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We characterize the synchronization of two nonidentical spatially extended fields ruled by one-
dimensional Complex Ginzburg–Landau equations, in the two regimes of phase and amplitude
turbulence. If two fields display the same dynamical regime, the coupling induces a transition
to a completely synchronized state. When, instead, the two fields are in different dynamical
regimes, the transition to complete synchronization is mediated by defect synchronization. In
the former case, the synchronized manifold is dynamically equivalent to that of the unsynchro-
nized systems, while in the latter case the synchronized state substantially differs from the
unsynchronized one, and it is mainly dictated by the synchronization process of the space-time
defects.

1. Introduction

Synchronization of concentrated chaotic systems
has been the subject of a large body of recent in-
vestigations. It has been demonstrated that cou-
pled chaotic concentrated systems may display four
levels of synchronization, namely complete syn-
chronization (CS) [Pecora & Carroll, 1990], phase
synchronization (PS) [Rosenblum et al., 1996], lag
synchronization (LS) [Rosenblum et al., 1997], and
generalized synchronization (GS) [Rulkov et al.,
1995]. In CS, a perfect hooking of the chaotic
trajectories of two systems is achieved by means
of a coupling signal, in such a way that they re-
main in step with each other in the course of time.
This mechanism has been shown to occur when two

identical chaotic systems are coupled, provided that
all the sub-Liapunov exponents of the subsystem
to be synchronized are negative [Pecora & Carroll,
1990].

A coupling of nonidentical systems can induce a
regime (PS), wherein a locking of the phases is pro-
duced, while the amplitudes remain uncorrelated
[Rosenblum et al., 1996]. The transition to such a
state has been characterized for the Rössler attrac-
tor [Rosenblum et al., 1997; Rosa et al., 1998].

LS is an intermediate step between PS and CS.
In this case, the two signals lock their phases and
amplitudes, but with a time lag [Rosenblum et al.,
1997].

The generic scenario for symmetrically coupled
nonidentical concentrated systems yields successive
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transitions between PS, LS and CS as the coupling
parameter is increased [Rosenblum et al., 1997].

Finally, GS implies the hooking of the output
of one system to a given function of the output of
the other [Rulkov et al., 1995].

The natural continuation of these pioneer-
ing works has been to investigate synchronization
phenomena in spatially extended systems. Due to
the great variety and different classes of extended
dynamical systems, a general study would be im-
practicable, while some information on the main
dynamical mechanisms ruling synchronization can
be achieved from the study of particular examples.
Often, a system close to a bifurcation point is de-
scribed by means of a normal form equation. As an
example, we consider the normal form in the vicin-
ity of an oscillatory instability. In such a condition,
a general description of the oscillatory medium is
given by the Complex Ginzburg–Landau Equation
(CGLE).

Another alternative approach for studying
space-time systems consists in connecting a set of
concentrated chaotic systems by means of a given
coupling (e.g. diffusive coupling) between the in-
dividuals constituting the set. Space-time chaos
synchronization has been studied for populations of
coupled dynamical systems [Pikovsky et al., 1996],
for systems formed by globally coupled Hamiltonian
or bistable elements [Zanette, 1997], and for neural
networks [Zanette & Mikhailov, 1998].

Coming back to continuous systems, the emer-
gence of synchronized states has been investigated
for one-dimensional chemical models [Parmananda,
1997], and for two fields obeying identical one-
dimensional Complex Ginzburg–Landau Equations
[Amengual et al., 1997]. In particular, Amengual
et al. [1997] report another type of synchroniza-
tion, called generalized synchronization, consisting
of the hooking of the amplitude of one system
to a given function of the amplitude of the other
system.

A natural question arises: Is it possible to re-
alize all different kinds of synchronization features
in the case of a coupling between nonidentical ex-
tended systems? This problem has been only re-
cently addressed [Boccaletti et al., 1999; Chaté
et al., 1999]. In this paper, we first summarize
the results already reported by us in [Boccaletti
et al., 1999], and then present further analysis and
a detailed discussion for the synchronization states
emerging in the particular case of large parameter
mismatches.

2. The Model System

For the sake of exemplification, we will refer to
a pair of one-dimensional fields A1,2(x, t), each
one evolving in space and time via the Complex
Ginzburg–Landau Equation (CGL). Such equation
describes the dynamical behavior close to the emer-
gence of an “extended” Hopf bifurcation. It has
been used to model many different situations in
laser physics, fluid dynamics, chemical turbulence,
and also to model a chain of coupled oscillators.

The system under study is

Ȧ1,2 = A1,2 + (1 + iα1,2)∂
2
xA1,2

− (1 + iβ1,2)|A1,2|
2A1,2 + ε(A2,1 −A1,2) ,

(1)

where A1,2(x, t) ≡ ρ1,2(x, t)e
(iψ1,2(x,t)) are two com-

plex fields of amplitudes ρ1,2 and phases ψ1,2 re-
spectively, ∂2xA1,2 stays for the second derivative of
A1,2 with respect to the space variable 0 ≤ x ≤ L,
L represents the system size, dot denotes temporal
derivative, α1,2, β1,2 are suitable real parameters,
and ε is the strength of the symmetric coupling.

For ε = 0, Eq. (1) describes the evolution
of two uncoupled fields A1,2, each one obeying
a separate CGL. It is a known result that such
an equation has plane wave solutions of the form
Aq =

√

1− q2 ei(qx+ωt) (−1 ≤ q ≤ 1 is the
wavenumber in the Fourier space, and ω = −β −
(α − β)q2). In the parameter region αβ > −1
and outside the range −qc ≤ q ≤ qc (qc =
√

(1 + αβ/2(1 + β2) + 1 + αβ)), these solutions
become unstable through the so-called Eckhaus in-
stability. qc vanishes as soon as the product αβ
approaches −1, thus meaning that all plane waves
become unstable when crossing below the αβ =
−1 line in the parameter space, which is called
Benjamin–Feir line. Above this line, three different
turbulent states can be identified, namely phase tur-
bulence (PT), amplitude or defect turbulence (AT),
and bichaos. We will specialize our analysis on PT
and AT, since they have received special attention
in the scientific community [Montagne et al., 1997;
Torcini, 1997].

The PT regime is obtained just above the
αβ = −1 line, and is characterized by a chaotic
evolution for the phase ψ, whereas the amplitude
ρ remains always bounded away from zero. By go-
ing further away from the Benjamin–Feir line, the
system experiences a transition toward AT. In this
new regime the amplitude dynamics becomes dom-
inant, implying the occurrence of large amplitude
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variations which can occasionally drive ρ to zero,
thus giving rise to space-time defects.

The effect of ε 6= 0 in Eq. (1) was studied by
Boccaletti et al. [1999]. We herewith summarize
the main results. It is important to remark that
we deal here with nonidentical systems (α1 6= α2,
β1 6= β2), so that two different cases must be taken
into account, namely the small and large parameter
mismatch cases. For small parameter mismatches,
the systems are prepared in the same dynamical
regime, e.g. both in PT or in AT. On the contrary,
for large parameter mismatches, α1, α2, β1, β2 are
chosen so that one system is in the PT regime, while
the other is in the AT regime.

3. Small Parameter Mismatch

3.1. AT AT case

We first consider small parameter mismatches, and
select α1 = α2 = 2.1, β1 = −1.25, β2 = −1.2 in
Eq. (1) (both fields in AT). Figure 1 reports the
space-time plots of ρ1 (a, d, g), ρ2 (b, e, h)|ρ1 −

ρ2|(c, f, l) for ε = 0.05 (a, b, c), ε = 0.09 (d, e, f)
and ε = 0.15 (g, h, l). In all cases, the patterns come
out from a codification into a 256 gray-level scale.
The dark lines in (a, b, d, e, g, h) trace the positions
of the space-time defects. The simulations of Eq. (1)
have been performed with L = 64, periodic bound-
ary conditions and random initial conditions. The
numerical code is based on a semi-implicit scheme in
time with finite differences in space. The precision
of the code is first-order in time and second-order in
space. A space discretization δx = 0.125 (512 mesh
points) and an integration time step δt = 0.001 have
been used. From Fig. 1 one can infer the existence
of a gradual passage from a nonsynchronized AT
state (a, b, c) to a completely synchronized AT state
(g, h, l), through an intermediate state (d, e, f)
wherein partial synchronization is built. Notice
that here the synchronization of the global struc-
ture implies the synchronization of each localized
space-time defect.

At variance with what happens in concentrated
systems, here the transition from nonsynchronized
to synchronized states is not associated with the
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Fig. 1. AT–AT Case: Space (horizontal)-time(vertical) plots of (a, d, g) ρ1, (b, e, h) ρ2 and (c, f, l) −|ρ1−ρ2|. α1 = α2 = 2.1,
β1 = −1.25, β2 = −1.2. Time increases downwards from 300 to 600 (u.t.). The first 300 time units (not plotted) corresponds
to the transient before the system reaches two independent chaotic (AT) states starting from two independent random initial
conditions. (a, b, c) correspond to ε = 0.05, (d, e, f) to ε = 0.09, (g, h, l) to ε = 0.15. In (c, f, l) the white regions correspond
to |ρ1 − ρ2| = 0, that indicates complete synchronization.
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Fig. 2. AT–AT Case: Indicators of modulus (circles) and
phase (squares) synchronization. Space-time average of the
difference between amplitudes and phases of the two fields
versus the coupling ε (see definitions in the text). Same pa-
rameters as in the caption of Fig. 1. The left (right) vertical
axis reports the 〈∆ρ〉 (〈∆ψ〉) scale.

presence of an intermediate PS regime. To quanti-
tatively show this feature, we report in Fig. 2 the
measurements of 〈∆ρ〉 = 〈|ρ1 − ρ2|〉 and 〈∆ψ〉 =
〈|ψ1 − ψ2|〉 as functions of ε (〈· · · 〉 stays for an av-
eraging in both time and space). From Fig. 2 one
infers that 〈∆ρ〉(ε) and 〈∆ψ〉(ε) gradually decay at
once. The scenario is therefore consistent with what
is already observed for small parameter mismatches
in chemical models [Parmananda, 1997].

3.2. PT PT case

The scenario does not qualitatively change when
we consider the coupling between two initial PT
states. Let us choose α1 = α2 = 2.1, β1 = −0.75,
β2 = −0.83 in Eq. (1) (both fields in PT), and,
by gradually increasing ε, perform simulations with
the same system size, boundary conditions and ini-
tial conditions as above. The results are shown in
Fig. 3, where we report ρ1 (a and d) , ρ2 (b and
e) |ρ1 − ρ2| (c and f) for two values of the coupling
parameter ε = 0.02 (a, c, b) and ε = 0.04 (d, e, f).
Here again, the system passes from a unsynchro-
nized PT state at small couplings to a completely
synchronized PT state. In this case, since defects
are not present, the synchronization is global and it
emerges for a smaller coupling strength.

4. Large Parameter Mismatch

A much more interesting scenario has been observed
in the case of large parameter mismatches. Let
us select in Eq. (1) α1 = α2 = 2.1, β1 = −1.2,
β2 = −0.83. This implies that the field A1 is evolv-
ing in AT, while the field A2 is evolving in PT.
In Fig. 4 we report the patterns arising from the
space-time representations of ρ1 (a, d, g), ρ2 (b, e,
h) |ρ1 − ρ2| (c, f, l) for ε = 0.03 (a, b, c), ε = 0.14
(d, e, f) and ε = 0.19 (g, h, l).

At small coupling strengths, the two systems
do not synchronize, and they hold in their respec-
tive regimes [Figs. 4(a)–4(c)]. At large coupling
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Fig. 3. PT–PT Case: Space (horizontal)-time(vertical) plots of (a, d) ρ1, (b, e) ρ2, and (c, f) −|ρ1 − ρ2|. α1 = α2 = 2.1,
β1 = −0.75, β2 = −0.83. Other parameters, initial conditions and boundary conditions as in Fig. 1. Same stipulations as in
Fig. 1. (a, b, c) correspond to ε = 0.02, (d, e, f) to ε = 0.04.
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Fig. 4. AT–PT Case: Space (horizontal)-time(vertical) plots of (a, d, g) ρ1, (b, e, h) ρ2, and (c, f, l) −|ρ1−ρ2|. α1 = α2 = 2.1,
β1 = −1.2, β2 = −0.83. Other parameters, initial conditions and boundary conditions as in Figs. 1 and 3. Same stipulations
as in Figs. 1 and 3. (a, b, c) correspond to ε = 0.03, (d, e, f) to ε = 0.14, (g, h, l) to ε = 0.19.

strengths, the two systems reach a CS regime, which
is realized in PT [Figs. 4(g)–4(l)]. This implies that
the final synchronized state is space-time chaotic,
but the synchronization process is here associated
with the suppression of all defects, which were
initially present in the field A1.

In other words, since CS implies both ampli-
tude and phase synchronization, the small ampli-
tude oscillations of A2 attract the synchronized set,
and, as a result, the defects originally existing in
the dynamics of A1 are suppressed.

However, the most interesting regime comes out
to be the intermediate one [Figs. 4(d)–4(f)], wherein
the two systems organize so as to produce a partial
synchronization, which is realized in an AT regime.

The above-said is further confirmed by the plots
of 〈∆ρ〉 and 〈∆ψ〉 as functions of ε (see Fig. 5). At
variance with Fig. 2, a quite wide range of ε can be
isolated (0.1 ≤ ε ≤ 0.16), wherein amplitude syn-
chronization is not yet reached [see Fig. 4(f)], while
the average phase distance converges to a constant
value. In this situation, one expects that the am-
plitudes of the two fields can be uncorrelated, while
the phases are already strongly coupled.
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Fig. 5. AT–PT Case: Indicators of modulus (circles) and
phase (squares) synchronization (same stipulations as in
Fig. 2). Parameters, initial and boundary conditions as in the
caption of Fig. 4. Note the phase plateau for 0.1 ≤ ε ≤ 0.16.

An heuristic argument for such a phenomenon
can be offered. The natural evolution of A1 is in AT,
that is showing the presence of many space-time
defects. As already discussed, defects are localized
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points wherein the amplitude of the field vanishes.
As a consequence, in each one of them, the phase
ψ1 shows a singularity.

One can now imagine that AT allows flexibility
in the dynamics of the amplitude, but the variations
of the phase are not flexible, since they are substan-
tially determined by the local amplitude variations.
On the contrary, A2 would naturally evolve in PT,
that is with a dominant phase dynamics. The phase
ψ2 is not naturally bounded, and its oscillations are
allowed by the evolution of the uncoupled systems.
For 0.1 ≤ ε ≤ 0.16, a strong correlation is built in
the phases. There, ψ1 and ψ2 converge in average
(apart from a constant). This is possible only when
ψ2 locally adjusts on ψ1. The relevant consequence
of this process is the introduction of many defects
in the field A2, which would be instead free of them
in the uncoupled state.

The conclusion is that, while for small param-
eter mismatches one observes a passage from un-
synchronized to completely synchronized states, for
large parameter mismatches, this transition is me-
diated by a state which is similar to what was called
phase synchronization for concentrated systems. In
the former case, the resulting space-time synchro-
nized state is not qualitatively different from the
unsynchronized one, in the latter case, the state of
the system resulting from the synchronization pro-
cess may substantially differ from that present with
no coupling, and it is mainly dictated by the syn-
chronization process of the space-time defects. The
above body of results have been presented in [Boc-
caletti et al., 1999]. In the following we will analyze
more deeply the features of this latter case, and try
to isolate the main spatial and temporal compo-
nents of it.

5. Quantitative Indicators
for Synchronization

The first step of our analysis is to quantitatively
confirm the above qualitative picture for the large
parameter mismatch case. For this purpose we
measure the total number of phase defects Nd as
a function of ε for α1 = α2 = 2.1, β1 = −1.2,
β2 = −0.83. Figure 6 reports Nd versus ε for
A1 (circles) and A2 (squares). At small coupling
strengths (0 < ε < 0.1) the two fields evolve in
an unsynchronized manner. At intermediate ε val-
ues (0.1 < ε < 0.16) a process of defect injection
into the field A2 up to the point (ε ' 0.16) is
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Fig. 6. AT–PT Case: Total number of phase defects Nd as
a function of the coupling strength ε for A1 (circles) and A2
(squares). Same parameters, initial and boundary conditions
as in the caption of Fig. 4.

evident where both fields show the same defect
number. Notice that this ε range coincides exactly
with the phase plateau in Fig. 5. Finally, when all
defects have been synchronized, the system begins
to reach a CS state, which is realized in PT, imply-
ing the absence of phase defects in both fields (as it
is evident from Fig. 6).

Up to now we have considered only global in-
dicators, that is averages on both space and time,
so a natural question emerges: Is this synchroniza-
tion phenomenon a temporal phenomenon, a spa-
tial phenomenon or a spatiotemporal phenomenon?
To answer this question we have to analyze
separately the space and time effects entering the
process of pattern synchronization. Therefore, we
go in the Fourier space (x → k, t → Ω) and we
consider Ã1,2(k, Ω), that is the Fourier transforms
of the fields A1,2(x, t). In this new space, we can
separately investigate time and space effects. For
each ε value, let us consider the following mean
quantities

〈k〉1,2(ε)≡
1

N1,2

∫ +km

−km

∫ +Ωm

−Ωm
k|Ã1,2(k, Ω)|2dkdΩ ,

〈Ω〉1,2(ε)≡
1

N1,2

∫ +km

−km

∫ +Ωm

−Ωm
Ω|Ã1,2(k, Ω)|2dkdΩ ,

(2)

where Ωm ≡ (Nπ/tt), km ≡ (Nπ/L), N is the total
number of discrete data considered for the Fourier
transform, tt is the total running time of the sim-
ulation, and the normalization constants N1,2 are
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Fig. 7. AT–PT Case: 〈Ω〉1 (squares) and 〈Ω〉2 (circles) as
functions of ε (see text for definitions). α1 = α2 = 2.1,
β1 = −1.2, β2 = −0.83. Other parameters, initial and bound-
ary conditions as in the caption of Fig. 4.

defined by

N1,2 ≡

∫ +km

−km

∫ +Ωm

−Ωm
|Ã1,2(k, Ω)|2dkdΩ . (3)

Notice that both Ωm and km depend on the par-
ticular discretization used in the simulations. The
results for the large parameter mismatch case show
that 〈k〉1,2(ε) ' 0 independently on ε, as one should
have expected considering the fact that turbulent
regimes in the CGL come out from large wavelength
instabilities. On the contrary, the quantities 〈Ω〉1,2
are always bounded away from zero and strongly
depend on the coupling strength. Figure 7 reports
〈Ω〉1 (squares) and 〈Ω〉2 (circles) as a function of ε
for α1 = α2 = 2.1, β1 = −1.2, β2 = −0.83. While
the field A1 appears to be robust in the variation of
its temporal frequency, the field A2 shows a large
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Fig. 8. AT–PT Case: (a, c) 〈|ρ1 − ρ2|〉x and (b, d) 〈|ψ1 − ψ2|〉x versus time (see text for definitions) for (a, b) ε = 0.14 and
(c, d) ε = 0.17. α1 = α2 = 2.1, β1 = −1.2, β2 = −0.83. Other parameters, initial and boundary conditions as in the caption
of Fig. 4.
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variation in its frequency as a function of the cou-
pling, thus confirming our heuristic argument about
the flexibility of A2 during the synchronization pro-
cess. Figure 7 also indicates that the whole syn-
chronization scenario should be regarded as mainly
dictated by temporal effects.

This suggests to consider only spatial averages
for |ρ1 − ρ2| and |ψ1 − ψ2|, as opposed to what we
have considered in Figs. 2 and 5, and to investigate
the temporal evolution of such new average differ-
ences at different ε values.

Let us then define 〈|ρ1−ρ2|〉x(t), 〈|ψ1−ψ2|〉x(t)
the spatial averages of the differences in amplitudes
and phases of the two fields (now 〈· · · 〉x indicates
an averaging only along the spatial variable x). In
Fig. 8 we show how 〈|ρ1 − ρ2|〉x(t) (a and c) and
〈|ψ1−ψ2|〉x(t) (b and d) evolve in time for ε = 0.14
(a and b) and ε = 0.17 (c and d), that is immedi-
ately before and after the point ε ' 0.16 for which
both fields show the same defect number Nd (see
Fig. 6). From Fig. 8 one can clearly appreciate
that the transition toward a completely synchro-
nized state (occurring for ε > 0.16) corresponds to
the appearance of a regular periodic behavior for
the spatial average of the difference in phase. Cor-
respondingly, the fluctuations of 〈|ρ1 − ρ2|〉x(t) are
strongly washed out, again as one should have ex-
pected by considering that the system passes from
an amplitude (ε < 0.16) to a phase (ε > 0.16) tur-
bulent state, and that, in this latter state the dom-
inant dynamics is the phase dynamics. It is impor-
tant to remark that, while Fig. 8 depicts the behav-
ior of the system close to the transition, from Fig. 5
one can appreciate that the spatiotemporal aver-
age 〈∆ψ〉 further decreases for increasing ε > 0.17.
Therefore, a question arises on how the temporal
behavior of 〈|ψ1−ψ2|〉x(t) accompanies the decreas-
ing process of 〈∆ψ〉, and on whether the amplitude
fluctuations of 〈|ψ1 − ψ2|〉x(t) decrease, eventually
vanishing at very large ε values. The results of this
investigation will be reported elsewhere.

6. Conclusions

We have discussed the emergence of synchronization
features in a pair of coupled nonidentical spatially
extended pattern forming systems, with reference to
the one-dimensional Ginzburg–Landau Equation,
that is referring to a general case of an extended
system undergoing an Hopf bifurcation. We have

distinguished two main cases, namely the small and
large parameter mismatches.

In the small parameter mismatch case, the two
uncoupled systems give rise to the same qualitative
space-time behavior (they are both either in phase
or in amplitude turbulence). In this situation, the
coupling induces a gradual transition toward a com-
pletely synchronized state, which is realized in the
same dynamical regime recovered by the uncoupled
systems.

In the large parameter mismatch case, the two
systems are prepared with no coupling so that one
of them realizes a phase turbulent state, while the
other lies within amplitude turbulence. In such a
case, high coupling strengths induce a complete syn-
chronized state, which is realized in phase turbu-
lence, that is implying the suppression of all phase
defects originally present in the amplitude turbu-
lent field. For intermediate coupling strengths,
the systems realize partial synchronization features,
and they both give rise to an amplitude turbulent
regime. A quantitative analysis of this last case
shows that such a regime corresponds to a phase
locking, while amplitudes come out to be uncor-
related. A relevant consequence is the injection of
many phase defects in the field which was originally
free of them. The introduction of suitable indica-
tors for separately analyzing space and time effects
allows to highlight that the transition between the
two above synchronization states is associated with
the emergence of a periodic temporal behavior for
the space average of the difference of the two phases.
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