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Pattern dynamics in an annular CO2 laser
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Abstract. Competition among modes in an annular CO2 laser has been experimentally and numerically
analyzed. During the coexistence of different patterns, each of them resulting from the interaction of two
transverse modes with opposite angular momentum, chaos has been experimentally detected. A numerical
model, derived from the Maxwell-Bloch equations and including symmetry breaking terms, enables the
interpretation of the main experimental features.

PACS. 42.55.-f Lasers – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos
and complexity, and optical spatio-temporal dynamics – 42.65.-k Nonlinear optics

1 Introduction

Wide aperture lasers provide good experimental systems
to investigate pattern formation and spatio-temporal dy-
namics. In this type of systems, the laser action occurs
simultaneously for a considerable number of transverse
modes, characterized by large values of the radial and az-
imuthal indices [1]. Their coexistence leads in most cases
to patterns showing spatio-temporal behavior difficult to
be analyzed [2–4].

From a theoretical point of view, symmetry arguments
can simplify the approach to the problem of formation and
dynamics of patterns. The equations describing a physi-
cal system (e.g. the Maxwell-Bloch equations in lasers,
or the Navier-Stokes equation in fluids) can be reduced to
model equations, such as the complex Swift-Hohenberg [5],
Ginzburg-Landau [6] or Kuramoto-Sivashinsky ones [7].
The application of the bifurcation theory to these model
equations leads to qualitative solutions helping in the in-
terpretation of the experimental results [8–10]. In this con-
text, the role of symmetries has been proved to be essen-
tial in the understanding of the phenomena. However, not
only the global symmetry, but also the small asymmetries
of the real systems have to be taken into account to re-
produce the experimentally observed dynamics, as it can
be seen for laser systems in [4,10–12].

Previous works performed using CO2 lasers emitting
annularly symmetric intensity distributions [4,12], have
studied the role of infinitesimal symmetry imperfections
of the system on the observed spatio-temporal dynam-
ics. On the one hand, Huyet et al. [4] gave evidence of
their influence on the dynamics of structures with high
azimuthal index. On the other hand, Labate et al. [12]
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analyzed the case of patterns with small azimuthal index
near threshold, whose temporal behavior was theoretically
explained as a Takens-Bogdanov bifurcation. In these two
references, transitions are reported between different pat-
terns, as well as temporal oscillations of the intensity in
some spatial structures: periodic oscillations in [4], and
aperiodic fluctuations determined by noise in [12].

Our study has been centered on a wide aperture CO2

laser with annular symmetry, obtained by using a toroidal
mirror as one of the cavity mirrors. This annular config-
uration with toroidal mirror provides a stable resonator
that enables laser action only for those families of patterns
preserving this symmetry, among all the modes present in
a wide aperture laser.

Acting on the cavity detuning while operating the laser
near the threshold region, we have experimentally studied
the competition among few transverse modes of the op-
tical cavity. This competition has been shown to lead to
oscillatory or chaotic behavior. Experimental evidence of
oscillatory or chaotic alternation of different transverse
modes in an active optical system with large aperture had
been already offered with respect to a photorefractive os-
cillator [13]. However, ours is the first controllable pattern
alternation shown in a CO2 laser. In order to compare with
numerical results, we have developed (departing from the
Maxwell-Bloch equations and taking into account break-
ing symmetry terms) the simplest model allowing the in-
terpretation of nonlinear interactions between two differ-
ent annular patterns. The derivation of the model includes
new coupling terms accounting for the interaction of pat-
terns with different angular momenta. The integration of
the resulting equations reproduces qualitatively most of
the experimentally observed dynamics.

The paper is organized as follows: in Section 2, the ex-
perimental setup and results are shown. Section 3 includes
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Fig. 1. Outline of the experimental setup. From right to left:
M1 = toroidal mirror, W = window transparent to the infrared
laser emission, M2 = outcoupler, PZ = piezoelectric transla-
tor, PM = powermeter, BS = beam splitter, and FD = fast
detector.

numerical results, together with the derivation of the equa-
tions used in the numerical integration. Finally, Section 4
provides a general review on the results presented, and the
conclusions.

2 Experimental setup and results

The experimental setup consists in a CO2 laser with a
Fabry-Perot configuration. An outline of the experimental
device is sketched in Figure 1.

The 87-cm Fabry-Perot cavity consists of a spherical
ZnSe outcoupler (38 mm diameter, 3000 mm radius of
curvature, 90% reflection), and an annular copper mirror
(1150 mm radius of curvature, 90% reflection) configured
by the internal part of a torus, whose internal and external
radii are 8 mm and 26 mm, respectively. The cavity length
(the distance between these two mirrors) can be slightly
modified by acting on a piezoelectric translator sustaining
the outcoupler.

The active medium (4.5% CO2, 82% He, 13.5% N2) is
pumped by means of a high-voltage DC discharge. This
discharge is produced in a cylindrical Pyrex tube (500 mm
length, 35.4 mm internal diameter) by means of two elec-
trodes that preserve the annular symmetry of the system.
All the experiences have been realized for discharge cur-
rent values between 17 and 18 mA, at an average pressure
of 23 mbar (in these conditions, the threshold current is
between 15 and 16 mA).

By means of a HgxCd1−xTe fast detector, we monitor
the temporal evolution of the laser intensity in a given
point of the pattern. The average output power is mea-
sured by means of a powermeter, and a CCD camera col-
lects the image of the laser mode formed on a thermal
image plate.

In this paper, we will focus on the interaction between
two or more laser modes, that can be single-ring and also
double-ring patterns. In a previous work performed with
the same experimental configuration [14], we reported on
the single-ring structures, whose number of lobes is always
even, ranging from 22 to 36. In the present work, by means
of a careful adjustment of the laser parameters, we also ob-
tain laser action on double-ring patterns. These patterns
set in only when the optical cavity is perfectly aligned
(a small tilt of the order of 10−4 radians is sufficient to

prevent their appearance) and the laser gain (which de-
pends on the discharge current and cooling temperature
of the circulating water) is optimized with respect to the
gas mixture average pressure. These structures can be ob-
served either in a continuous and in a discrete form con-
sisting of 34 lobes in both the external and internal rings
(both of them with the same azimuthal index).

All these patterns, except in regimes of competition
between them, show two different dynamical regimes:
namely, an oscillating regime (with frequency ranging
from 20 to 200 kHz), and a stable non oscillating regime.
In some rare cases, they can also display a low-frequency
irregular regime (frequency ≈ 70 Hz).

In our experimental study, the cavity length has been
used as a control parameter, enabling the transitions be-
tween different structures. Indeed, variations of the cavity
length result into variations of the cavity detuning, and
the resonance conditions for the different modes can be
sequentially obtained. It is also possible to select a regime
where two structures coexist, giving rise to diverse dy-
namical behaviors: alternancy between a regular oscilla-
tion and a non-oscillating regime, a single-frequency oscil-
lation displaying an amplitude modulation, the alternancy
between two oscillating regimes with different frequencies,
and also windows of irregular temporal behavior. The pas-
sage from regular to irregular oscillating regimes can be
visualized by means of a Poincaré section, performed by
plotting the intensity minima of the temporal evolution in
a given point of the pattern.

Figure 2 shows a situation where competition between
more than two single-ring patterns arises. In Figure 2a,
a period-1 regime can be seen around t = 0.025 s, sand-
wiched between irregular regimes wherein subharmonics of
the fundamental frequency (≈ 21 kHz) appear. Looking at
the power spectrum in these irregular regimes (Fig. 2b),
the presence of the fundamental frequency and its sub-
harmonics can be clearly noticed. In Figures 2c and 2d,
we report two examples of irregular temporal oscillations.
The transition from a period-one to an irregular oscillation
can be distinctly appreciated in Figure 2c.

The competition between a single- and a double-ring
pattern can be studied by changing the detuning start-
ing from the optimal alignment conditions for the two-
ring pattern. This double-ring structure has been usually
found departing from a single annulus of 30 or 32 lobes.
An increase of the cavity detuning yields the two-ring
pattern, and eventually the subsequent appearance of the
most stable single annulus of 24 lobes, usually related to
higher power values. The detuning variations involved in
this process are of the order of 50 MHz (the free spectral
range of the cavity is 170 MHz). In Figures 3a and 3b
we show the 24-lobe and the double-ring patterns, respec-
tively. During the transitions between them, there is a ma-
jor radial variation in the pattern shape (there is a change
in the number of annulus of the structure, i.e., in the ra-
dial index). The observation of irregular temporal behav-
ior in this case confirms that this feature is related to the
competition regime between different laser modes, inde-
pendently of their radial indices. In Figure 4, we report
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Fig. 2. Chaotic behavior in the interaction between more than two single-ring patterns. (a) Minima of the intensity oscillations.
It can be noticed the presence of irregular regimes. (b) Power spectrum showing the fundamental frequency (f ≈ 21 kHz)
together with different subharmonics. (c) Transitions from a period-1 to an irregular regime. (d) Chaotic oscillations.

(a) (b)

Fig. 3. (a) 24-lobe pattern with a slight continuous contribution. (b) Image of the double-ring pattern with 34 lobes in both
annulus (the diameters of the internal and external rings are respectively 20 mm and 23.5 mm).
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Fig. 4. Transition to chaos during the coexistence of the single- and double-ring structures. (a) Period-doubling regime. (b)
Temporal representation of the intensity in a chaotic regime. (c) Stroboscopic record of the intensity, showing transitions between
period-doubling and a chaotic regime. (d) Power spectrum showing the fundamental frequency (f ≈ 53 kHz) together with the
subharmonics f/2 and f/3, as well as different combinations of them.

the temporal behavior occurring during the transition be-
tween the double-ring pattern and the 24-lobe single-ring
pattern. A clear period-doubling regime of the fundamen-
tal frequency f (about 53 kHz) is present in Figure 4a,
whereas Figure 4b gives an example of the strongly irreg-
ular behavior following that regime. A stroboscopic record
of the local intensity minima (Fig. 4c) shows clearly the
alternancy between these two regimes. The corresponding
power spectrum (Fig. 4d) contains not only the f/2 com-
ponent, but also the f/3 contribution and combinations
of them.

Finally, Figure 5a reports a non-uniform pattern, con-
sisting of a double ring with three reinforced regions. This
pattern displays highly irregular oscillations. In Figure 5b
we report the power spectrum of the laser intensity, show-
ing the fundamental frequency (f ≈ 38.8 kHz), its subhar-
monic f/5 and different combinations of them. Figure 5c
shows an alternation between regular and irregular oscil-
lations.

3 Numerical analysis

The main dynamical features of the experimentally ob-
served patterns can be captured by a simple model which
can be derived from the Maxwell-Bloch equations:

∂tE − iα∇2E = −kE + gP

∂tP = −γ⊥P + gEN

∂tN = −γ‖(N −N0)− g

2
(E∗P + P ∗E)

(1)

where ∂t stands for the partial derivative in time, ∇2 ≡
∂2
x+∂2

y is the Laplacian operator in the plane (x, y) trans-
verse to the direction of light propagation in the cavity;
E is the complex electromagnetic field, P is the complex
polarization, N is the real population inversion, and N0

is the value of the population inversion imposed by the
pump mechanism; g is the coupling coefficient, α = c2/2ω
(where c is the light speed in the vacuum, and ω is the
main frequency for the longitudinal resonance); k, γ⊥ and
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(a) (b)

(c)
Fig. 5. Temporal evolution in a non-uniform double-ring pattern: (a) image of the non-uniform double-annulus structure;
(b) power spectrum; (c) temporal evolution of the minima in an intensity-versus-time representation.

γ‖ are the decay rates for E,P and N , respectively. Equa-
tions (1) are obtained combining Maxwell equation for
the field with Bloch equations for the active material, by
filtering out a main longitudinal plane wave dependence
(of frequency ω) in the electromagnetic field as well as in
the polarization, and by considering the residual (secular)
time and space variations of E and P .

In the following, we will make two further reductions.
The first one consists in assuming our laser to behave as
a class B laser, that is to verify γ⊥ � γ‖, k. As a con-
sequence, the second equation of (1) can be adiabatically
eliminated (∂tP ≈ 0) and the resulting expression for the
polarization (P = gEN/γ⊥) can be substituted into the
first and the third of equations (1). The second reduction
comes out by considering that all experimental results here
reported correspond to pump values very close to the las-

ing threshold. In these conditions, one can safely assume
that the dynamics of the laser reduces to a standard class
A laser, that is ∂tN ≈ 0 [8]. Defining a saturation field
|Esat|2 = γ⊥γ‖/g

2, and supposing to work with values of
the field such that |E|2 � |Esat|2, we obtain

N =
1

1 +
|E|2
|Esat|2

N0. (2)

Plugging (2) and the expression for P into (1), one obtains
a single equation for E:

∂tE − iα∇2E = −kE +
g2

γ⊥

N0E(
1 +

|E|2
|Esat|2

)
(3)
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that can be further simplified by defining k1 = −k +
(g2/γ⊥)N0 and k2 = g2N0/(γ⊥|Esat|2), and by approxi-
mating

1(
1 +

|E|2
|Esat|2

) ' 1− |E|2
|Esat|2

·

The final expression is:

∂tE − iα∇2E = k1E − k2|E|2E. (4)

Now, we have to make an assumption for the transverse
dependence of the electromagnetic field. In the following,
we will consider

E(r, t) = P1(r)eiωt(z11(t)eim1θ + z12(t)e−im1θ)

+ P2(r)eiωt(z21(t)eim2θ + z22(t)e−im2θ) (5)

that is, we will consider the field as composed by the su-
perposition of two annular patterns: two ring structures
(P1(r) and P2(r)) each one corresponding to a different
angular momentum (m1 and m2). In equation (5), (r, θ)
are the variables of the polar representation of the trans-
verse plane, P1(r) and P2(r) are two different radial func-
tions, and z11(t), z12(t), z21(t), z22(t) are complex time de-
pendent variables. In practice, each one-ring structure is
seen as the combination of a rotating and a counterrotat-
ing wave, i.e., two transverse modes with opposite angular
momentum.

Introducing the expression (5) into the equation (4)
and collecting the terms with the same angular resonance,
the following set of complex equation is obtained:

ż11 = A1z11 −B1z11(|z11|2 + 2|z12|2)
−C1z11(|z21|2 + |z22|2)− C1z22z

∗
12z21

ż12 = A1z12 −B1z12(|z12|2 + 2|z11|2)
−C1z12(|z21|2 + |z22|2)− C1z22z

∗
11z21

ż21 = A2z21 −B2z21(|z21|2 + 2|z22|2)
−C2z21(|z11|2 + |z12|2)− C2z12z

∗
22z11

ż22 = A2z22 −B2z22(|z22|2 + 2|z21|2)
−C2z22(|z11|2 + |z12|2)− C2z12z

∗
21z11 (6)

where dots denote temporal derivatives, and the parame-
ters A,B and C are given by:

An = −iω + i
α

αn
(βn + γn − δn) + kn,

Bn =
µn
αn
,

Cn = 2
νn
αn
,

(7)

(n = 1, 2). In equations (7), the values of α, β, γ, δ, µ
and ν can be related to the fundamental parameters of

the Maxwell-Bloch equations as follows

αn =
∫ +∞

−∞
Pn(r)dr, βn =

∫ +∞

−∞

d2Pn(r)
dr2 dr,

γn =
∫ +∞

−∞

1
r

dPn(r)
dr

dr, δn = m2
n

∫ +∞

−∞

Pn(r)
r2 dr,

µn = k2

∫ +∞

−∞
P 3
n(r)dr, ν1 = k2

∫ +∞

−∞
P1(r)P 2

2 (r)dr,

ν2 = k2

∫ +∞

−∞
P2(r)P 2

1 (r)dr. (8)

An important outcome is that the parameters A are com-
plex, whereas B and C are real. The last step consists in
separating real and imaginary parts in the equations, by
writing zlj = ρljeiϕlj (l, j = 1, 2). The resulting equations
are

ρ̇11 = <(A1)ρ11 −B1ρ11(ρ2
11 + 2ρ2

12)− C1ρ11(ρ2
21 + ρ2

22)
−C1ρ22ρ12ρ21 cos∆,

ρ̇12 = <(A1)ρ12 −B1ρ12(ρ2
12 + 2ρ2

11)− C1ρ12(ρ2
21 + ρ2

22)
−C1ρ22ρ11ρ21 cos∆,

ρ̇21 = <(A2)ρ21 −B2ρ21(ρ2
21 + 2ρ2

22)− C2ρ21(ρ2
11 + ρ2

12)
−C2ρ12ρ22ρ11 cos∆,

ρ̇22 = <(A2)ρ22 −B2ρ22(ρ2
22 + 2ρ2

21)− C2ρ22(ρ2
11 + ρ2

12)
−C2ρ12ρ21ρ11 cos∆,

ϕ̇11 = =(A1)− C1(ρ22ρ12ρ21/ρ11) sin∆,
ϕ̇12 = =(A1)− C1(ρ22ρ11ρ21/ρ12) sin∆,
ϕ̇21 = =(A2) + C2(ρ12ρ22ρ11/ρ21) sin∆,
ϕ̇22 = =(A2) + C2(ρ12ρ21ρ11/ρ22) sin∆, (9)

where ∆ = ϕ21 + ϕ22 − ϕ11 − ϕ12.
Equations (9) describe the dynamics of the system

close to threshold in a perfect cylindrical symmetry. In re-
alistic experimental conditions, it is unavoidable the pres-
ence of small imperfections breaking such a symmetry. To
account for symmetry breaking mechanisms, we heuristi-
cally introduce a new term to be added in the right hand
side of equation (6), which now become

ż11 = A1z11 −B1z11(|z11|2 + 2|z12|2)

− C1z11(|z21|2 + |z22|2)− C1z22z
∗
12z21 + εz12

ż12 = A1z12 −B1z12(|z12|2 + 2|z11|2)

− C1z12(|z21|2 + |z22|2)− C1z22z
∗
11z21 + εz11

ż21 = A2z21 −B2z21(|z21|2 + 2|z22|2)

− C2z21(|z11|2 + |z12|2)− C2z12z
∗
22z11 + εz22

ż22 = A2z22 −B2z22(|z22|2 + 2|z21|2)

− C2z22(|z11|2 + |z12|2)− C2z12z
∗
21z11 + εz21 (10)
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ρ̇11 = <(A1)ρ11 −B1ρ11(ρ2
11 + 2ρ2

12)− C1ρ11(ρ2
21 + ρ2

22)− C1ρ22ρ12ρ21 cos∆+ ρερ12 cos(ϕε + ϕ12 − ϕ11)

ρ̇12 = <(A1)ρ12 −B1ρ12(ρ2
12 + 2ρ2

11)− C1ρ12(ρ2
21 + ρ2

22)− C1ρ22ρ11ρ21 cos∆+ ρερ11 cos(ϕε + ϕ11 − ϕ12)

ρ̇21 = <(A2)ρ21 −B2ρ21(ρ2
21 + 2ρ2

22)− C2ρ21(ρ2
11 + ρ2

12)− C2ρ12ρ22ρ11 cos∆+ ρερ22 cos(ϕε + ϕ22 − ϕ21)

ρ̇22 = <(A2)ρ22 −B2ρ22(ρ2
22 + 2ρ2

21)− C2ρ22(ρ2
11 + ρ2

12)− C2ρ12ρ21ρ11 cos∆+ ρερ21 cos(ϕε + ϕ21 − ϕ22)

ϕ̇11 = =(A1)− C1(ρ22ρ12ρ21/ρ11) sin∆+ (ρερ12/ρ11) sin(ϕε + ϕ12 − ϕ11)

ϕ̇12 = =(A1)− C1(ρ22ρ11ρ21/ρ12) sin∆+ (ρερ11/ρ12) sin(ϕε + ϕ11 − ϕ12)

ϕ̇21 = =(A2) + C2(ρ12ρ22ρ11/ρ21) sin∆+ (ρερ22/ρ21) sin(ϕε + ϕ22 − ϕ21)

ϕ̇22 = =(A2) + C2(ρ12ρ21ρ11/ρ22) sin∆+ (ρερ21/ρ22) sin(ϕε + ϕ21 − ϕ22) (11)

where ε = ρεeiϕε is a complex parameter. It is important
to remark that ε is the only parameter which cannot be
extracted directly from first principles, since it depends on
the particular laboratory conditions. The ε parameter cor-
responds to a breaking of the rotational symmetry, which,
however, preserves the reflectional symmetry. A similar
symmetry breaking term was considered in reference [12]
for studying the symmetry breaking effects in the dynam-
ics of a single-ring pattern.

Another important remark on the structure of equa-
tions (10) is that, while the terms multiplied by the pa-
rameters B1 and B2 represent the inter-mode coupling
and they were already introduced in references [4,10,12],
the new terms multiplied by the parameters C1 and C2

are the cross-mode contributions to the coupling. These
terms (here directly extracted from the Maxwell-Bloch
equations) are considered in order to describe the interac-
tion between modes having different angular momenta.

The new equations are

see equations (11) above.

It is interesting to analyze the obtained equations. First of
all, the parameters A can be interpreted as the effective
gain of each mode, whereas the parameters B represent
the interaction of the two components of the same radial
mode (the propagating and counterpropagating wave at
the same m). By comparing our results with the equations
obtained by Labate et al. [12], one can easily realize that
these last ones are the particular case of equations (11)
when C = 0. The terms which are multiplied by C (di-
rectly derived from the Maxwell-Bloch equations) describe
the interaction between different radial modes, and will be
taken different than zero in all our numerics.

Furthermore, the expressions for B and C are compli-
cated functions of the radial shape of the mode. There-
fore, if the selected modes show similar radial shapes (as
e.g. in the case of two modes with similar azimuthal in-
dex), the corresponding parameters will verify B1 ≈ B2

and C1 ≈ C2. As for ε, we have assumed the same values
reported in reference [12] (ρε = 0.5, ϕε = 1.059), which
conveniently describe a typical laboratory situation.

In the following, we have integrated equations (11) so
as to reproduce numerically the main features of the ex-
perimental results. Our first step was to reproduce the

case of a double ring structure with three reinforced re-
gions (see Fig. 5). To this purpose, we have selected the
following Gauss-Laguerre functions in equation (5)

P1(r) =
2√
π

(2r2)m1/2

√
p1!

(m1 + p1)!
e−r

2
,

P2(r) =
2√
π

(−2r2 +m2 + 1)(2r2)m2/2

√
p2!

(m2 + p2)!
e−r

2
,

(12)

with m1 = 14,m2 = 17, p1 = 0, p2 = 1, where index 1 (2)
corresponds to a 28-lobe single-ring (34-lobe double-ring)
pattern. In equations (12), m1,2 (p1,2) are the azimuthal
(radial) indices. The Gauss-Laguerre modes can be con-
sidered, indeed, a sensible basis onto which to project
the laser equations [17] (see also the review paper [1]).
In Figure 6 we report a simulation of system (11) with
Ar

1 = Ar
2 = 1.4489, Ai

1 = 1, Ai
2 = 4, B1 = 1.05, B2 =

0.15, C1 = C2 = 0.1, ρε = 0.5, ϕε = 1.059. The two func-
tions involved are represented in Figures 6a and 6b. The
competition between these two patterns gives rise to a
structure composed by two rings with three reinforced re-
gions (Fig. 6c), associated with an irregular temporal evo-
lution of the laser intensity (Fig. 6e), whose power spec-
trum (Fig. 6d) is dominated by two main frequencies with
all nonlinear combinations.

The case of an emerging single ring structure can be
also simulated in equations (11), by selecting

P1(r) =
2√
π

(2r2)m1/2

√
p1!

(m1 + p1)!
e−r

2
,

P2(r) =
2√
π

(2r2)m2/2

√
p2!

(m2 + p2)!
e−r

2
, (13)

where p1 = p2 = 0,m1 = 12,m2 = 14 (two single-ring pat-
terns with 24 and 28 lobes, respectively). The results are
reported in Figure 7 for the following parameter choice:
Ar

1 = Ar
2 = 1.4489, Ai

1 = 13, Ai
2 = 12, B1 = 0.5, B2 =

1, C1 = C2 = 0.1, ρε = 0.5, ϕε = 1.059. The resulting pat-
tern is shown in Figure 7a. Figure 7b reports the power
spectrum of the irregular temporal evolution of the laser
intensity.
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(a) (b) (c)

(d) (e)
Fig. 6. (a, b) Patterns corresponding to the functions described in equations (12); (c) pattern resulting from the competition of
the two functions via equations (11); (d) power spectrum of the temporal evolution of the laser intensity; (e) temporal evolution
of the laser intensity. The parameters used in equations (11) are Ar

1 = Ar
2 = 1.4489, Ai

1 = 1, Ai
2 = 4, B1 = 1.05, B2 = 0.15, C1 =

C2 = 0.1, ρε = 0.5, ϕε = 1.059.

(a) (b)
Fig. 7. (a) Pattern resulting from the competition of the two functions described in equations (13) via equations (11); (b) power
spectrum of the temporal evolution of the laser intensity. The parameters used in equations (11) are Ar

1 = Ar
2 = 1.4489, Ai

1 =
13, Ai

2 = 12, B1 = 0.5, B2 = 1, C1 = C2 = 0.1, ρε = 0.5, ϕε = 1.059.
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4 Conclusions

In this paper we have reported experimental evidence of
different dynamical regimes arising from the competition
of annular patterns in a CO2 laser. Chaotic regimes have
been observed during the coexistence of different patterns.
To reproduce qualitatively the experimentally detected
phenomena, we have derived a numerical model from the
Maxwell-Bloch equations, including symmetry breaking
terms and new cross-mode coupling terms, which enables
the interpretation of the main experimental features.
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