in the other system we adjust a in

a small range (1.39, 1.41) according to Eq. (6). At time t"0, we start two systems with di!erent
initial conditions: (x

1
, y

1
)"(0.5,!0.8) and (x

2
, y

2
)"(0.0, 0.0). The two systems then move in

completely uncorrelated chaotic trajectories. At time step 2534, the trajectory points of the two
systems come close to each other within a circle of radius of 0.01. When this occurs, we turned
on the parameter perturbations calculated from Eq. (6). Note that the radius 0.01 above
can be changed slightly (without a!ecting the synchronization) depending on how we de"ne the
`synchronization neighborhooda in which the two trajectories are considered to be close together.
In general, the size of such a neighborhood should be chosen to be proportional to d, the maximum
allowed parameter perturbation. Fig. 14a shows part of a time series of the uncorrelated and
synchronized chaotic trajectories before and after the control is turned on, respectively, where the
crosses and diamonds denote values of x for the two chaotic trajectories. Clearly, after the control is
turned on, crosses and diamonds overlap each other, indicating the two chaotic HeH non trajectories
evolve completely in phase (synchronization), although they are still chaotic. Fig. 14b shows a time
series of *x(t)"x

2
(t)!x

1
(t), where we see that *x(t)"0 after the control is applied.

In the presence of noise, the two synchronized trajectories can go uncorrelated again (x
2

is
`kickeda out of the neighborhood of x

1
by the noise). When *x(t) exceeds a critical value, say 0.01,

we turn o! the control and let the two systems evolve by themselves. Due to ergodicity, the two
trajectories will come close again and be synchronized. To model the e!ect of noise, we add a term
ep(t) to the x-component of the two HeH non systems, where p is a random variable with Gaussian
probability distribution of zero mean and unit standard deviation and, e characterizes the
noise amplitude. Figs. 15a and b show part of the time series of *x(t) for e"3.8]10~4 and
e"4.18]10~4, respectively. Clearly, the smaller the noise amplitude is, the longer the two systems
are expected to remain synchronized.

In stabilizing unstable periodic orbits, the average transient time to achieve the control is shown
to scale with the maximum allowed parameter perturbation d as q&d~c, where c is given in terms
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Fig. 15. From Ref. [51]. The in#uence of noise [of the form ep(t), where p(t) is a Gaussian random variable having zero
mean and unit standard deviation and, e is the noise amplitude] on synchronized orbits. (a) e"3.8]10~4 and (b)
e"4.18]10~4. It is clear that noise can make the synchronized orbits uncorrelated by kicking one orbit out of the
neighborhood of the other orbit.

Fig. 16. From Ref. [51]. Average time to achieve synchronization q versus the size of the synchronization neighborhood
d on a log}log plot. Note that q&d~c, where c is the absolute value of the straight line in the "gure.

of the stable and unstable eigenvalues (j
4

and j
6
) of the unstable periodic orbit by [1,23]:

c"1!log Dj
6
D/log Dj

4
D , (81)

if the controlling neighborhood is chosen to be a circle and the process is two dimensional. In the
case of synchronization, such a scaling relation still holds, as shown in Fig. 16 for the standard
HeH non map, where we plot the average time (with respect to 200 random pairs of initial conditions)
to achieve synchronization versus d on a logarithmic scale. The absolute value of the slope of the
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line is the scaling exponent c, which is approximately 1.23 for Fig. 16. Following the same argument
as in Ref. [1,23], it is easy to see that c is still given by Eq. (81), except that now j

4
and j

6
are the

stable and unstable Lyapunov numbers of a typical chaotic trajectory. For the standard HeH non
map, we found that c+1.27 in terms of Eq. (81), which agrees reasonably well with the value
obtained from the linear "tting in Fig. 16. Note that the average time to achieve synchronization
increases algebraically as d is decreased. For d&10~2 in the HeH non map, q&103 [see Figs. 14a,
b and 16]. For stabilizing unstable periodic orbits, it has been demonstrated that the average time
to achieve control can be greatly reduced by applying small controls to the orbit outside the con-
trol neighborhood. This technique is known as `targetinga [35]. Note that in such a case, the target
(the unstable periodic orbit) is always "xed. While in the synchronization problem, the target
moves chaotically because both trajectories wander on the chaotic attractor and, the actual
location where the two trajectories get close to each other depends sensitively on the pair of initial
conditions and the size of the synchronization neighborhood.

We remark that one advantage of the OGY method is that it does not require complete
knowledge of the system equations [1,23], although it is necessary to `learna from data to obtain
enough knowledge about the unstable periodic orbits to be stabilized in order to control. Here by
`knowledgea we mean the Jacobian matrices J [note that f

6(n)
can be calculated in terms of J ] and

vector K in Eq. (79). A nonlinear time series of the process is enough to extract the necessary
parameter perturbations to stabilize a chaotic trajectory around the unstable periodic orbit. In the
synchronization problem, the orbit to be stabilized is chaotic. Nonetheless, one can still run the
system for enough long time to estimate both J and K at many trajectory points, enough points to
practically cover the whole chaotic attractor. Indeed, Newell et al. [97,98] successfully demon-
strated that the synchronization method [51] can be realized in experiments where a detailed
knowledge of the system's equations is not available. The experiments involved two almost
identical chaotic laser diodes. Synchronization was readily achieved when small feedback control
was applied to one of them [97,98]. In principle, not only two such lasers can be synchronized, but
also an array of almost identical chaotic lasers. This may be potentially useful in engineering
applications.

5.1.4. Synchronization of spatiotemporal chaotic systems by control
Spatiotemporal chaotic systems are high-dimensional dynamical systems. Consider such a sys-

tem that consists of a spatial network of chaotic elements. For the Pecora}Carroll type of
synchronism [22] to occur, it may be necessary to use a large number of driving variables spatially
distributed among chaotic elements. Nonetheless, it is often the case that the subsystem obtained
by excluding only a few driving variables is still chaotic to a similar degree as the original system.
That is, the subsystem still has a comparable number of positive Lyapunov exponents as the
original system. To illustrate this, consider the coupled logistic map lattice [110] (to be described
later) with 20 spatial sites (a 20-dimensional system). In certain parameter regimes, there are
8 positive Lyapunov exponents. Linking one arbitrarily chosen dynamical variable yields a 19-
dimensional subsystem that still has 7 positive Lyapunov exponents. While synchronizable non-
chaotic subsystem can be obtained by linking su$cient number of dynamical variables, they are
di$cult to identify due to the high dimensionality of the system. It is di$cult to extend the control
strategy proposed in Ref. [51] to high-dimensional systems because its success depends on the
existence of one stable and an unstable directions at each trajectory point. Spatiotemporal chaotic
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systems usually have many unstable and stable directions at each trajectory point in the phase
space.

One strategy [111] is to combine the Pecora}Carroll idea [22] and the control idea in Ref. [51]
to synchronize two nearly identical spatiotemporal systems. Speci"cally, by using a certain number
of driving variables and by applying appropriately designed feedback controls, synchronization can
be achieved for the two systems. The choice of driving variables can be done arbitrarily and their
number can be as few as only one. The feedback control is applied to one of the two systems to be
synchronized. The magnitude of the feedback control required can, in general, be very small.

The design of the feedback control in Ref. [111] is based on the principle of KalmaH n "lter [112]
which tracks the system state by measuring a single scalar function of the system state. The KalmaH n
"lter is optimal for linear systems. For nonlinear or chaotic systems, a modi"ed technique was
developed in Ref. [113] to deduce and track the state of the system from limited observation. Our
design of the synchronization scheme is a direct application of this modi"ed technique. Consider
two identical spatiotemporal systems described by the following maps:

x
n`1

"F(x
n
), x(

n`1
"F(x(

n
) , (82)

where x and x( are N-dimensional state vectors. Following Pecora and Carroll [22], we decompose
the system state into two parts: one is the N

d
-dimensional driving system which we denote z and z( ,

and the other is the N
0
-dimensional subsystems to be synchronized denoted by y and y( , where

N
d
;N

0
. In general, we allow the subsystems y and y( to be chaotic. By de"nition of `drivinga,

z and z( are identi"ed, i.e., z"z( . The equations for y, y( and z are as follows:

y
n`1

"F
(y)

( y
n
, z

n
), y(

n`1
"F

(y)
( y(

n
, z

n
), z

n`1
"F

(z)
( y

n
, z

n
) , (83)

where F"[F
(y)

, F
(z)

]. In cases where the full system F is chaotic, Pecora and Carroll argued that
when the subsystem F

(y)
has all negative Lyapunov exponents, y

n
and y(

n
can be synchronized.

Subsystems having only negative Lyapunov exponents are, however, hard to identify when Eq. (82)
is spatiotemporally chaotic with many positive Lyapunov exponents and, in principle, we do not
know how many. To achieve synchronization of y

n
and y(

n
, we apply the following feedback control

to one of the subsystems y(
n
:

y(
n`1

"F
(y)

( y(
n
, z

n
)!C

n
) [F

(z)
( y(

n
, z

n
)!F

(z)
( y

n
, z

n
)] , (84)

where C
n

is an N
0
]N

d
control matrix to be evaluated at each time step. The synchronization

scheme is schematically shown in Fig. 17. The feedback control !C
n
) [F

(z)
( y(

n
, z

n
)!F

(z)
( y

n
, z

n
)] is

applied only when y
n

and y(
n

are close. The linearized dynamics in the neighborhood of y
n

can
therefore be written as

dy
n`1

"y(
n`1

!y
n`1

"F
(y)

( y(
n
, z

n
)!F

(y)
( y

n
, z

n
)!C

n
) [F

(z)
( y(

n
, z

n
)!F

(z)
( y

n
, z

n
)]

"[DF
y
( y

n
, z

n
)!C

n
)DF

z
( y

n
, z

n
)] ) dy

n
,A

n
) dy

n
, (85)

where DF
y

and DF
z

are the N
0
]N

0
and N

d
]N

0
Jacobian matrices of F

(y)
and F

(z)
, respectively,

evaluated at y
n

and z
n
. Since F

(y)
is chaotic, y(

n`1
will diverge from y

n`1
exponentially without

control. Our goal is to design the control matrix C
n

so that dy
n
P0 as nPR. To achieve this

we assume that the subsystem F
(y)

has N
6

positive and N
4

negative Lyapunov exponents, where
N

6
#N

4
"N

0
. Furthermore, we do not assume hyperbolicity for the subsystems y( and y. We
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Fig. 17. From Ref. [111]. The scheme of synchronizing two spatiotemporal chaotic systems by driving and feedback
control.

require that almost every point but not all on the asymptotic attractor of F
(y)

has N
6

unstable and
N

4
stable directions, the stable and unstable subspaces are bounded away from zero [34,39]. The

feedback control so designed thus applies to nonhyperbolic dynamical systems [111,113]. Let
ei
n

(i"1,2, N
6
) be the set of base column vectors in the unstable space at y

n
. If we restrict the

control matrix C
n

to the unstable space of F
(y)

at y
n`1

:

C
n
"

N6

+
i/1

bi
n
"

N6

+
i/1

[Ci
1

ei
n`1

) *
1
#2#Ci

Nd
ei
n`1

) *
Nd

] , (86)

where M*
j
N ( j"1,2, N

d
) are a complete set of row vector that span the driving system F

(z)
, and

Ci
1
, Ci

2
,2, Ci

Nd
(i"1,2, N

6
) are the set of N

6
]N

d
control coe$cients, then it can be shown

[113] that the matrix A
n
["DF

y
( y

n
, z

n
)!C

n
)DF

z
( y

n
, z

n
)] reduces to the following upper triangu-

lar form:

A
n
"A

U
n

W
n

0 S
n
B , (87)

where U
n
(S

n
) is an N

6
]N

6
(N

4
]N

4
) matrix that evolves a vector in the unstable (stable) space at

y
n

into a vector in the unstable (stable) space at y
n`1

, and W
n

is an N
6
]N

4
matrix that takes

a vector in the stable space at y
n

into a vector in the unstable space at y
n`1

. In order to have
Ddy

n
DP0 as nPR, it is required that all eigenvalues of the product matrix A

n
A
n~1

2A
1

vanish as
nPR. Since,

A
n
A

n~1
2A

1
"A

U
n
U

n~1
2U

1
+n

i/1
<n

j/i`1
U

j
W

i
<i~1

k/1
S
k

0 S
n
S
n~1

2S
1

B , (88)

i.e., the product matrix A
n
A

n~1
2A

1
is upper triangular and, since the matrices S

n
are already in

the stable space along the trajectory (eigenvalues of the matrix product S
n
S
n~1

2S
1
P0 as

nPR), the stability of the product A
n
A

n~1
2A

1
depends solely on the stability of U

n
U

n~1
2U

1
.

One way to make the product U
n
U

n~1
2U

1
stable is to let U

i
be lower triangular and be stable, i.e.,

all diagonal elements of U
i

are eigenvalues of U
i

and are less than 1. In this way, the product
U

n
U

n~1
2U

1
is still lower triangular and has vanishing diagonal elements (eigenvalues) [113].

Now de"ne a set of contravariant row vectors f i
n`1

(i"1,2, N
6
) in the unstable space at

y
n`1

such that f i
n`1

) ej
n`1

"d
ij
, where d

ij
"0 if iOj and d

ii
"1. The matrix elements of U

n
are
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given by ;
ij
"f i

n`1
)A

n
) ej

n
[113]. In order to make the matrices U

i
lower triangular, we look at

elements ;
ij

of the matrix U
n
, which can be expressed as follows:

;
ij
"f i

n`1
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n
) ej

n
"f i

n`1
) [DF

y
( y

n
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n
)!C

n
)DF

z
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n
, z

n
)] ) ej

n
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)DF
y
( y

n
, z

n
) ) ej

n
!f i

n`1
) bi

n
)DF

z
( y

n
, z

n
) ) ej

n
, (89)

where f i
n`1

) bj
n
"0 for iOj has been used. In order to have ;

ij
"0 for j'i, So et al. [113]

suggested the following procedure for choosing the unstable base vectors:

j1
n
e1
n`1

"[DF
y
( y

n
, z

n
)] ) e1

n
,

j2
n
e2
n`1

"[DF
y
( y

n
, z

n
)!b1

n
)DF

z
( y(

n
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n
)] ) e2

n
,

2"2

jN6
n

eN6
n`1

"CDF
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n
, z

n
)!

N6~1
+
i/1

bi
n
)DF

z
( y(

n
, z

n
)D ) eN6

n
,

(90)

where ji
n

(i"1,2, N
6
) are a set of numbers which can be related to the stretching rate of

in"nitesimal vectors along the unstable direction ei
n
. It can then be shown that elements of the

matrix U
n

are given by

;
ij
"0, j'i ,

;
ii
"ji

n
!f i

n`1
) bi

n
)Dhi

n
,

;
ij
"!f i

n`1
) bi

n
)Dhj

n
, j(i ,

(91)

where Dhj
n
,DF

z
( y

n
, z

n
) ) ej

n
. To make the eigenvalues of the matrix U

n
less than one, we can adjust

the N
6
]N

$
free control parameters Ci

j
(i"1,2, N

6
, j"1,2, N

d
) such that all diagonal ele-

ments of U
n

are less than one. But this only provides N
6

conditions, and there are still N
6
(N

d
!1)

free control parameters we must set. The simplest choice is to set Ci
j
"0 for j'1. Then setting the

diagonal elements in Eq. (91) zero gives, Ci
1
"ji

n
/[*

1
)Dhi

n
] (i"1,2, N

6
) and consequently, the

control matrix is given by

C
n
"

N6

+
i/1

ji
n

*
1
)Dhi

n

ei
n`1

) *
1

. (92)

In practice, the set of numbers ji
n

and the set of unstable base vectors ei
n

can be computed by
randomly initializing a set of base vectors ei

0
and evolving them in terms of Eq. (90). After a period

of transient, the set of vectors so obtained converge to the real unstable directions. To assure that
only small perturbations are applied, it is necessary to monitor the magnitude of the term in the
denominator of Eq. (92). When D*

1
)Dhi

n
D is below some small threshold, we set C

n
"0. This will not

result in the loss of control provided it is done only occasionally. We stress that the feedback
control is derived under the applicability of linearized dynamics and, hence, the control is applied
only when trajectories y( and y are su$ciently close. No control is applied when they are not close.
Also note that the control law Eq. (92) has been derived under the condition of hyperbolicity at
almost every point along the trajectory, while there is no guarantee that spatiotemporal chaotic
systems are hyperbolic. Nonetheless, as we illustrate below, the control works for spatiotemporal
systems modeled by coupled map lattices.
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Fig. 18. From Ref. [111]. The Lyapunov spectrum for N"10 and e"0.7, (a) of the full system, and (b) of the reduced
system by using one site as the driving signal.

To illustrate the applicability of the control method, we consider the following system of
di!usively coupled logistic maps [110] as a phenomenological model for spatiotemporal chaotic
systems:

x
n`1

(i)"(1!e) f [x
n
(i)]#1

2
eM f [x

n
(i#1)]#f [x

n
(i!1)]N, i"1,2,N , (93)

where i and n denote discrete spatial sites and time, respectively, N is the total number of maps
coupled in the lattice, e denotes the coupling strength, and f (x) is the one-dimensional logistic map
f (x)"ax(1!x). We assume periodic boundary condition: x

n
(N#1)"x

n
(1). Eq. (93) exhibits

extremely rich dynamical phenomena seen in real spatiotemporal systems and it is perhaps the
most extensively studied model spatiotemporal system so far. In examples, a"4 was chosen [111],
the parameter value for which the logistic map has a chaotic attractor.

Our "rst example is for N"10 and e"0.7. At this e value, there are three positive Lyapunov
exponents for Eq. (93). Fig. 18a shows the corresponding Lyapunov spectrum for the full system
Eq. (93), in which j

k
versus the index k (k"1,2, N, j

1
5j

2
525j

N
) is plotted. To synchro-

nize two such systems, we choose one of the x(i) (i"1,2, 10) as the driving variable. Choosing
a di!erent x(i) does not change the result due to symmetry of Eq. (93) with respect to site index i.
The subsystems to be synchronized are therefore nine-dimensional, and still possesses 3 positive
Lyapunov exponents, as shown by the corresponding Lyapunov spectrum in Fig. 18b. Thus, the
Pecora}Carroll type synchronism will not occur for the nine-dimensional subsystem. The control
neighborhood is set to be D y(!yD4r

0
"0.015. The control Eq. (92) is applied only when

D*
1
)Dhj

n
D510~3 ( j"1, 2, 3). With these control parameter settings, most randomly chosen initial

conditions can be controlled. In general, the smaller the control neighborhood, the larger the
probability that trajectories resulting from two randomly chosen initial conditions can be synchro-
nized. In cases where one set of initial conditions fails to be synchronized, we disregard them and
choose another set of initial conditions. Figs. 19a and b show, when trajectories of the two
subsystems resulting from a pair of randomly chosen initial conditions are within r

0
, the error D

n
,
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Fig. 19. From Ref. [111]. Synchronization of two logistic map lattices (N"10, e"0.7). (a) The synchronization error
log

10
D
n

versus n, and (b) the required feedback control magnitude log
10

(DC
n
D) versus n. The control neighborhood is set

to be 0.015.

de"ned as

D
n
"D y(

n
!y

n
D , (94)

and the control magnitude, de"ned as

DC
n
D"DC

n
) [F

(z)
( y(

n
, z

n
)!F

(z)
( y

n
, z

n
)]D , (95)

versus the time step n after the control is turned on. Clearly, the two trajectories rapidly approach
each other to within computer roundo! error (&10~14) after the control is applied, and the
required feedback control decreases correspondingly to extremely small values.

Under the in#uence of small random noise, the degree to which two subsystems can be
synchronized, or the value of Ddy

n
D is proportional to the amplitude of the noise. Figs. 20a and b

show D
n
and DC

n
D versus time step n for the parameter setting of Fig. 19 when a noise term modeled

by hpi
n

is added to each site of the lattice, where h"10~7 is the noise amplitude and pi
n

is
a Gaussian random variable with zero mean and unit variance. In general, minimum values of
D
n

and DC
n
D have the same order of magnitude as h. Occasionally both D

n
and DC

n
D can have values

larger than 10~3, indicating that the degree of synchronization decreases signi"cantly at these time
steps. Eventually, the systems lose synchronization due to large amplitude noise in the tail of the
Gaussian distribution. When this occurs, we turn o! the control and let the systems evolve by
themselves. Due to the ergodicity of the chaotic attractor, at some later time the two trajectories
will come close to each other and can be controlled again.

To demonstrate the applicability of the control algorithm in higher dimensions, we have
performed control using N"20. In this case, we found that for e"0.5, there is a unique chaotic
attractor with 8 positive Lyapunov exponents. The subsystem obtained by using a driving signal
x
n
(i), where i can be any number between 1 and 20, has 7 positive Lyapunov exponents, as shown in

Fig. 21. In this case, the control neighborhood needs to be smaller for synchronization to occur.
Besides, the quantity N

6
used in the control algorithm needs to be slightly larger than the actual

number of unstable directions. We found that using N
6
"10 su$ces. Figs. 22a and b show D

n
and

DC
n
D versus n, where the control is applied only when Ddy

n
D45]10~5.
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Fig. 20. From Ref. [111]. (a) The synchronization error log
10

D
n
, and (b) the required feedback control magnitude

log
10

(DC
n
D) versus n when a noise term 10~7pi

n
is added to each site of the lattice, where pi

n
is a Gaussian random variable

with zero mean and unit variance.

Fig. 21. From Ref. [111]. The reduced Lyapunov spectrum for N"20 and e"0.5, where one site of the lattice is used as
the driving signal.

As we have demonstrated with Eq. (93), the control neighborhood needs to be reduced as the
number of unstable directions increases. Going from 3 unstable directions (Fig. 19, the N"10 case)
to 7 unstable directions (Fig. 22, the N"20 case) requires almost three orders of magnitude
decrease in the size of the control neighborhood. As the size of control neighborhood is decreased,
the average transient time for two trajectories to get close increases algebraically with a scaling
exponent determined by the Lyapunov spectrum of the chaotic attractor. Thus, even for spatiotem-
poral systems with moderate sizes, the transient time required may be very long. The reason that
extremely small control neighborhood is needed is not clear, but may be related to the noninverti-
bility and nonhyperbolicity of the coupled logistic map lattice. For instance, for noninvertible
dynamical systems, there may not be unique stable and unstable spaces at every trajectory points,
whereas the control algorithm is designed under the assumption that the dynamical systems
possess unique and distinct stable and unstable spaces (invertibility and hyperbolicity).
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Fig. 22. From Ref. [111]. (a) The synchronization error log
10

D
n
, and (b) the required feedback control magnitude

log
10

(DC
n
D) versus n for N"20 and e"0.5. The control neighborhood needs to be reduced to 5]10~5 in order to achieve

the control.

5.1.5. Remarks
Stabilizing a chaotic orbit has other applications as well. Here we brie#y discuss an application

to select a desirable chaotic phase from a chaotic attractor that contains two interconnected
components. In the study of chaotic systems, there are situations where orbits switch intermittently
between distinct chaotic phases. For example, a dynamical system in parameter regime after
a bifurcation called the `interior crisisa [32,114] exhibits such intermittent chaotic behavior. The
phenomenology of interior crisis is as follows. Before the crisis, there is a chaotic attractor and
a coexisting nonattracting chaotic saddle in the phase space. The chaotic attractor and the chaotic
saddle are separated from each other and, hence, trajectories originating from almost all initial
conditions eventually asymptote to the chaotic attractor. At the crisis, the chaotic saddle collides
with the chaotic attractor so that the original nonattracting chaotic saddle becomes part of the
combined attractor, whose phase-space extent is larger than the original chaotic attractor. After
the crisis, trajectories wander on the whole combined larger attractor, in such a way that the
trajectories visit both parts, which correspond to the original chaotic attractor and the chaotic
saddle, in an intermittent fashion. As a consequence, time series recorded from such a trajectory
exhibits distinct intermittent chaotic phases. It has been demonstrated [53] that it is possible to
keep trajectories in one of the chaotic phases by applying only small parameter perturbations
to the system. We remark that similar intermittent chaotic signals also arise in biomedical
systems [53].

5.1.6. Encoding digital messages using chaos control
Recent development in nonlinear dynamics and chaos has led to the idea of encoding digital

information by using chaos [21,24,54}57]. In particular, it has been demonstrated both theoret-
ically and experimentally by Hayes et al. [21,24] that a chaotic system can be manipulated, via
arbitrarily small time-dependent perturbations, to generate controlled chaotic orbits whose
symbolic representation corresponds to the digital representation of a desirable message. Imagine
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5The basic principle that makes digital encoding with chaos possible lies in the fundamental link between chaos and
information. The evolution of a chaotic system is unpredictable in long terms. In communication, it was realized by
Shannon in 1948 that a sequence of events conveys information if the events are not fully predictable [115,116]. Thus, the
fundamental unpredictability of chaos implies that chaotic systems can be regarded as sources that naturally generate
digital communication signals. By manipulating a chaotic system in an intelligent way, digital information can be
encoded.

6There are chaotic attractors with topological entropies ln 2, such as the logistic map f (x)"rx(1!x) at r"4. But
such situations are rare.

a chaotic oscillator that generates a large amplitude signal consisting of an apparently random
sequence of positive and negative peaks. A possible way to assign a symbolic representation to the
signal is to associate a positive peak with a one, and a negative peak with a zero, thereby generating
a binary sequence. The use of small perturbations to an accessible system parameter or variable can
then cause the signal to follow an orbit whose binary sequence encodes a desirable message which
one wishes to transmit [21,24]. One advantage of this type of message-encoding strategy is that
the nonlinear chaotic oscillator that generates the waveform for transmission can remain simple
and e$cient, while all the necessary electronics controlling encoding of the signal can remain at
low-powered microelectronic level most of the time.5

A central issue in any digital communication device concerns with the channel capacity
[115,116], a quantity that measures the amount of information that the device can encode. For
a chaotic system, channel capacity is equivalent to the topological entropy because it de"nes the rate
at which information is generated by the system [117]. To give a concrete example, consider
symbol sequences consisting of a string of n symbols generated by the dynamics. For a completely
random process, one expects to be able to observe all 2n possible symbol sequences. In this case, the
topological entropy is

h
T
" lim

n?=

ln 2n

n
"ln 2 ,

which is the maximum possible value for processes de"ned by two symbols. A deterministic chaotic
system is, however, not purely random. Thus, if its symbolic dynamics requires only two symbols,
the topological entropy of the chaotic attractor is in general6 less than ln 2.

In a digital communication scheme, it is highly desirable to have the channel capacity as large as
possible to maximize the amount of information that can be encoded. It has been pointed out
recently [118] that in nonlinear digital communication, it is generally more advantageous to use
transient chaos naturally arising in wide parameter regimes of nonlinear systems as information
sources from the standpoint of channel capacity. Dynamically, transient chaos is generated by
nonattracting chaotic saddles in the phase space [119,120]. A general observation is that, typically,
a nonlinear system can generate chaotic attractors (corresponding to sustained chaos) and chaotic
saddles in di!erent parameter regimes. As a system parameter changes, a chaotic attractor can abe
converted into a chaotic saddle via a dynamical event such as crisis [32]. The orbital complexity
associated with trajectories on a chaotic saddle can be greater than that of trajectories on a chaotic
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7A crisis that destroys a chaotic attractor and converts it into a nonattracting chaotic saddle is called a boundary crisis
[32]. It is triggered by the collision of the attractor with the basin boundary. Dynamically, a crisis is induced by
a homoclinic or a herteroclinic tangency of stable and unstable manifolds of some unstable periodic orbits in the phase
space. In the case of boundary crisis, the two colliding sets are, (1) the chaotic attractor which lives in the closure of the
unstable manifold of an unstable periodic orbit on the basin boundary, and (2) the basin boundary which is the stable
manifold of the periodic orbit on the boundary. Accompanying a homoclinic or a heteroclinic tangency and the
subsequent homoclinic or heteroclinic crossing of stable and unstable manifolds is a horseshoe type of dynamics, which
creates an in"nite number of new unstable periodic orbits, and consequently increases the complexity of the resulting
chaotic set.

8Chaotic repellers are one-dimensional analogies of chaotic saddles in two-dimensional maps or in three-dimensional
#ows, because one-dimensional noninvertible maps can be regarded as the limiting case of two-dimensional invertible
maps when the determinant of the Jacobian matrix tends to zero (e.g., logistic map versus the Hènon map).

attractor because, crisis is generally a complexity-increasing event.7 As such, if one measures the
topological entropy of the system as a single parameter changes through the crisis point, one
usually "nds that the entropy is a nondecreasing function of the system parameter. For a symbolic
dynamics of two symbols observed in typical low-dimensional chaotic systems, the maximum
allowed value of the topological entropy, ln 2, is often realized in a parameter regime where there is
transient chaos. Thus, it is highly desirable to design a chaotic system operating in a transient
chaotic regime for digital encoding.

In what follows, we "rst develop a theoretical and numerical framework for encoding digital
information using transient chaos. We provide numerical evidence that the topological entropies
of chaotic saddles are usually greater than those of chaotic attractors. We then detail a procedure
for encoding digital messages into trajectories that live on chaotic saddles. We argue that digital
encoding with chaotic saddles can be robust against environmental noise, thereby signi"cantly
reducing the probability of bit error in encoding. Finally, we describe message encoding using
two-dimensional symbolic dynamics.

5.1.7. The channel capacity
In general, the topological entropy associated with transient chaos is greater than that with

permanent chaos. Although at present there is no rigorous proof for this statement, is was observed
in several chaotic systems: (1) Hamiltoniian maps [121,122]; and (2) the Hènon map [123]. For
illustrative purpose, we demonstrate how transient chaos can be utilized to encode digital
information by using the one-dimensional logistic map: x

n`1
"f (x

n
)"rx

n
(1!x

n
). The map

exhibits chaotic attractors and stable periodic attractors for r
F
(r4r

c
"4, where r

F
+3.58 is the

Feigenbaum point of the transition to chaos via the route of period-doubling bifurcations [124]. At
r"r

c
, crisis occurs [32] so that the chaotic attractor is converted into a chaotic repeller.8 Thus, for

r'r
c
, what is typically observed is transient chaos. That is, a trajectory starting from a random

initial condition in x3[0, 1] behaves chaotically for a period of time and then asymptotes to
x"!R. The average transient time depends on the parameter di!erence (r!r

c
) and scales with

it algebraically: q&(r!r
c
)~1@2 [32].

The existence of a chaotic repeller for r'4, which is in fact a fractal Cantor set in the unit
interval, can be easily seen in the map function in Fig. 23a. Letting s,(r/4!1) we see that there is
a primary gap of size Js/(1#s). Initial conditions from this gap maps out of the unit interval in
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Fig. 23. (a) The logistic map for r'4. (b) For r"4.1, a numerical trajectory of 10 000 points on the chaotic repeller.
Apparently, the chaotic repeller exhibits a fractal structure.

one iteration and goes to x"!R. There are two (2n) preimages of the primary gap in which
initial conditions map out of the unit interval in two [(n#1)] iterations. Taking the limit nPR,
we see that almost all initial conditions in the unit interval eventually escape from it except for a set
of Lebesgue measure zero. This set, by construction, is a fractal Cantor set. Fig. 23b shows, for
r"4.1, a numerical trajectory of 10 000 points on the Cantor set [33]. The fractal structure of the
set is apparent from the "gure.

A symbolic dynamics for the logistic map can be de"ned by setting the symbolic partition at the
critical point x

c
"0.5. A trajectory point x bears a symbol 0 if x(x

c
and a symbol 1 if x'x

c
.

A trajectory in the phase space thus corresponds to a symbol sequence in the symbolic space. The
topological entropy h

T
quanti"es how random such a symbol sequence can be. To compute h

T
,

we generate a large number of symbol sequences of length n from many trajectories in the phase
space and count N(n), the number of possible symbol sequences. In general, N(n) scales with n as
N(n)&ehTn and, hence, h

T
is given by

h
T
" lim

n?=

lnN(n)
n

. (96)

In practice, we plot ln N(n) versus n for say, 14n416. The slope of such a plot is approxi-
mately h

T
.

We now discuss the topological entropy of the logistic map in di!erent parameter regimes. For
r(r

F
, the asymptotic invariant sets are stable periodic orbits so that h

T
"0 because there is no

randomness in the trajectory. As r is increased from r
F
, chaos can arise so that the topological

entropy starts increasing from zero. For r"4, the logistic map is topologically equivalent to the
tent map whose symbolic dynamics is a Bernoulli shift, the topological entropy of which is ln 2.
Thus, as r is increased from r

F
to r

c
"4, the topological entropy h

T
continuously increases from

zero to ln 2 except when r falls in one of the in"nite number of parameter intervals of periodic
windows. In each window, there is an attracting set (periodic or chaotic) and a chaotic repeller. The
topological entropy of the chaotic repeller remains constant in the window, where the constant is
the value of h

T
at the beginning of the window. Since ln 2 is the maximally realizable value of the
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Fig. 24. For the logistic map, the topological entropy h
T
(r) versus r for 3.5(r(4.1. We see that for r'4, h

T
remains at

ln 2, the maximum possible value for a symbolic dynamics of two symbols.

topological entropy for a symbolic dynamics of two symbols, and since a crisis occurs at r
c
, we see

that for r'4, the entropy remains at ln 2. These behaviors are shown in Fig. 24, a plot of h
T
(r)

versus r for 3.5(r(4.1. Thus, for the logistic map, whose dynamical behaviors are seen in a large
class of deterministic chaotic systems, the largest possible value of the topological entropy, or the
channel capacity, is achieved in a parameter regime of transient chaos where the invariant sets
are chaotic repellers. This can be quite advantageous because message encoding, an essential task
in any communication scheme, becomes quite straightforward for transient chaos as there are no
forbidden words associated with the symbolic dynamics. In communication terminology, such
a communication channel is unconstrained.

5.1.8. Message encoding, control scheme, and noise immunity
To encode an arbitrary binary message into a trajectory that lives on the chaotic repeller, it is

necessary to use small perturbations to an accessible system parameter or a dynamical variable.
For the logistic map we choose to perturb the state variable x. Say we wish to apply only small
perturbations on the order of 2~m. Our procedure is as follows. First, we convert the message into
a binary sequence by using the ASCII code and store the sequence into a symbol registor. Next, we
choose an initial condition whose trajectory stays near the chaotic repeller for certain number, say,
n
c

(n
c
'm) iterations. This is practically feasible as one can run the system and pre-determine the

phase space regions, from which initial conditions chosen yield trajectories whose lifetimes (the
times trajectories spend near the chaotic repeller) are at least n

c
. We then determine all m symbols

corresponding to m points on the trajectory starting from x
0

and check to see if the mth symbol
agrees with the "rst message bit in the symbol registor. If yes, we iterate x

0
once to get x

1
and

determine the mth symbol from x
1

[equivalently the (m#1)th symbol from x
0
] to see if it matches

the second message bit in the symbol registor. If no, we apply a small perturbation to x
0

so that the
mth symbol from it matches the "rst message bit. This process continues until all the message bits in
the symbol registor are encoded into the chaotic trajectory.
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Fig. 25. The coding function R(x) for the logistic map at r"4.1. We see that indeed, R can assume any value between
0 and 1, but there are many gaps on the x-axis, due to the fact that the chaotic repeller is a fractal Cantor set on the x-axis.

To compute the parameter perturbation, we make use of the coding function [24,21], which can
be determined as follows. We divide the unit interval in x into N bins of size dx"1/N, where
dx;1/2m and 1/2m is the maximally allowed perturbation. We then choose a point from each bin,
iterate it for m times, and determine the corresponding symbol sequence of length m: a

1
a
22

a
m
,

where a
i
can be either zero or one. If a point leaves the unit interval in less than m iterations, we

simply disregard it. For those points x for which a symbol sequence of length m can be de"ned, we
compute the following symbolic value:

R"

m
+
i/1

a
i
/2i , (97)

where 04R41. This thus gives the coding function R(x) for points on the chaotic repeller. Since
the chaotic repeller has a topological entropy ln 2, R can, in principle, have any value between 0 and
1. Fig. 25 shows the coding function for the logistic map at r"4.1, where dx"2]10~4. We see
that indeed, R can assume any value between 0 and 1, but there are many gaps on the x-axis, due to
the fact that the chaotic repeller is a fractal Cantor set on the x-axis.

Given the coding function, the determination of the state perturbations is quite straightforward.
Let the natural m-bit symbol sequence from x

0
be a

1
a
22

a
m~1

a
m

(produced by iterating the
map directly) and let the "rst message bit to be encoded be b

1
. We compare the natural symbol

sequence a
1
a
22

a
m~1

a
m

with the desirable symbol sequence a
1
a
22

a
m~1

b
1

and compute
dR"(a

m
!b

1
)/2m. From the coding function R(x), we can then compute the perturbation dx. This

is done by locating pairs of points with same values of dR in the computer representation of the
coding function R(x) and choosing the one that yields the smallest value of dx. Thus, by applying dx
to the initial condition x

0
, the trajectory point after m iterations will correspond to a symbol which

is the "rst message bit. Note that if a
m

is identical to the message bit b, no perturbation is necessary.
To encode the next message bit, we iterate the perturbed initial condition once to obtain x

1
. Let

x@
0
"x

1
. The natural m-bit symbol sequence of x@

0
is a@

1
a@
22

b
1
a@
m
, where a@

1
"a

2
, a@

2
"a

3
,2, and

a@
m

is the binary symbol corresponding to the trajectory point f (m)(x@
0
). We now compare a@

m
and
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Fig. 26. Encoding the word `TIGERa into a trajectory on the chaotic repeller at r"4.1 for the logistic map. The binary
representation of the word is shown on the top of the "gure. Shown is a time series where small control is initiated at
n"1 and the "rst binary bit of the message is encoded into the trajectory at n"8. Time dependent perturbations are
applied at subsequent iterations so that the entire message `TIGERa can be encoded into the trajectory. The magnitudes
of the control perturbations required are shown in (b).

b
2

to determine the next perturbation to be applied to x@
0
. Continuing this procedure, we can

encode an arbitrary message into the chaotic trajectory Mx
n
N.

Fig. 26a shows an example of encoding the word `TIGERa into a trajectory on the chaotic
repeller at r"4.1 for the logistic map. The binary (ASCII) representation of the word is shown on
the top of the "gure. Assuming that perturbations of magnitude of 2~8 are to be applied, we
generate a set of initial conditions whose lifetimes in the unit interval under the map are at least 8.
Shown in Fig. 26a is a time series where small control is initiated at n"1 and the "rst binary bit of
the message is encoded into the trajectory at n"8. Time dependent perturbations are applied
at subsequent iterations so that the entire message `TIGERa can be encoded into the trajectory.
Fig. 26b shows the magnitude of the control perturbations applied at di!erent time steps. We see
that the perturbations required are small. No control perturbation is required for the "rst six time
steps because for this initial condition, the natural symbols corresponding to the trajectory points
from n"8 to n"13 happen to coincide with the "rst six bits of the message.
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Some features of the above control scheme are as follows. Note that since the channel capacity of
the chaotic repeller is ln 2, there are no forbidden symbol sequences. Thus, in the above encoding
scheme, any binary sequences can be produced by a typical trajectory near the chaotic repeller.
Since we use the coding function R(x) to compute the perturbation dx, we see that once
the perturbation is turned on, the trajectory is then automatically con"ned in the vicinity of the
chaotic repeller because the coding function is de"ned with respect to trajectories on the
chaotic repeller. Suppose that small perturbations on the order of 2~m are to be applied.
To encode a message, we only need to identify a set of initial conditions which can stay near
the chaotic repeller for m iterations. Since the typical value of m is, say, 10, it is actually fairly
easy to identify a large number of such initial conditions. In practice, before encoding, we
can run the system to produce a set of initial conditions whose lifetimes are greater than m.
Together with the coding function which also needs to be determined beforehand, one can in
principle encode any binary sequences into a dynamical trajectory on the chaotic repeller. We
mention that utilizing the symbolic dynamics as described above may in turn provide an alter-
native way to control transient chaos, which has been a challenging problem in the study of
controlling chaos.

Besides possessing the maximum topological entropy ln 2, the chaotic repellers of the logistic
map for r'4 also have the property of strong noise immunity. To see this, we contrast a chaotic
repeller, such as the one shown in Fig. 23b, with the chaotic attractor at r"4. For the
chaotic repeller, we see that there is a gap of size &Js, where s"r/4!1, about the partition
point x

c
"1/2. For the chaotic attractor there is no such gap. A trajectory on the chaotic attractor

can then come arbitrarily close to the partition point. In a noisy environment, this may cause a bit
error. Say the trajectory point is to the immediate right side of x

c
. This point thus has a symbol 1.

Due to noise, the trajectory can be kicked through x
c

and thus assumes a wrong symbol 0. For
a trajectory on the chaotic repeller, this situation is much more improved. In so far as the noise
amplitude is smaller than the size of the gap across the partition point x

c
, the symbolic dynamics is

immune to noise. This is of tremendous value to practical implementation of communication with
chaos [56,57].

Since all chaotic repellers for r'4 in the logistic map have the same topological entropy ln 2, it
appears that it is more advantageous to use chaotic repellers at large r because they possess larger
gaps across x

c
and thus their corresponding symbolic dynamics are more robust against noise. We

note, however, as r increases, the sizes of the gaps increase so that it becomes more di$cult to
generate trajectories that can stay near the chaotic repeller for su$ciently long time. In general,
when choosing an optimal chaotic repeller for digital encoding, there is a trade-o! between the
degree of di$culty of generating a trajectory near the chaotic repeller and the noise immunity
[56,57].

5.1.9. Message encoding using two-dimensional symbolic dynamics
We consider message encoding by controlling symbolic dynamics in two-dimensional maps

(equivalently three-dimensional #ows) [125]. Our motivation comes from the fact that, although
the principle of utilizing chaotic symbolic dynamics for communication is quite general, most
examples illustrating this idea exclusively utilize chaotic systems whose dynamics can be approxi-
mated by one-dimensional maps [24,25]. Many chaotic systems encountered in practice, however,
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9Strictly speaking, the hyperbolic subsets do not cover the entire attractor and, hence, the corresponding `generating
partitiona is not the generating partition for the original map but for a `truncateda map.

cannot be described by one-dimensional dynamics. It is thus of interest to study whether com-
municating using controlled symbolic dynamics can be realized in higher dimensions.

The major di$culty when two-dimensional maps are utilized for communication is to locate
a generalized partition so that a good symbolic dynamics can be de"ned. This di$culty arises due
to nonhyperbolicity. In smooth, noninvertible two-dimensional maps such as those arising on the
PoincareH surface of section of three-dimensional autonomous #ows, nonhyperbolicity is typically
characterized by the existence of an in"nite number of points embedded in a chaotic attractor at
which the stable and unstable directions coincide } the set of tangency points. Analogous to the
critical point in one-dimensional chaotic maps [e.g., x

c
"1/2 in the logistic map f (x)"rx(1!x)],

which is naturally the generating partition point for de"ning symbolic dynamics, in two dimensions
the generating partition is a zig-zag curve, the curve connecting all primary tangency points in the
chaotic attractor [126,127]. It is generally quite di$cult to locate precisely the partition curve even
for well studied two-dimensional systems such as the HeH non map [40]. To overcome this di$culty,
in Ref. [125], a general solution is proposed: one exploits various hyperbolic chaotic invariant sets
embedded in the nonhyperbolic chaotic attractors. Due to hyperbolicity, it is straightforward to
locate a generating partition for trajectories restricted to these saddles.9 One can choose the
chaotic saddles so that the symbolic dynamics are robust against small random noise. Thus,
utilizing hyperbolic chaotic saddles for communication also provides a solution to overcome the
in#uence of noise [56,57].

We brie#y describe symbolic partitions in two dimensions. The fundamental requirement that
quali"es a chaotic system for communication is whether a good symbolic dynamics can be de"ned
which faithfully represents the dynamics in the phase space. That is, there should be a one-to-one
correspondence between points in the phase space and those in the symbolic space. To generate
a symbolic dynamics, one "rst partitions the phase space into cells C

i
(i"1, 2,2, m) covering

the entire attractor and then assigns symbols s
i
to cells C

i
, respectively. Consider a point x in the

cell C
i
, together with a segment of its unstable manifold. Let a and b be the two intersecting points

of the unstable manifold segment with the cell boundaries, as shown in Fig. 27. A primary condition
for a good symbolic dynamics is that the images of a and b under the map F(x), denoted by F(a) and
F(b), respectively, should still be at the cell boundaries within which the curve F(a)F(b) lies, as
shown in Fig. 27a. However, for an arbitrary partition, situation may arise where one of the end
points, say b, is no longer on a cell boundary, thus creating a `dangling enda, as shown in Fig. 27b.
Dangling ends may also occur for the stable manifold of x under the inverse map F~1. In both
cases, there is no one-to-one correspondence between points in the phase space and those in the
symbolic space. Such an ill-de"ned symbolic representation of phase-space points is not desirable
for communication application, as ambiguities will arise when one attempts to assign symbols to
di!erent cells. Nonetheless, if the chaotic attractor is hyperbolic, the partition into cells can be
chosen in such a way that the situation of dangling ends depicted in Figs. 27b does not occur [128].
Such partitions are called Markov partitions [129], the dynamics of which is schematically
illustrated in Fig. 27a. The partition is generating if every in"nitely long symbol sequence created by
the partition corresponds to a single point in the phase space [126,127].

170 S. Boccaletti et al. / Physics Reports 329 (2000) 103}197



Fig. 27. From Ref. [125]. (a) The forward dynamics of a Markov partition. (b) For an arbitrary partition, a `dangling
enda of the unstable manifold. This dangling end destroys the one-to-one correspondence between the phase space and
the symbolic space.

Since chaotic attractors arising in most two-dimensional maps are nonhyperbolic, the key issue
becomes how to "nd hyperbolic subsets embedded in the attractor. To illustrate the principle, we
use the HeH non map [40]: (x, y)P(1.4!x2#0.3y,x), which is widely believed to admit a chaotic
attractor. The partition is a zig-zag curve connecting all primary tangency points in the phase
space, which lies near y"0 [126,127]. Trajectory points above the curve bear symbol 1 and those
below bear symbol 0. This curve is a generating partition but it is di$cult to compute. To overcome
this di$culty while preserving the generating partition, we look for chaotic saddles embedded
in the attractor with a gap region, or a forbidden region, de"ned by y"$s/2, which covers the
partition curve. Due to the gap, a trajectory restricted to the chaotic saddle will never visit the
vicinity of the zig-zag partition curve. The partition for the chaotic saddles thus becomes easy to
locate: it is the gap itself. In particular, trajectory points above the gap bear symbol 1 and those
below bear symbol 0, and this partition is generating. Fig. 28a shows such a chaotic saddle with gap
size s"0.2. The chaotic saddles are numerically computed by the Proper-Interior-Maximum triple
(PIM-triple) procedure [33]. Since the forbidden region contains all the primary tangency points,
the chaotic saddle in Fig. 28a is apparently hyperbolic: it does not contain any tangency points
between the stable and unstable manifolds. As such, a Markov partition can be de"ned for such
a hyperbolic saddle, which naturally admits a good symbolic dynamics. In fact, there are in"nitely
many gap sizes s which correspond to di!erent hyperbolic chaotic saddles embedded in the
attractor.

The hyperbolic chaotic saddle shown in Fig. 28a is a subset embedded in the chaotic attractor
and, hence, its topological entropy cannot be larger than that of the attractor. A question is then,
how severe is the reduction in the topological entropy. This question is important for communica-
tion because the topological entropy of a chaotic set characterizes, quantitatively, how much
information can be encoded into the trajectories on the set (the channel capacity) [24,55}57,115].
To address this, we compute the topological entropy h

T
(s) of the chaotic saddle as the gap size s
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Fig. 28. From Ref. [125]. (a) A hyperbolic chaotic saddle embedded in the HeH non attractor with gap size s"0.2. (b) The
topological entropy h

T
(s) of the chaotic saddle as a function of the gap size s.

10When the noise-gap size is small so that the zigzag generating partition curve cannot be covered entirely, utilizing
y"0 as the partition line for the symbolic dynamics leads to an error *N in N(n), the number of possible symbol
sequences of length n. The values of h

T
for s"0 (the chaotic attractor) were compared [125]: (i) by counting N(n), with

x-axis as the partition line; and (ii) by using a procedure developed by Newhouse and Pignataro [130]. The counting
method (i) yields h

T
(s"0)+0.500, while the Newhouse}Pignataro algorithm (ii) gives h

T
(s"0)+0.466. This suggests

that when a chaotic saddle has entropy less than about 0.466, its noise-resisting gap has already covered the zigzag
generating partition of the attractor. This, in turn, gives an estimation for the value s

.*/
in Fig. 28b, the minimum gap size

for which a good symbolic dynamics can be de"ned by simply using y"0 as the partition.

is increased from zero [56,57], as shown in Fig. 28b for 04s(s
.!9

+0.42, where the dashed
horizontal line at h

T
"0.466 de"nes the minimum gap size s

.*/
above which the generating

partition for the chaotic saddle is simply10 y"0. We see that as s increases from 0, h
T

decreases
slowly at "rst, and then faster. The slowly decreasing behavior warrants a relatively large regime
s(s

c
+0.3 in which h

T
decreases only slightly (less than 10% reduction in h

T
). The key

implication is that utilizing chaotic saddles with gap size smaller than s
c
but larger than s

.*/
seems

to be practically bene"cial in communication applications: the speci"cation of the symbolic
dynamics is straightforward, yet the channel capacity is close to that obtained when one utilizes the
original chaotic attractor. It was conjectured [125] that the function of h

T
versus s is a devil's

staircase, a statement that can be made rigorous for certain one-dimensional maps [56,57].
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In general, it is advantageous to use chaotic saddles, such as the ones depicted in Fig. 28a, for
communication, because the symbolic dynamics on the chaotic saddle are immune to small noise. If
the system is in a noisy environment, and the original chaotic attractor is used to encode messages,
then a bit error (i.e., 0 becomes 1 or vice versa) may occur whenever the trajectory comes close to
the partition curve, because noise can kick the trajectory over the curve in both directions.
However, trajectories on the chaotic saddles do not come close to the partition point because of the
forbidden region. Thus, the possibility for bit error due to noise can be substantially reduced when
a chaotic saddle is utilized to encode messages if the noise amplitude is smaller than s

.*/
. Generally,

there is a trade-o! between the channel capacity and noise resistance.
We now give an example of coding a speci"c message. Suppose we wish to encode the message
`BEAT ARMY!a into a trajectory in the chaotic saddle in Fig. 28a. The message `BEAT ARMY!a
has the following ASCII representation:

B E A T 41!#% A R M Y !
def def def def def def def def def def
1000010 1100101 1100001 1110100 0100000 1000001 1110010 1101101 1111001 0100001.

If the chaotic saddle were equivalent to the fullshift grammar symbolic dynamics, i.e., no grammati-
cal restrictions, then we could simply "nd a trajectory in the x, y plane such that its y itinerary
exactly follows the above digital message. However, the symbolic dynamics of the chaotic saddle
are subshift-type because its topological entropy is less than ln 2.

Dynamics on the saddle is representable by the Bernoulli shift map, on a bi-in"nite symbol space
R of two symbols [126,127,131]. A bi-in"nite symbol sequence is a point in the symbolic space:
p"2p

~2
p
~1

p
0
)p

1
p
2
p
32

3R, where p
i
"0 or 1, and p

i
is the position of (x

i
, y

i
)3R2, relative

to a partition curve, on the ith (pre)iterate for (i(0) i50. Shifting the decimal to the right
represents a forward iteration, and shifting the decimal to the left represents an inverse iteration. To
quantify the correspondence between a point x in the phase space and a point (points) in the
symbolic space, it is necessary to use a vector function (the so-called coding function [24],
corresponding to the `symbolic planea discussed in Ref. [131]): G"(d, c), where d and c are
determined by

d"1!0.d
1
d
2
2d

=
,1!

=
+
k/1

d
k
2~k ,

c"0.c
1
c
2
2c

=
,

=
+
k/1

c
k
2~k , (98)

where d
k
"+k

i/1
(1!a

~i
) mod(2) and c

k
"+k

i/1
a
i
mod(2). The phase-space dynamics can then be

represented by the following map in the coding space: (d
n`1

, c
n`1

)"D(d
n
, c

n
), where

D(d, c)"M(1!d)/2, 2cN if c(1/2 and D(d, c)"M(1#d)/2, 2!2cN if c51/2. A trajectory of 50 000
points in the symbolic plane corresponding to the chaotic saddle in Fig. 28a is shown in Fig. 29.
The forbidden points (blank regions) in the symbolic plane is generated by the pruning front [131].
Fig. 29 thus determines, completely, the grammar on the chaotic saddle, from which a controlling
scheme can be derived to encode messages into the trajectories in the chaotic saddle. We note that
the pruning front of an embedded chaotic saddle must be ordered less than or equal to the pruning
front of the full chaotic attractor, following the fact that the subshift grammar of the chaotic saddle
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Fig. 29. From Ref. [125]. The symbolic plane for the hyperbolic chaotic saddle in Fig. 28a.

must be a subset of the subshift grammar of the attractor. Furthermore, the pruning front must be
a monotone nonincreasing curve (i.e., receding), as a function of the increasing gap. This corres-
ponds to the fact that we observe a monotone nonincreasing topological entropy.

In what follows we present a practical method to learn the grammar and then to encode digital
messages. In physical or numerical experiments, only "nite precision can be achieved and, hence,
it is reasonable to choose an n-bit precision approximation (subshift of "nite type). A way to
represent the transitions between the allowed n-bit words is to use the directed-graph method in
Ref. [55] which was originally discussed for one-dimensional noninvertible chaotic maps (with an
in"nite shift space). The directed-graph representation is, however, more general: two-dimensional
invertible maps (with a bi-in"nite shift space) requires little modi"cation, for n-bit words, or
truncations of the bi-in"nite symbol sequences, which represent n/2 pre-iterates and n/2 future
iterates. The main point of a symbol dynamics representation is that each (x, y) state in phase space
occupies a neighborhood which corresponds to an n-bit code, labeled as a node on the graph.
There are two possible situations: (1) either a 0 or a 1 may be shifted into the n-bit register, and this
choice means that one of the message bits may be controlled; or alternatively, (2) only a 0 or
a 1 exclusively may be shifted in to the bit register, and this must be a nonmessage bearing
`bu!er-bita even if the bit happens to coincide with the next message bit because according to
Shannon's information theory [115], an event only carries information if that event is not
pre-determined. It is exactly this time spent transmitting the bu!er-bits which causes decreased
channel capacity, as measured by the topological entropy. The more of the n-bit words which have
the two possible outcomes, 0 or 1, the higher the channel capacity. In numerical experiments,
we approximate the symbolic dynamics of the chaotic saddle by using 12-bit words. By using the
method outlined in Ref. [55], we encode the message into a trajectory on the chaotic saddle, where
the actual phase-space trajectory is shown in Fig. 30a and the corresponding time series y

n
is shown
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Fig. 30. From Ref. [125]. Example of encoding a message into a chaotic saddle: (a) controlled trajectory in the phase
space; and (b) the corresponding time series.

11For an overview of the "eld of chaos control and synchronization, see the focus issue of Chaos 7(4), 1997.

in Fig. 30b. The receiver can completely recover the original message, given the time-series, the
location of the symbol partition y"0, and the grammar in the form of the 2n list of transitions.

We remark that an alternative method to record the grammar of a two-dimensional map is to
use the pruning fronts [131] which was orginally developed for the HeH non map as the analogy in
the symbol plane to the one-dimensional kneading theory of Milnor and Thurston [132].
Both theories give a partial order for the symbol representation of a given point, relative to
a `maximuma grammatically allowed word. Given a particular n-bit sequence, it is only necessary
to check whether both possibilities are grammatically permitted. In the case of the kneading theory,
one checks, in the Gray-code ordering, whether both shifting in a 0 and a 1 give new n-bit words
which are also below the kneading sequence, which is the maximum sequence corresponding to the
symbolic code of the critical point. In the case of the two-dimensional pruning-front theory, one
must check that both 0 and 1 lead to symbolic codes ordered `belowa the pruning front; if either
shift, say a 0 (or 1), is greater than the pruning front, then that word is grammatically forbidden on
the chaotic saddle, and therefore the alternative shift, say the 1 (or 0), is determined. In either case,
just as with the directed-graph method of book-keeping the grammar, information theory demands
that when the two possible outcomes are permitted, the message bit can be transmitted, but when
one of the alternatives (0 or 1) leads to a symbolic code ordered larger than the pruning front, the
transmitted bit must be a non-message bearing bu!er bit.

5.1.10. Discussions
Nonlinear digital communication using chaos has become a "eld of recent interest. There are

two di!erent approaches to the problem. One is to use the principle of synchronous chaos11 to
embed and transmit digital information. Another is to extend the principle of controlling chaos
[1,23] to dynamical systems with well-de"ned symbolic dynamics to encode information
[21,24,54}57]. The latter approach makes explicit use of the fundamental principle that chaotic
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systems are natural information sources. By manipulating the symbolic dynamics of a chaotic
system in an intelligent way, the system produces trajectories in which digital information is
embedded. The methodology reviewed here is within the scope of the second approach. Speci"-
cally, we address the problem of controlling the symbolic dynamics of chaotic systems. We argue,
by explicit computation of the topological entropy, that a dynamical system operating in para-
meter regimes of transient chaos on nonattracting chaotic saddles usually possess a greater
information-bearing capability as compared with the same system in regimes of sustained chaos
on attractors. We detail a procedure, which is applicable to chaotic systems described by one-
dimensional maps, to encode digital information into typical trajectories wandering in the vicinity
of the chaotic saddle.

Using transient chaos for message encoding has the advantage of strong noise immunity. This
notion has been recently pointed out from the perspective of "nding an optimal coding scheme for
communicating using chaotic attractors [56,57]. In such a case, a code is necessary for message
encoding in order to accommodate the grammar of the chaotic attractor whose topological
entropy is typically less than ln 2. It is argued [56,57] that a code always yields a chaotic saddle
embedded in the chaotic attractor. The topological entropy of such a chaotic saddle is smaller than
that of the original chaotic attractor, although the symbolic dynamics restricted to the chaotic
saddle also has noise immunity. Thus, in digital encoding using sustained chaos on attractors, the
trade-o! between channel capacity and noise immunity becomes a critical issue. The chaotic
saddles considered here are those naturally arising in wide parameter regimes of a nonlinear system.
The characteristic di!erence between a natural chaotic saddle and one embedded in a chaotic
attractor is that the former usually has the maximally allowed value of the topological entropy. As
such, coding is not necessary for communicating with these natural chaotic saddles, while strong
noise immunity can be achieved. As transient chaos arises commonly in many situations of physical
interest [119,120], we expect the main point and its implications reviewed here to be a major
considering factor in designing practical communication schemes.

The observation that the topological entropy is greater for transient chaos also seems to hold
for some well studied high-dimensional chaotic systems. For instance, it is known that for the
HeH non map [40]: (x, y)P(a!x2#by,x), the topological entropy increases as a system parameter
changes from regimes with chaotic attractors to regimes with transient chaos (see Fig. 2 in Ref.
[123]). Communicating with high-dimensional chaotic symbolic dynamics is itself an interesting
problem. The main di$culty is to de"ne a generating partition in the phase space so that a good
symbolic dynamics can be de"ned [126,131]. Here we wish to point out that utilizing transient
chaos may greatly simplify the task of symbolically partitioning the phase space. Take the HeH non
map as an example. When the parameter b is "xed at 0.3, it is believed that the map generates
a chaotic attractor at a"1.4. In this case, the generating partition is a zigzag curve connecting all
primary tangencies between the stable and unstable manifolds, a good computation of which is
highly nontrivial [126]. In contrast, for a"3.0, the dynamical invariant set is a hyperbolic chaotic
saddle. The symbolic dynamics can be described by two symbols on a full shift, and the generating
partition is simply the straight line y"0. With the advantage of having the maximum topological
entropy ln 2, the hyperbolic chaotic saddles can serve as excellent information sources for digital
encoding in noisy environment.

We also remark that the procedure of controlling symbolic dynamics can be e!ectively utilized
for controlling transient chaos [133}136], which is still a challenging problem in the "eld of chaos
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control. By encoding an arbitrary but random symbol sequence, the trajectory of the system
remains in the vicinity of the chaotic saddle. Insofar as the encoding continues, the chaotic
trajectory is stabilized. This may be of value to the important problem of maintaining chaos
[52,136}140].

Finally, we have reviewed the feasibility of utilizing two-dimensional symbolic dynamics for
communicating with chaos. The main di$culty for chaotic attractors in two-dimensional invertible
maps, arising from three-dimensional #ows, is that due to nonhyperbolicity, the generating
partition for de"ning a good symbolic dynamics is extremely di$cult to compute. Our idea is that
there typically exists an in"nite number of hyperbolic chaotic saddles embedded in the chaotic
attractor for which the generating partition can be easily speci"ed. The hyperbolic chaotic saddles
have the additional property that their symbolic dynamics are immune to small environmental
noise. When chosen properly, the topological entropies of the chaotic saddles can be close to that of
the original attractor. These advantages make dynamical systems described by two-dimensional
invertible maps potential candidates for nonlinear digital communication.

5.2. The adaptive synchronization of chaos for secure communication

In the previous section, we have described how the OGY idea can be implemented for the control
of chaotic behaviors, with applications to the process of communicating with chaos. Here, we show
that the adaptive technique introduced for the stabilization of UPOs can, in fact, be successfully
applied to the problem of synchronization of chaos. The process of synchronizing two identical
chaotic systems starting from di!erent initial conditions [22] consists in linking the trajectory of
one system to the same values as the other so that they remain in step with each other, through the
transmission of a signal.

We have already described in details the possibility of encoding a message within a chaotic
dynamics [21], and we have pointed out that synchronization of chaos provides a good tool for
communicating between a sender and a receiver. In this section, we highlight that the use of
a chaotic carrier for the transmission of a message can give rise to security in the communication.

Several problems arise in order to assure security. The main one is due to the fact that the
sender must transmit to the receiver a part of the information on the dynamical system (in the
Pecora}Carroll case [22] this is realized by means of the transmission of one of the system
variables). As a result, a clever spy intercepting the communications can try to reconstruct the
whole dynamics, hence decoding the message. To prevent reconstructions of the message, Cuomo
and Hoppenheim [106] have proposed to use chaos to hide messages, by transmitting a signal
which consists in the sum of a chaotic signal and of a given message. Later, Perez and Cerdeira
[107] have shown that messages masked by low-dimensional chaotic processes can be intercepted
and extracted. Therefore, the attention was directed to the implementation of the Pecora and
Carrols (PC) idea to higher dimensional systems [141] with the hope that increased unpredictabil-
ity could improve security in the communication.

Another problems using the PC procedure is that the subsystem to be synchronized must show
negative subLiapunov exponents [22]. In other words, synchronization occur in a linear sense,
and, because of this requirement, an additive signal used to hide the real message should be an
in"nitesimal perturbation of the signal itself, while masking messages with large signals could lead
to problems in the synchronization.
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Enrichments of the PC method has been provided an alternative approaches to synchronization
based on nonreplica subsystems have been proposed [142], but still the problem of security in the
communication is an hot issue.

Ref. [65] describes the application of the adaptive scheme for chaos synchronization, and shows
how some of the above di$culties can be overcome, leading to a reliable level of security against
external interceptions even in the case of low dimensional chaotic systems.

The communication scheme in Ref. [65] consists of a message sender (Alice), a receiver (Bob) and
a spy (James) ready to intercept and decode all communications between Alice and Bob. Alice
consists of two identical chaotic systems

x5 1"f (x1 , k), x5 2"f (x2 , k) , (99)

where k is a set of control parameters chosen in such a way as to produce chaos, x1 , x2 are
two D-dimensional vectors (D53) and f is a nonlinear function. Bob consists of a third identical
system

x5 3"f (x3 , k) . (100)

The three systems start from di!erent initial conditions, and therefore produce unsynchronized
dynamics. Ref. [65] considers the Lorenz system, where the vectors xj"(x

j
, y

j
, z

j
), ( j"1, 2, 3) obey

the equations:
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"p8 (y
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j
), y5
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"rx
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!x
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j
, z5

j
"!bz

j
#x

j
y
j

. (101)

The scheme for the communication is reported in Fig. 31. With this scheme, one supposes to have
encripted a message within the vector x1 (with the use, e.g. of the encoding techniques described in
Section 5.1). The point is how to transmit the message to Bob in a secure way, so as to avoid
a possible reconstruction by James.

The "rst step is to produce synchronization between x2 and x3 . Bob sends to Alice the variables
y
3
(t) which is replaced into the equations for x

2
and z

2
. Synchronization (in the PC sense) is here

assured by the fact that the sub-Liapunov exponents for the subsystem (x
2
, z

2
) are both negative

(for p8 "10, b"8
3

and r"60 they are !2.67 and !9.99, respectively [22]).
This way, Alice knows the actual dynamical state of Bob and can transmit the perturbation;(t)

to be applied to the x
3

equation in order for Bob to synchronize the system x3 to x1 . Alice makes
use of the adaptive method to slave the system x2 to the goal dynamics x1 .

Precisely, the same algorithm of Eqs. (54)}(57) is used with actual dynamics x
2
(t) and goal

dynamics x
1
(t).

The perturbation ;(t) is then given by

;(t)"K(t) (x
1
(t)!x

2
(t)) . (102)

The e!ectiveness of this scheme is illustrated in Fig. 32, which reports the temporal behavior of
*x"Dx

1
!x

3
D, measuring the synchronization between Alice and Bob for p8 "10, b"8

3
and

r"60. Similar results hold also for Dy
1
!y

3
D and Dz

1
!z

3
D. As a consequence, the message encoded

within x1 is received by Bob.
Let us move to discuss the problem of security. James intercepts the two communication signals
;(t) and y

3
(t). No information on x1 can be retrieved from;(t) since;(t) vanishes as soon as Alice

and Bob reach synchronization, and the weighting factor K(t) is not decided a priori, but it is
continuously changed by the adaptive algorithm. This is equivalent to have a time variable
decoding key.
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Fig. 31. The scheme for adaptive synchronization. Bob sends to Alice the variable y
3

to synchronize x2 and x3 . Alice
sends to Bob the adaptive correction;(t) to be added to the evolution equation for x

3
. James intercepts both;(t) and y

3
.

Fig. 32. From Ref. [65]. Temporal evolution of the quantity log
10

(Dx
1
!x

3
D) measuring the synchronization between

x1 and x3 . p8 "10, b"8
3
, r"60, K

0
"10, p"0.011.

However, from the knowledge of y
3
, James can reconstruct the whole chaotic attractor corre-

sponding to x3 through standard embedding techniques, and can easily decode the message once
x3 and x1 become synchronized.

To prevent for this, Ref. [65] introduces the following trick. Alice and Bob agree on a given
accuracy h in the message reception. Once such an accuracy is reached. (Alice can test on it), Bob
stops sending y

3
for a given while ¹

0
. During this time lag the two systems x2 and x3 evolve

separately. After ¹
0

Bob starts again sending y
3

to Alice. Now, if ¹
0

exceeds the decorrelation time
q8 of the system (which is de"ned as the reciprocal of the maximum Liapunov exponent K), then the
e!ective signal sent by Bob results in the sum of uncorrelated temporal subsequences, and the
embedding technique fails. Therefore, no reconstruction of x3 is possible by James in this case.

Fig. 33 reports the results for ¹
0
"1 and h"10~5 (notice that in the present case KK1.41,

hence ¹
0
'q8 K0.71). The synchronization scheme maintains the stipulated accuracy (Fig. 33a)

even when the signal sent by Bob is a!ected by large holes (Fig. 33b) preventing external
reconstructions of x3 (t). Finally, Fig. 33c shows the controlling signal which remains con"ned
within a range negligible with respect to the x

1
dynamics (x

1
variations from !28 to 28).

6. Experimental evidences and perspectives of chaos control

6.1. Introduction

The large body of the theoretical proposal on chaos control has stimulated di!erent applications
in experimental systems whose natural behavior showed chaos. The stabilization of a dynamical
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Fig. 33. From Ref. [65]. (a) Temporal evolution of log
10

(Dx
1
!x

3
D) for h"10~5 and ¹

0
"1'1/KK0.71. The

stipulated accuracy in the transmission is perserved in time even though (b) the syncronization signal Bob sends to Alice
is a!ected by large holes which prevent any reconstruction of the message, and (c) the controlling signal ;(t) is kept
within a range negligible with respect to the dynamics. Other parameters as in Fig. 5.

system toward a state of controlled periodicity allows a lot of possible technological applications,
thus motivating the interest for the experimental demonstration of the reliability of the di!erent
theoretical techniques, in practical situations where often a mathematical model for the system is
unknown, or very detailed dynamical features are practically impossible to be extracted from the
outputs.

Stabilization and control are old engineering problems [42,143]. Open loop methods and closed
loop negative feedback approaches has been developed long time ago and are still extensively used.

All experimental systems need some kind of stabilization to give safe operation and outputs. To
avoid irregular #uctuations in a system, normal procedure include adding dissipativity to lower the
gain, or redesigning the operating parameters so as to "nd a safe operating point, or "ltering with
narrow band the desired output, or other similar techniques.

In particular, in nonlinear devices where irregular #uctuations are normally obtained, there is
a strong practical interest in obtaining an output intensity or a frequency free of irregular
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behaviors. This is the main reason why a lot of di!erent stabilization and control techniques have
been used.

Stabilization and control in our context means achieving safe operations of a chaotic system
onto some unstable orbits giving the possibility of choosing (and changing) a controlled, complex,
multiperiodic desired behavior without hard changes in the parameter space of the system.

In general, we cannot claim that a control method is better than others for practical experimental
implementations. Rather, the performances of the di!erent proposed techniques depend on the
particular situation under study.

What can be surely a$rmed is that, in order to exploit all the advantages of a control chaos
method, one needs an algorithm which takes pro"t of the possibilities o!ered by the chaotic
attractor. Therefore, if the control will be performed on a variable, a parameter, modulating the
pump or adding negative feedback, mainly depends on the particular problem to be faced.

In the following, we will consider some relevant experimental achievements that, in our opinion,
may guide the reader toward a family of other works, which use similar or related techniques. We
are aware that it would be unrealistic to pretend covering all the body of experimental works which
are o!ered in the literature nowadays, and it has been necessary to concentrate our treatment only
on few prototypic experiments, duly referring to the other literature on similar matter.

Along this line here we want to illustrate both experiments designed to verify some theoretical
aspects, and others that intend, within the state of art, to solve some real technological problems.

Under this methodology, we will attempt to keep the chronological order.

6.2. Nonfeedback methods

Before the OGY method, Lima and Pettini [59] proposed a perturbative technique of stabilizing
the chaotic system toward a periodic state. In this case, the periodicity is "xed by the frequency
of a control signal perturbing the parameter space. Such a technique was called `suppression of
chaosa by the same authors. Its implementation, however, can be complicated by the fact that it
needs a preliminary learning task of the system response to possible perturbations of variable
amplitude.

The e!ects of parametric perturbations was "rst studied by Azevedo and Rezende in Ref. [14],
in a control experiment with a system of spin waves excited by microwaves. The experimental
system consisted in a sample of yttrium iron garnet (YIG) localized within a waveguide, which was
syntonized with the mode ¹E

102
. In these conditions, the system behavior becomes chaotic as far

as an external "eld H perturbs the YIG sample in the direction perpendicular to the "eld h of the
cavity.

The authors did not develop a systematic study of the system dynamics as a function of
control parameters. Rather, they limited to the introduction of a periodic modulation in
H (H"H

0
#dH cos(2pft)), with amplitude dH about four orders of magnitude smaller than the

continuous component H
0
. In this case, the operator suitably scans a large frequency band in f, in

order to individuate those forcing frequencies leading to a global periodic behavior of the system.
Once the frequencies have been selected, the operator acts on the respective amplitudes in order to
get the best control conditions. This experiment should be considered as pioneering, insofar as it
demonstrated for the "rst time that a suitable periodic perturbation may produce mode-locking,
thus restoring a periodic state for control parameter values much above the threshold of the

S. Boccaletti et al. / Physics Reports 329 (2000) 103}197 181



Fig. 34. Experimental setup of the magnetoelastic ribbon control experiment.

appearance of chaos. In other words, it is here experimentally demonstrated that a synchronization
mechanism between a chaotic attractor and a periodic perturbation can be considered as a reliable
control method in various circumstances.

Among the various experimental application of this technique, we here mention the results by
Fronzoni et al. [144], who have shown the elimination of chaotic oscillations of a bistable
magnetoelastic system, actually represented by the Du$ng}Holmes equation. Recently this tech-
nique has been also applied for stabilizing periodic orbits in a single mode CO

2
laser with

modulated losses [146]. The authors applied a slow nonresonant (or near-resonant) parametric
modulation to the cavity detuning. The addition of the `control signala is able to reduce the
periodicity of the periodic orbit (e.g. from period four to period two and to period one) and even to
control unstable periodic orbits [147].

6.3. Control of chaos with OGY method

The "rst experimental application of the OGY control method was realized by Ditto et al. at the
end of 1990 [9]. In this paper, the authors obtained the stabilization of period one oscillations in
the dynamics of a magnetoelastic ribbon. The experimental setup consisted of an amorphous
magnetoelastic ribbon of thickness 25lm, width 3 mm and length 100mm. The "rst 35mm were
"xed at the basis, allowing only the remaining part of the ribbon to perform horizontal displace-
ments. The choice of the material was carefully done, since amorphous materials allow large
variations of their Young modulus for relatively small changes in the applied magnetic "eld H. The
system was put inside three Helmoltz reels (perpendicular to each other) in order to compensate for
the earthly magnetic "eld. The setup is reported in Fig. 34.

In order to force the appearance of the oscillations, a forcing "eld H"H
$#
#H

!#
cos(2pft) was

applied, where H
$#

(H
!#

) is the amplitude of a continuous (alternate) magnetic "eld. The deter-
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Fig. 35. From Ref. [9]. (a) Time series of X
n
"<(t

n
) before and after the control was switched ON. (b) The "rst return

map (X
n`1

versus X
n
) for the uncontrolled system (in gray) and the controlled output when the control is turned ON

(in black).

mination of the dynamics was done by measuring the horizontal displacements of the ribbon by
means of a photonic sensor pointing at a height of 6 mm with respect to the basis of the system.

The dynamics of such displacements shows interesting chaotic features. For a detailed discussion
on the structure of the chaotic attractor, we here address the reader to Ref. [145].

The application of the OGY to such a system required the localization of a saddle "xed point
within the attractor set, with a neighborhood wherein the local dynamics could be considered
linear in the perturbations introduced in some control parameter. Ditto et al. then constructed
experimentally the time series X

n
"<(t

n
) (t

n
being the natural sampling time corresponding to the

forcing period) of the voltages out from the photodetector. In Fig. 35, this time series was used to
construct the return map, for 2350 points, H

$#
"0.112Oe, H

!#
"2.050Oe and f"0.85Hz.

In this framework the period one orbit is individuated by the condition X
n`1

"X
n
, which was

said to be ful"lled within the experimental resolution (in the present case, the error in the measure
of the voltage was $0.005V). For each pair of points, it is possible to construct a local linear map
M, and to extract the values of stable (j

4
) and unstable (j

6
) eigenvalues, and the corresponding

eigenvectors (e
4
, e

6
).

By slightly varying a control parameter (in this case it was the continuous magnetic "eld H
$#

),
the authors were able to estimate the variation in the "xed point position, and by the use of OGY
technique, to control the desired "xed point. In the present case, the whole execution time of the
control line was about three orders of magnitude smaller than the characteristic time of the system
oscillations, thus allowing a real time on line control. Within the parameter range of Fig. 35, the
authors were able to stabilize the period one orbit for more than 200 000 iterations (about 64 h),
using a maximum perturbation of 9% of the unperturbed dynamics. By using the second return
map of the experimental time series, the authors were also able to stabilize the period two orbit,
with the same limitation in the perturbation strength.

This experiment constituted the "rst robust evidence of the reliability of the OGY technique,
insofar as it was shown that the control over chaos persisted inspite the presence of experimental
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Fig. 36. From Ref. [15]. (a) First return map (I
n`1

versus I
n
) for the uncontrolled system. Bright points correspond to

the controlled orbit. (b) The current through the resonator versus time, with the control window `Wa. The control signal
(lower trace) is turned ON only when a peak of the signal enters within the window.

noise, which a!ects the determination of the map M, thus of the estimate of the eigenvalues and
eigenvectors.

6.4. Control of electronic circuits

The two experiments by Azevedo and Rezende [14] and Ditto et al. [9], even though realized
with di!erent methods, have a common underlying idea, which is that of forbidding large
parameter variations in the control procedure. A qualitative change in this framework was
performed by Hunt in Ref. [15], where the perturbations were allowed to be quite large, thus
permitting the control of more complicated periodic behaviors, associated with higher periodic
orbits of period as large as 23 times the characteristic oscillation period.

In this experiment, a simple electronic circuit is used, based on a diode resonator. A p}n junction
is excited by an harmonic voltage, and the system shows a series of period doubling bifurcation,
eventually entering a chaotic regime. Because of its extreme simplicity, the system comes out to
be well described by a bidimensional mappings, which can be directly constructed by means of the
experimental observations of the maxima of the current traveling through the junction (see
Fig. 36a).

By exploiting such a preliminary learning process, the system is fed back with a control signal
proportional to the distance between the measured maximum and the expected one for the periodic
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orbit. Due to this procedure, the method itself was called Occasional Proportional Feedback (OPF).
Even though the basic concept does not di!er from the OGY one, here the author does not
consider explicit limitations for the perturbation strength (which, instead, are peculiar of the formal
OGY technique). As a result, the chaotic attractor comes out to be slightly distorted as a conse-
quence of the large variations in the control parameters.

Precisely, Hunt de"nes a window in the neighborhood of the current value corresponding to the
desired orbit. The width of this window also de"nes the maximum strength of the perturbation.
This process is simply realized by the use of a current}voltage converter, which sends the output
signal to an electronic comparator, which eventually delivers the control pulse. The duration of the
pulse can be adjusted to achieve robustness in the control, but it is always limited to be a rather
small fraction of the characteristic oscillation time.

The results of Ref. [15] show that small perturbations (about 0.5%) are able to stabilize lower
periodic orbits, whereas the process leading to the control of higher periodic orbits is associated
with a larger perturbation strength (about 10%). Such large perturbations may induce important
modi"cations in the controlled orbits, as it appears evident in Fig. 36b, where a period 5 controlled
orbit is shown. If one compares the coordinates of the controlled orbits with those of the
unperturbed signal in the "rst return map, the former appear to be quite displaced, thus meaning
that a slight deformation of the orbit has been produced.

The robustness of the method is highlighted by the control of very large periodic orbits, as large
as period 21. In this case, the perturbation is even stronger, and the consequent deformation is
more evident. The relevance of such an experiment is due to the "rst evidence of robust control of
very high periodic behaviors.

6.5. Control of chemical chaos

Occasional Proportional Feedback method was introduced independently by Peng et al. [148]
in order to control a model of chemical reactions. Chemical chaos generally correspond to
a unpredictable variation in the concentration of some components that enter an oscillatory
reaction. The most popular chaotic chemical system is the Belousov}Zhabotinsky (BZ)
reaction, where a cerium ion-catalyzed oxidation malonic acid is produced by acidi"ed
bromate [149] in a continuous-#ow stirred-tank reactor. The "rst control experiment in chemical
chaos was implemented in a BZ reaction by the group of Showalter [17]. The authors here applied
the so called single map based algorithm to an oscillatory BZ reaction continuously excited,
feedbacking the control signal `*ka of the cerium and bromide solutions entering the reaction
tank.

The perturbation in the control signal *k"(A
n
!A

s
)/g can be directly calculated as a function

of A
n

(the potential in a Bromide electrode), and A
s

(the "xed point value obtained by the "rst
return map), while the weighting factor g can be evaluated by measuring the horizontal distance
between two maps extracted from a suitable model of the reaction (Fig. 37a) [148,150]. This
calculation allows a very precise estimate of the perturbation value necessary for the system to
stabilize the desired periodic orbit.

In Fig. 37b the potential of bromide electrode as a function of time is presented. The control
algorithm was switched on to control a period one orbit (t"27 800 s until t"29 500 s) and
a period two orbit (t"30 000 s until t"32 100 s). The control range was set at $30mV.
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Fig. 37. Reprinted by permission from Nature 361, p. 242, copyright (1993) Macmillan Magazines Ltd. (a) First return
map of the concentrations used in the experiment calculated from the GyoK ryi-Field model. The system is directed to the
stable "xed point applying a change *k"(A

n
!A

s
)/g. (b) Bromide electrode potential versus time. The control

algorithm was switched on at t"27 800 s unit t"29 500 s for controlling a period 1 orbit (p1) and from t"30 000 s until
t"32 100 s for the control trial of a period 2 orbit (p2). The control range was set at $30mV.

The map-based control algorithm has been also implemented for tracking unstable periodic
orbits in the same BZ reaction [151].

6.6. Control of chaos in lasers and nonlinear optics

The control of stability in lasers and nonlinear optical devices is frequently necessary.
Indeed, from the beginning of laser industry a crucial point was to improve the performance in

frequency and intensity, motivated by many problems inherent to the presence of several longitudi-
nal and transverse modes (pulling and pushing of laser modes), couplings in nonlinear internal
devices, nonlinearities in ampli"ers and other issues related to the generation of laser radiation or
due to interaction of laser with matter.

A crucial issue is connected with the important irregular intensity #uctuations that appear in the
generation of second harmonic with an intracavity nonlinear device. The nonlinear couplings
between modes that are produced in nonlinear crystals give rise to irregular #uctuations in the
optical cavity. These #uctuations are ampli"ed from the beginning by the quality factor Q of the
laser cavity and by the presence of the laser ampli"er media.

Strong #uctuations appear then in the laser intensity. This is clearly a nondesirable situation for
practical applications. To give an example of what discussed above, the second harmonic genera-
tion (green light) in a diode-pumped intracavity doubled Nd : YAG laser (1.06lm) [152], is
normally accompanied with strong intensity #uctuations. The irregular behavior in this kind of
systems was largely investigated [153] and attributed to the destabilization of relaxation oscilla-
tions, always present in this kind of lasers, due to the nonlinear coupling of longitudinal modes.
Several experimental works have been devoted to eliminate such a chaotic behavior [154].

In the context of chaos control, Roy et al. [16], in a very important experiment, used the
Occasional Proportional Feedback method for selecting a series of perturbations of limited
durations (`kicksa) to the driver of the Nd :YAG pump diodes. The feedback pulses drive the
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injection current of the pump diodes at periodic intervals and they are proportional to the
di!erence between the chaotic output signal and a given reference value.

The interval ¹ between successive kicks was adjusted to be roughly the period of the relaxation
oscillations. The control parameters of the experiments are, together with the duration of the kick,
its amplitude and the reference level.

The results are remarkable in the case of a weak chaotic regime. The authors "rst prepare the
laser as to operate in that regime, by an appropriated orientation of the nonlinear crystal (KTP).
The results can be regarded in Fig. 38. The control of period 2, 4 and 9 periodic orbits was obtained
in all cases with small amplitude perturbations (a few percents) operating near threshold.

A weak chaotic regime means small output intensity generated in the green frequency (second
harmonic). If a signi"cative amount of green light is generated, the regime becomes strongly chaotic
and the system is unable to stabilize the output. The authors reported that, by adjusting the
reference level to the mean of the chaotic #uctuations and by adjusting the period ¹ to the
relaxations oscillations period, the dynamics comes out to realize a stable output. The control
voltage #uctuations become very small once the steady state is achieved.

The strong green output case represents a new situation, insofar as here if some parameter (like
pump intensity) is changed after the steady state is reached, then the control is lost. The control
variables need to be adjusted to stabilize the new operation conditions. Several attempts have been
made to overcome this problem by means of a systematic tracking of periodic orbits [155].

By tracking and stabilization techniques [156], a stable output is presented in a pump range very
far from threshold (as far as three time above threshold). This implies a strong improvement, even
though the results are presented here on the 1.06lm output (that is on the infrared range).

Besides the interest of the obtained results, there are two qualitative di!erences between the
experiments realized by Ditto et al. and those realized by the group of Roy. The "rst one is the
number of degrees of freedom involved in the dynamics of the system under control. In the case of
the magnetoelastic ribbon, the dynamic is conveniently described by few strongly localized modes,
whereas in the case of the multimode laser, the system is itself highly dimensional. The second
di!erence is the order of magnitude of temporal scales on which control must be performed. While
in the "rst case the characteristic time scale of oscillations was few seconds, a time su$cient to
allow a complicated o! line control scheme, in the second case the time scale is of the same order, or
even smaller, than the algorithmic time necessary for the calculation of the control signal.

The same group of Roy has later proved experimentally the possibility of synchronizing chaotic
lasers [157], with possible application to digital communication [158]. More recently, experiments
on communicating with chaos has been carried out in the same group, showing the possibility of
encoding and decoding messages with chaotic lasers [159], and the possibility of transmitting
a desired message in a very fast way using high-dimensional chaotic waveforms [160,161]. An
exhaustive review of di!erent experimental setups for the communication of chaos with time-
delayed optical systems is available in Ref. [162].

6.7. Control of chaos in yuids

The "rst control experiments on a convective #uid were reported by Singer and Bau [12,13]. In
these experiments, a #uid is con"ned in a toroidal cell in a vertical position. The lower half of the
cell is surrounded by a heater, whereas the upper part is maintained at a lower temperature
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Fig. 38. From Ref. [16]. Temporal traces of the output intensity, control signal and FFT corresponding to (a) no control,
(b) period 1, (c) period 4 and (d) period 9.

through a thermal bath. This particular system give rise to a dynamics which can be reduced to the
Lorenz model [163]. The chaotic regime is constituted by jumps between two possible basins of
attraction, corresponding to the two possible orientations in the rotation direction of the #ux inside
the convective cell.
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Fig. 39. Temperature di!erence between positions 3 and 9 o'clock around the loop. the change in the sign corresponds to
an inversion in the #ow direction.

Chaotic oscillations of the temperature arise associated to the convective #ux. The control
parameter for this system is the power supplied to the heater. The used control algorithm consisted
in a negative feedback acting on the same heater by a perturbation proportional to the temperature
di!erence between the regions where the #ux passes from the upper to the lower part of the cell. In
Fig. 39 one can clearly see that the chaotic regime is realized by means of oscillations of increasing
amplitude intermittently jumping between the two basins of attraction due to the change in the
direction of the main convective #ux. Such chaotic oscillations are suppressed when the control is
turned on.

Another relevant experiment on convective systems was reported by Petrov et al. [164]. In this
case, the authors controlled the oscillations inside of a liquid bridge of 3 mm width su!ering
a temperature di!erence of about 153. The relevance of this work is due to the fact that the authors
show the e!ectiveness in the control of an unstable isolated solution in the phase space. This is the
case of toroidal trajectories corresponding to a quasiperiodic attractor. This particular solution is
encountered in the unperturbed system for su$ciently high temperature di!erence across the
bridge. The control was implemented in two stages. First of all, the authors study the system
response against localized temperature perturbations inside the liquid gap. In the second stage, this
learning process is used to select the right perturbation able to drive the system toward the desired
state. Fig. 40 shows the toroidal regime and the controlled periodic state. In this case it has been
shown how a low-dimensional space}time chaotic dynamics can be conveniently controlled by
means of localized perturbations.

6.8. Control of chaos in biological and biomechanical systems

Another application of the techniques for chaos control was developed for biomechanical
systems. The "rst experiment on chaos control in this framework was reported by Gar"nkel et al.
[10,11]. Here, the authors use the OGY method on a preparation of rabbit cardiac muscle. The
peculiarity of this case is that the perturbation, instead of acting on the amplitude of the signal, is
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Fig. 40. From Ref. [164]. Second return map constructed from the experimental time series of the temperature measured
approximately at the medium of the liquid bridge and near to the free surface. In the "gure can be seen the quasiperiodic
regime, and the controlled unstable periodic orbit.

applied to vary the interbeat intervals. Fig. 41 shows the control of period 3 periodic orbit. It
should be remarked that the intrinsic di$culty here is constituted by the fact that the perturbation
must act unidirectionally, insofar as the operator can reduce but cannot increase the natural
duration of the pulse, due to the presence of refractoriness in the experimental system.

Another example of control (or anticontrol) of chaos in biological system is the control of the
neuronal activity of hippocampal slices realized by Schi! et al. [165]. An interesting suggestion
here is that one can, in fact, try to maintain the chaotic state, which sometimes can be preferable.
For example, since the epileptic processes are associated with a periodic synchronization of the
neuronal tissue, in order to avoid the primer of epilepsis, one can actually implement a tech-
nique similar to OGY in order to anticontrol the chaos, that is in order to maintain a chaotic state
wherever the system would naturally be pushed onto a periodic one.

6.9. Experimental control of chaos by time delay feedback

Another important branch of experimental control of chaos is constituted by di!erent implemen-
tations of the method originally introduced by Pyragas [2], that is by the application of a continu-
ous time delayed feedback.

The "rst experimental evidences of this type of control was reported by Pyragas and
Tamasevicius [166]. The experimental setup was an externally driven nonlinear oscillator with
a tunnel diode as negative resistance device. Bielawski et al. [167] use essentially the same diode
resonator which was used in the experiment by Hunt [15], but with a higher frequency (about
10.3MHz). The control signal is selected by comparing the output signal with the same signal
delayed by a time q corresponding to the period of the desired orbit. In these conditions, the
authors were able to stabilize orbits of di!erent periodicity in the system.
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Fig. 41. Reprinted with permission from Science 257, p. 1230, copyright (1992) American Association for the Advance-
ment of Science. (a}c) Interbeat interval I

n
versus the beat number during the chaotic phases. (d}f ) Corresponding

PoincareH sections.
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The same technique was later successfully used for the control of laser systems [168], namely in
the case of a CO

2
laser with intracavity electro optical modulator.

Another interesting application of feedback control is the implementation of the so called
washout xlter, which was used for the control of the chaotic dynamics generated by both
autonomous [169,170] and nonautonomous [171] systems. In both cases the system under control
was a CO

2
laser with cavity losses modulated by an electro-optical crystal driven by an external

sinusoidal voltage. The control signal is represented by a feedback on such a crystal, with
amplitude of the order of few percent of the driving signal.

In chemical systems, the implementation of Pyragas' technique has been provided for the
Belouzov}Zhabotinski reaction [172,173] and in enzymatic reactions [174].

6.10. Other experiments

It should be here mentioned the large body of experimental realizations of chaos control in laser
systems, posterior to the "rst evidence by the group of Roy mentioned in Section 6.5. Control
of chaos was realized by means of weak parametric perturbations [175], negative feedback of
subharmonic components [171,176,177], proportional feedback with delay [178], addition of
a weak second periodic signal in a modulated multimode laser [179}181]. Other recent experi-
ments in lasers are reported in Refs. [182,183].

In mechanical systems, the possibility of improving the OGY method has been shown by the use
of a Neural Network for the optimization of the interpretation of the experimental results with
the aim of "nding the di!erent unstable periodic orbits [184]. The OGY method has also been
optimized by In et al. [185] through an adaptive technique. Furthermore, OGY has been also used
by Kiss et al. [186] for the control of the electrodissolution of a rotating copper disk in
a phosphoric acid electrolite. A recent electrochemical experiment is reported in Ref. [187].
Moreover, control of chaos was realized in ionization waves that appear in a periodically excited
neon glow discharge [188,189].

More recently, chaos control in experimental high-dimensional systems was realized, namely in
a double pendulum [190] and in a two coupled diode resonators [191].

In electronics, the most recent achievements are reported in Refs. [192}195].
Finally, two recent review papers contain discussions and References on some experimental

applications of the control of chaos [196,197].
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