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Characterization of intermittent lag synchronization
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Intermittent lag synchronization of two nonidentical symmetrically coupled Ro¨ssler systems is investigated.
This phenomenon can be seen as a process wherein the intermittent bursts away from the lag synchronization
regime correspond to jumps of the system toward other lag configurations. During these jumps, the chaotic
trajectory visits closely a periodic orbit. The identification of the different lag configurations and the measure
of the fraction of time passed by the system in each one of them provide information on the global scenario of
transitions undergone by the system before reaching perfect lag synchronization.

PACS number~s!: 05.45.Xt, 05.45.Jn
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Synchronization of coupled chaotic oscillators is a field
growing interest. In this framework, four types of synchr
nization have been studied so far, namely complete sync
nization ~CS! @1#, phase synchronization~PS! @2#, and lag
synchronization~LS! @3#, and generalized synchronizatio
~GS! @4#.

CS refers to a process whereby the interaction of t
chaotic systems leads to a perfect linking of their chao
trajectories, so as they remain in step with each other in
course of time. This mechanism was initially proposed
hold for unidirectionally coupled identical systems@1#, and
later extended to a bidirectional coupling between nonid
tical oscillators@3#. GS implies the hooking of the output o
one system to a given function of the output of the oth
system@4#. A symmetric coupling between nonidentical o
cillators can lead to an intermediate regime~PS!, character-
ized by a perfect locking of the phases of the two signa
whereas the two chaotic amplitudes remain uncorrelated@2#.
Finally, LS consists of hooking one system to the output
the other shifted in time of a lag timet lag(s1(t)5s2(t
2t lag)) @3#.

Experimental verifications of all these theoretical findin
have been offered, e.g., in the cardiorespiratory system@5#,
in the human brain@6#, in the cells of paddlefish@7#, and in
communication with chaotic lasers@8#. Recently, synchroni-
zation phenomena have been explored also in high dim
sional@9,10# and in space extended chaotic systems@11–15#.

In this paper, we focus on theintermittent lag synchroni-
zation ~ILS!, a phenomenon recently shown to occur in b
tween PS and LS@3#. We will show that ILS can be charac
terized in terms of the existence of a set of lag tim
t lag

n (n51,2, . . . ), such that the system always verifie
s1(t).s2(t2t lag

n ) for a givenn.
From now on, we will refer to a pair of coupled nonide

tical Rössler systems@16#, describing the evolution of the
three dimensional vectorsx1,2[(x1,2,y1,2,z1,2):

ẋ1,252v1,2y1,21«~x2,12x1,2!,

ẏ1,25v1,2x1,21ay1,2, ~1!

ż1,25 f 1z1,2~x1,22c!,
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where dots denote temporal derivatives,a50.165, f 50.2,
c510 so as Eqs.~1! generate a chaotic dynamics,« repre-
sents the coupling strength, andv1,2[v06D (D being the
frequency mismatch between the two chaotic oscillators!. In
what follows we focus our study on the casev050.97, D
50.02. As« increases,@3# identifies subsequent transition
in system~1! from no synchronization to PS, to LS, and
CS, and traces each one of these transitions in the Liapu
spectrum. In particular, in the range 0.11,«,0.14~that is in
between perfect PS and perfect LS!, @3# describes the occur
rence of ILS, that is a situation where most of the time t
system verifiesux2(t)2x1(t2t0)u!1 (t0 being a lag time!,
but where bursts of local nonsynchronous behavior may
cur. In this range of coupling strengths, the typical output
system~1! is reported in Fig. 1. This phenomenon was ide
tified with on–off intermittency and the reason for the loc
excursions from LS was identified in the fact that the seco
global Liapunov exponent of Eq.~1! is negative, but small in
absolute value, so the dynamical evolution can drive the s
tem to attractor regions wherein thelocal Liapunov exponent
is still positive.

A suitable tool for studying LS is the similarity functio
S(t), defined as the time averaged difference betweenx2(t)
and x1(t2t), conveniently normalized to the geometric
average of the two mean signals

S2~t!5
^~x2~ t !2x1~ t2t!!2&

~^x1
2~ t !&^x2

2~ t !&!1/2
, ~2!

FIG. 1. The time seriesx2(t)2x1(t2t0) in the ILS regime:«
50.13, t050.32. Horizontal axis is labeled with time.
7497 ©2000 The American Physical Society
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where^•••& denotes temporal average. Indeed, if the sim
larity function shows a global minimums5mint S(t), for
t0Þ0, this is an indication of the presence of a principal l
time t0 between the two processes. Notice that Eq.~2! ac-
counts only for linear correlations between the signalsx1 and
x2 and that more complex relations would be required to
investigated by means of nonlinear similarity statistics. Ho
ever, for our purposes, Eq.~2! provides all the necessar
information for the study of LS and ILS.

In Fig. 2~a!, we report the similarity function for«
50.13, that is within ILS. Looking at Fig. 2~a!, one clearly
realizes that, besides a global minimums.0 at t0
50.32, S(t) displays many other local minima at larger la
times tn (n51,2,3, . . . ). These local minima witness tha
system~1!, besides being lag synchronized most of the ti
with respect to the global minimumt0, during its dynamical
evolution occasionally visits closely other lag configuratio
corresponding toux2(t)2x1(t2tn)u!1. The deepness o
the nth local minimum is in close relationship with the fra
tion of time that the corresponding lag configuration
closely visited by system~1!. Even though none of the la
configurations withn.0 can be considered a lag synchron
zation regime~only the lag configuration withn50 can be
made stable for a suitable choice of«), in the following we
will show that their study provides an alternative tool
identify the transitions from no synchronization to PS and
in system~1!. Furthermore, the different lag timestn can be
expressed by the relationtn5t01nT, T being the return
time of system~1! onto its Poincare´ section~that is, the re-
ciprocal of the mean peak in the Fourier spectrum!. This fact
is intimately related to the phase coherence properties of
Rössler system.

Both the location and the deepness of all local minima

FIG. 2. ~a! Similarity function S2(t) vs the lag timet for «
50.13 ~intermittent lag synchroniaztion!. Notice the presence of a
global minimuns.0 at t050.32, and of many local minima fo
larger lag timestn (n51,2,3, . . . ). ~b! Zoom of ~a!. Solid line:
«50.13, dashed line:«50.1, dotted line:«50.07.
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functions of the coupling strength«. Figure 2~b! reports a
zoom of the similarity function~limited to the first two local
minima! at different values of«. As the coupling strength
increases, two different phenomena can be observed in
2~b!, namely a drift of alltn toward the origin, and a chang
in their corresponding deepness. Precisely, the value of
local minima tn increases, while the value of the glob
minimum t0 decreases, vanishing eventually at larger« val-
ues. The decreasing process oft0 reveals that, by increasing
the coupling strength, the system will eventually lead to a
state~whereint0 must vanish!. The increasing process of th
values of the local minima tells us that one is approachin
perfect LS state@wherein the fraction of time spent by sys
tem ~1! in the configurationux2(t)2x1(t2t0)u!1 must in-
crease, and consequently the fraction of time spent in
configurationsux2(t)2x1(t2tn)u!1, nÞ0 must vanish#.

Figure 2 suggests that we look carefully not only to l
synchronization phenomena with respect to the principal
time t0 ~as already reported in@3#!, but also to the occur-
rence of the other lag configurations withn.0 during ILS.
To this purpose, we select«50.13 in system~1! and monitor
the differencesDn5x2(t)2x1(t2tn), n50,1,2,3 ~for this
particular choice of«, t050.32, t156.60, t2512.87, and
t3519.20). The results are shown in Fig. 3. For most of
time the oscillations ofD0 are strongly bounded. Corre
spondingly the oscillations ofDn are very large for alln.
However, during the burst of local nonsynchronous behav
~with respect to the lag timet0), the oscillations ofD1 and
D3 range within a limited interval. This means that, durin
the bursts occurring in ILS, the system visits closely anot
lag configuration corresponding to some lag timetn . In
other words, one can interpret ILS as the coexistence
many lag configurations~each one of them corresponding
a different local minimum of the similarity function! and the

FIG. 3. Temporal behavior of the differencesDn5x2(t)2x1(t
2tn), for n50 ~a!, n51 ~b!, n52 ~c!, andn53 ~d!. In all cases
«50.13. ~a! t050.32; ~b! t156.60; ~c! t2512.87;~d! t3519.20.
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intermittency phenomena can be regarded as erratic ju
from one to another of such configurations. The situat
may be more complex, including situations where multip
jumps among differenttn lag configurations may occu
within the same burst.

In order to better visualize what is happening, we co
pare the dynamics of system~1! inside and outside the inter
mittent bursts. In Fig. 4~a! we report a snapshot of the dy
namical evolution ofD0 for «50.13 around the occurrenc
of an intermittent burst. We then selected two different te
poral regions@denoted by arrows in Fig. 4~a!#, namely a
region inside and one outside the burst. The correspon
portions of the chaotic trajectory of system~1! can be visu-
alized in the subspaces (x1 ,y1) and (x2 ,y2) @Fig. 4~b! within
the burst, and Fig. 4~c! outside the burst#. The two trajectory
portions have been selected so as to contain the same nu
of oscillations~around 40!, in order to qualitatively highlight
the relative differences between the two cases. While out
the burst the trajectory is spread within the chaotic attrac
@Fig. 4~c!#, inside the burst one can clearly appreciate

FIG. 4. ~a! Temporal evolution ofD0 during the occurrence o
an intermittent burst («50.13). ~b! and~c!: projections of the por-
tion of the chaotic trajectories of the two systems onto the co
sponding (x,y) planes within~b! and outside~c! the intermittent
burst. The considered portions of the dynamical evolution~done by
7500 points, corresponding to about 40 oscillations! are designed
with arrows in~a!.
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multibranch structure closely visited by the chaotic traje
tory, revealing proximity to a period 2 orbit.

Finally, let us discuss how the function~2! can provide a
way ~alternative with respect to the study of the Liapun
spectrum! for tracing the global scenario of transitions t
ward synchronized states occurring in system~1!. To this
purpose we consider the valuessn(«)[S2(tn(«)) of the
different local minima ofS2(t), and we report them as func
tions of « in Fig. 5. Whiles0 is a monotonically decreasin
function of «, all the othersn nÞ0 increase together with
the coupling strength. At«5«LS.0.145, s0 vanishes, thus
indicating that the system selects a unique lag time in
synchronous evolution. Therefore«LS can be taken as the
transition point for perfect lag synchronization. Another im
portant feature evident from Fig. 5 is that allsn converge to
the same value at«5«PS.0.036. Surprisingly,«PS is the
transition point for system~1! from a nonsynchronized stat
toward perfect phase synchronization. Both PS and ILS
gimes are characterized by a nonzeros0 and by different
values ofsn nÞ0, thus reflecting the coexistence of man
lag configurations.

The values of«PS and «LS extracted in Fig. 5 coincide
with the transition points individuated in@3# by studying the
variations of the Liapunov spectrum. More precisely,«PS
coincides with the point where one of the zero Liapun
exponents in the spectrum becomes negative, and«LS with
the point where the second positive Liapunov exponent
comes negative. The conclusion is that the study of the s
larity function and of the behavior of its local minima pro
vides an alternative way to trace the subsequent transition
system~1! toward synchronized states.
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FIG. 5. sn ~see text for definition! vs the coupling strength« for
n50 ~triangles up!, n51 ~circles!, n52 ~squares!, n53 ~triangles
down!, and n54 ~diamonds!. The parameter ranges for PS, ILS
and LS are indicated in the upper part of the figure.
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