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Abstract

It is natural to extend the Grothendieck theorem on completeness, valid for locally convex
topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to
be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable
locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By
means of the continuous convergence structure on the dual of a topological group, we also state some
weaker forms of the Grothendieck theorem valid for the class of locally quasi-convex groups. Finally,
we prove that for the smaller class of nuclear groups, BB-reflexivity is equivalent to completeness.
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Introduction

The character groupΓG of an Abelian topological groupG is the set of all continuous
homomorphisms fromG into the torusT= {z ∈C: |z| = 1}, with pointwise multiplication.
Homomorphisms fromG into T are usually named characters. The dual group ofG is
defined asΓG, endowed with the compact-open topologyτco. It will be denoted byG∧,
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while G∧∧ := (G∧)∧ stands for the bidual. ByHom(G,T) and Hom(G,R) we denote
homomorphisms of the corresponding groups, whileCHom(G,T) (also calledΓG) and
CHom(G,R) denote continuous homomorphisms.

The canonical embeddingαG :G→ G∧∧ is defined byαG(g)(χ) = χ(g) for every
g ∈ G and everyχ ∈ G∧. If αG is a topological isomorphism, the topological groupG
is called reflexive (more precisely, Pontryagin reflexive). The Pontryagin–Van Kampen
theorem states that locally compact Abelian groups are reflexive. However the class of
reflexive groups includes other types of groups, like complete metrizable locally convex
spaces and reflexive topological vector spaces [22] (both classes considered as topological
groups, i.e., forgetting the linear structure), arbitrary products of reflexive groups [17],
complete metrizable nuclear groups [2], etc.

Our aim in this paper is to study completeness of a topological Abelian group and also
of its dual, and how these properties are related with reflexivity. Since completeness of
locally convex vector spaces is totally characterized by the Grothendieck theorem and its
corollaries, it seems natural to center the question for locally quasi-convex groups and
to start with the underlying group of a topological vector space. For such an objectE,
completeness is independent of the point of view, i.e., if it is looked at as a vector space or
as a group. However the character groupΓE is no longer a vector space, and is obviously
different from the set of continuous linear formsLE, which roughly speaking is the natural
dual of a vector space. Thus, if a theorem of Grothendieck-type is to be obtained for the
dual group of a locally convex vector space, some work must be done, even for this very
particular class of topological groups.

On the other hand, the continuous convergence structure can be defined in the dual of
a topological vector space and some fundamental results in duality theory heavily rely on
it, although it may not be explicitly stated. Continuous convergence was first defined in
the dual of a convergence group by Binz and Butzmann giving rise to the notion of BB-
reflexive convergence groups [3]. In [8] it is proved that a locally convex vector space is
BB-reflexive if and only if it is complete. In Corollary 4.4 we see that this result is also valid
for nuclear groups, a class of topological Abelian groups introduced by Banaszczyk in [2].

1. Preliminary background

A topology defines in a natural way a convergence structure, namely, the one given by
its convergent filters or nets. Conversely, one can start declaring which nets (or filters) on a
setX converge, and the corresponding limit points, and this is a convergence structure for
the setX. If some general conditions (convergence axioms) are satisfied so that there exists
a topology inX for which the convergent nets (or filters) are the given “a priori” [18], it
can be said that the convergence derives from a topology, or simply that it is topological.

If the convergence structure does not fulfill all the requirements to be derived from a
topology, then we only have a convergencespace. In the literature there is not an unanimous
acceptance of which are the axioms that must define this concept. We are interested just
on the continuous convergence structure and we have followed the text of Binz [3], where
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the reader can find a good account of information. We also take his notations. Topological
notions such as continuity, cluster point, closed, open or compact sets, etc. can be stated
in terms of convergence of filters or nets, therefore they have corresponding definitions for
convergence spaces. Convergence groups are groups endowed with a convergence structure
compatible with the group operation [15]. IfG is a convergence group, we also use the
symbolΓG to denote the group of all continuous homomorphisms fromG into T. The
continuous convergence structureΛc in ΓG is defined in the following way: A filterF
in ΓG converges inΛc to an elementξ ∈ ΓG if for every x ∈G and every filterH in G
that converges tox, e(F ×H) converges toξ(x) in T (here,e(F ×H) denotes the filter
generated by the setse(F × H) := {f (x); f ∈ F , x ∈ H }, whereF ∈ F , H ∈ H). By
means of nets, the definition should be as follows: A net(fα)α∈D in ΓG isΛc-convergent
to f ∈ ΓG if for every net(xβ)β∈E in G converging tox ∈G, the net(fα(xβ))(α,β)∈D×E
(D×E has the product direction) converges tof (x) in T.

It is well known that a topology inΓG for which the evaluatione :ΓG ×G→ T is
continuous (ΓG × G has the natural product structure) must be finer than the compact
open topologyτco, butτco itself very seldom makese continuous. Therefore a convergence
structure may be designed inΓG in order to obtain the continuity of the evaluation
mappinge :ΓG×G→ T as well as the property of being the coarsest with this condition.
This is the real motivation to introduce the continuous convergence structure on a dual. The
dual groupΓG of a convergence group(G,Λ), endowed with the convergence structure
Λc, is a convergence group, denoted byΓcG and called theconvergence dual ofG.

A convergence group is calledBB-reflexiveif the canonical homomorphismκG :
G→ ΓcΓcG is a bicontinuous isomorphism (hereΓcΓcG has the obvious meaning).
Observe that, due to the continuity ofe :ΓcG × G → T, κG is always continuous.
Analogously, a convergence vector spaceE is BB-reflexive as a spaceif the canonical
embeddingιE :E→ LcLcE is a bicontinuous isomorphism. HereLcE denotes the set
of all continuous linear forms onE, endowed with the continuous convergence structure.
In the category of Hausdorff topological groups, BB-duality and Pontryagin duality are
independent notions [12], but they coincide, for instance, in the family of metrizable
topological groups [11].

The compact open topology and the continuous convergence structure in the dual of
a locally compact Abelian topological group, have the same convergent filters. This fact
characterizes the locally compact groups in the class of reflexive topological groups [19].

If E is a real topological vector space, the dual groupE∧, and the dual Pontryagin
vector spaceE∗ (i.e., the set of all continuous linear forms endowed with the compact
open topology) are related through the exponential mappingf → exp(2π if ), which in
this case happens to be a topological isomorphism (see [2, (2.3)]). Here the compact open
topology plays some role; it would not be a topological isomorphism if the supporting sets
were endowed by the corresponding weak topologies.

The duality theory for topological vector spaces is usually restricted to locally convex
spaces where the Hahn–Banach theorem holds. In an arbitrary topological group, the notion
of convexity has no sense. Nevertheless, a similar notion, the so called quasi-convexity,was
introduced by Vilenkin in [24], where he also defined the locally quasi-convex groups.
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A subsetA of a topological groupG is called quasi-convex if for everyg ∈G\A, there
is someχ ∈ A0 := {χ ∈ ΓG: Reχ(z) > 0, ∀z ∈ A}, such that Reχ(g) < 0. The quasi-
convex hull of any subsetH ⊂G is defined as the intersection of all quasi-convex subsets
ofG containingH . An Abelian topological groupG is called locally quasi-convex if it has
a neighborhood basis of the neutral elementeG, given by quasi-convex sets. The dualG∧
of any topological Abelian groupG is locally quasi-convex. In fact, the setsK0, where
K runs through the compact subsets ofG, constitute a neighborhood basis ofeG∧ for the
compact open topology.

The additive group of a topological vector space is locally quasi-convex if and only if
the vector space itself is locally convex [2]. Therefore it is natural to restrict the duality
theory of topological Abelian groups to the locally quasi-convex ones. Some of the well
known results on locally convex spaces have analogic versions valid for locally quasi-
convex groups. In particular a topology on a groupG is locally quasi-convex if and only
if it is an S-topology (uniform convergence topology) for the familyS of equicontinuous
subsets of the dualG∧ [13, Proposition 3.9]. A duality theory for groups is extensively
presented in [13]. Here we will only state what is needed for our aims.

If G is a topological group, the Bohr topology onG is the weakest topology that makes
continuous all characters ofΓG. We will denote it byω(G,Γ G), and the pointwise topol-
ogy onΓG will be denoted byω(Γ G,G). Very interesting results on the Bohr topology
of a locally compact Abelian group, from a topological point of view, are obtained in [14].

The paper is organized as follows: in Section 2 we present examples of complete
metrizable locally quasi-convex groups which are not Pontryagin reflexive. In doing so
we are concerned with lifting of characters on a groupG to homomorphisms fromG into
R. We use essentially a result of Nickolas.

In Section 3 we present the Grothendieck completeness theorem for the underlying
group of a locally convex space and its dual group.

In the last section we see that the most natural version of the Grothendieck theorem
for topological groups does not hold, even in the class of metrizable locally quasi-convex
groups. The examples which prove it, are precisely the groups considered in Section 2.
We then study a weaker form of the Grothendieck theorem valid for locally quasi-convex
groups and prove that for the smaller class of nuclear groups, or that of locally convex
vector groups, the result can be improved.

2. A family of nonreflexive complete metrizable locally quasi-convex groups

The groupsLpZ[0,1], for 16 p <∞, have the properties mentioned in the title of this
section. For the sake of completeness we describe here these groups.

LetLp[0,1] or simplyLp be the vector space of all classes of real measurable functions
f such that‖f ‖ := (∫ 1

0 |f (t)|pdt)1/p <∞. It is well known that the spacesLp endowed
with the norm‖ ‖ are Banach spaces. NowLpZ is the subset ofLp of all the classes of
integer valued functions, with the induced topology. Evidently it is a complete metrizable
locally quasi-convex topological Abelian group, but it is not a vector subspace.
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Now we summarize the steps which lead to the proof thatL
p

Z is a nonreflexive group.
Crucial to all of them is the following result of Nickolas:

If an Abelian topological groupG is a k-space, then the path component

of the identity inG∧ is the union of all the one-parameter subgroups ofG∧. (∗)

By a one-parameter subgroup ofG it is commonly understood the image ofR by a
continuous homomorphism fromR intoG.

First we are concerned with lifting of characters to real valued characters. As we already
mentioned, every continuous character defined in a topological vector space can be lifted
to a continuous linear form. The same assertion can be made for certain groups, as we
expose in the next proposition. Its proof is essentially contained in the proof of (∗), given
in [20].

Proposition 2.1. LetG be a topological Abelian group such thatG is a k-space and its
dualG∧ is pathwise connected. Then every continuous homomorphismϕ :G→ T can be
lifted to a continuous homomorphism̃ϕ :G→R such thatpϕ̃ = ϕ, wherep :R→ T is the
covering projection.

Remark. The assumption thatG is a k-space is not a necessary condition. In [1,
Corollary 8.12], an example of a locally convex vector spaceE, which is not a k-space is
presented. Clearly, the lifting property forE derives from the natural isomorphism between
E∗ andE∧.

We can now state the following:

Theorem 2.2. If G is a metrizable, reflexive pathwise connected Abelian group, then:
(a) Every continuous characterϕ :G∧ → T can be lifted to a real continuous character

(i.e., there exists̃ϕ:∈CHom(G∧,R) such thatpϕ̃ = ϕ),
(b) G is the union of its one-parameter subgroups,
(c) G is divisible.

Proof. (a) If G is metrizable,G∧ is a k-space as shown in [11]. On the other hand(G∧)∧
is topologically isomorphic toG, therefore pathwise connected. By Proposition 2.1, every
continuous characterϕ :G∧ → T can be lifted to sayϕ̃ :G∧ → R such thatpϕ̃ = ϕ.
Furthermore the lifting is unique (see [23, p. 69, 2nd paragraph]), since any lifting to a
continuous character̃̃ϕ must be such that̃̃ϕ(ν0)= 0∈ R, whereν0 is the neutral element
of G∧.

(b) Follows also from (∗).
(c) In order to prove the last assertion, we expressG as the union of its one-

parameter subgroups, sayG=⋃{ξ(R): ξ ∈CHom(R,G)}. For anyx ∈G and anyn ∈N,
there existsξ ∈ CHom(R,G) and r ∈ R, such thatξ(r) = x. Now ξ(r/n) is such that
nξ(r/n)= x.



86 M. Bruguera et al. / Topology and its Applications 111 (2001) 81–93

Remark. A topological group which is the union of its one-parameter subgroups must be
pathwise connected. Thus, the condition thatG∧ be pathwise connected cannot be dropped
in Proposition 2.1.

It was known to Dixmier (see [16, p. 393]) that for a locally compact Abelian group
G the condition that every character inG can be lifted to a real character is equivalent
to the fact that the dualG∧ is the union of its one-parameter subgroups. That this also
holds for metrizable reflexive groups can be deduced from the proof of (∗) together with
Theorem 2.2.

Proposition 2.3. The groupG= LpZ[0,1] (p > 1) is not Pontryagin reflexive.

Proof. The proof follows easily from the fact thatG is contractible, therefore pathwise
connected. Since it is a metrizable group, if it were reflexive,G would satisfy all the
assumptions of Theorem 2.2, therefore it would be divisible. But this is not the case;
obviously for the functionf constant to one, there is nog ∈ LpZ such that 2g = f . The
fact thatLpZ is contractible can be seen in [1]. Nevertheless we sketch the proof. Denote by
χ[0,l) the characteristic function of[0, l) in [0,1]. The mapping

F :LpZ × [0,1] → L
p

Z
(f, t) → χ[0,1−t ) · f

establishes a homotopy between the identity mapping inL
p

Z and the constant to null
mapping. It is therefore a contraction ofLpZ. 2
Remark. The fact thatLpZ is not Pontryagin reflexive had been proved earlier by
Aussenhofer in [1]. She follows a different method and gives also a precise description
of the dual ofLpZ.

3. The Grothendieck completeness theorem on the additive group of a locally convex
vector space

In this section we prove that the underlying group of a topological vector space and
its dual group satisfy an analogue to the Grothendieck theorem (GT). We first give a few
lemmas which will simplify our job.

In the next propositions,E will denote a topological vector space. We keep the standard
notationsE∧, ΓcE andΓSE for the character group ofE, endowed with the compact open
topology, with the continuous convergence structure and with anS-topology, respectively.
Also byE∗ , byLcE and byLSE we mean the set of continuous linear formsLE endowed
with the compact open topology, with the continuous convergence structure and with an
S-topology, respectively.
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Lemma 3.1. Let (E, τ) be a locally convex vector space and letS be a family of closed
bounded and balanced sets coveringE.

(i) Denote byρ : Lin(E,R)→Hom(E,T) the exponential mapping,ρ(f )= exp(2π if ),
∀f ∈ Lin(E,R). A characterϕ belongs toIm(ρ) if and only ifϕ|L is continuous for
all one-dimensional vector subspaceL⊂E.

(ii) The following assertions are equivalent:
(a) Every character with continuous restriction on allS ∈S, is continuous.
(b) Every linear form with continuous restriction on allS ∈S, is continuous.

Proof. (i) Supposeϕ = ρ(f ) for somef ∈ Lin(E,R). If L ⊂ E is a one-dimensional
vector subspace,f |L is continuous, thereforeϕ|L is continuous.

Conversely, letϕ ∈ Hom(E,T). Denote by[a] the subspace generated by a non null
vectora ∈ E. Sinceϕ|[a] is continuous, it can be considered as a continuous character
defined onR, and consequently there is a unique real numberta such thatϕ(ra) =
exp(2π itar) for all r ∈ R. It is easy to check thattλa = λta and ta+b = ta + tb, for any
λ ∈ R and anyb ∈ E. Therefore by superposition of the one-dimensional linear forms
fa(ra)= tar we obtain a linear formf :E→R. Clearlyϕ = exp(2π if ).

(ii) (a) ⇒ (b) Let f :E → R be a linear form continuous on allS ∈ S. The
corresponding character exp(2π if ) is continuous in allS ∈S, and by (a) it is continuous.
Therefore, by [2, (2.3)],f is continuous.
(b)⇒ (a) Letχ :E→ T be a character with continuous restriction on eachS ∈S. From

this it is easily seen that the restriction ofχ to finite-dimensional subspaces is continuous
and, by (i), there exists a linear formf :E→R such that exp(2π if )= χ .

Now for S ∈ S, and ε > 0, there is some balanced neighborhood ofe such that
|exp(2π if (x)) − 1| < ε/2, for all x ∈ S ∩ U . Then |exp(2π itf (x)) − 1| < ε/2, for all
|t|6 1, and allx ∈ S ∩U . Consequently|f (x)|< ε and the restriction off to all elements
of S is continuous. By (b)f is continuous onE, and so isχ = exp(2π if ). 2
Lemma 3.2. Let (E, τ) be a locally convex vector space and letS be a family of closed
bounded and balanced sets coveringE. The exponential mappingρ :LSE→ ΓSE is a
topological isomorphism.

Proof. The continuity ofρ is straightforward, and holds without any conditions on the
setsS ∈ S. An argument similar to that of(b)⇒ (a) of the previous lemma proves the
continuity of the inverse mapping. In fact only the properties that the setsS ∈ S are
balanced and coverE are used. 2

Next we state that the continuous convergence restricted to equicontinuous subsets of
ΓG coincides with the pointwise convergence. The proof is straightforward.

Lemma 3.3. LetG be a topological group and letH be an equicontinuous subset ofΓG.
If (ξα) is a net contained inH andξ ∈ ΓG, the following assertions are equivalent:

(1) (ξα) isΛc-convergent toξ .



88 M. Bruguera et al. / Topology and its Applications 111 (2001) 81–93

(2) (ξα) is τco-convergent toξ .
(3) (ξα) is ω(Γ G,G)-convergent toξ .

By the previous lemma equicontinuous subsets ofΓcG are topological. The family of
closed equicontinuous subsets ofΓG actually coincides with that ofΛc-compact subsets.
If αG is continuous, then they also coincide with the family ofτco-compact subsets. For
complete metrizable groups, more can be said. The following statement is comparable to
the uniform boundedness principle. Since the latter is a significant result in the theory
of topological vector spaces, one can reasonably expect that this sort of “equicontinuity
principle” may have some importance for Abelian topological groups. The proof of it can
be seen in [13, Theorem 1.5], where it is established in a more general setting.

Lemma 3.4. If G is a complete metrizable topological Abelian group, then every
ω(ΓG,G)-compact subset ofΓG is equicontinuous.

The convergence dual of a topological group is locally compact, and has properties
similar to those of k-spaces.

Lemma 3.5. LetG be a topological group. The following assertions hold:
(1) ΓcG is a locally compact convergence group.
(2) If a characterχ :ΓcG→ T is such thatχ |K is continuous for all compactK ⊂ ΓcG,

thenχ is continuous.
(3) ΓcΓcG is topological and carries the compact open topology relative to the compact

subsets ofΓcG. Furthermore, it is complete.

Proof. It can be seen in [6, (3.2.2), (1.5.4) and (3.2.5)].2
Lemma 3.6. If G is a Hausdorff locally quasi-convex group, thenκG :G→ κG(G) ⊂
ΓcΓcG is an embedding.

Proof. In order to prove thatκG is open and injective, take into account Lemma 3.5(3)
and follow the proof of the same facts forαG [2, (14.3)]. On the other handκG is always
continuous. 2

Next we see thatω(G,Γ G), andω(Γ G,G) are the natural analogs to the weak and to
the weak* topologies defined in a topological vector space and in its dual respectively.

Lemma 3.7. LetG be an Abelian topological group.
(1) The dual group of(G,ω(G,Γ G)) is ΓG.
(2) If ΓG separates points ofG, then every continuous character on(Γ G,ω(Γ G,G))

is an evaluation at some point ofG, i.e., the dual group of(Γ G,ω(Γ G,G)) can be
algebraically identified withG.

Proof. It can be seen in [13, Theorem 3.7].2
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The identification of Lemma 3.7(2) is even topological for some classes of groups, as
we prove now:

Theorem 3.8. If G is a complete metrizable locally quasi-convex group, then the dual
groupX = (Γ G,ω(Γ G,G))∧ is topologically isomorphic toG.

Proof. By Lemma 3.7(2),X can be algebraically identified withG. If K ⊂ ΓG is
ω(ΓG,G)-compact, then it is equicontinuous by Lemma 3.4. This means that0K := {z ∈
G: Reχ(z)> 0,∀χ ∈K} is a 0-neighborhood inG. On the other hand0K can be identified
with K0, and so we have that every 0-neighborhood inX is a 0-neighborhood inG.

Conversely, ifV is a quasi-convex 0-neighborhood inG, V 0 is ω(Γ G,G)-compact [2,
1.5], thereforeV = 0(V 0) is a 0-neighborhood inX. 2
Corollary. The Pontryagin dual of a topological Abelian group is not necessarily reflexive.

Proof. TakeE := (Γ G,w(ΓG,G)), with G = LpZ[0,1], beingp > 1, and follow the
argument of Theorem 3.8.

For a locally convex vector spaceE, we bring together the two view points, as a group
and as a space, in the next two theorems.

Theorem 3.9. Let(E, τ) be a locally convex space and letS be a family of closed bounded
convex and balanced sets coveringE. The following statements are equivalent:

(a) LE is complete under theS-topology.
(b) Every linear formf onE which isτ -continuous on eachS ∈S, is continuous on

(E, τ).
(c) (LE,τS) is BB-reflexive, i.e.,E is bicontinuously isomorphic toLcLc(LE,τS) .
(d) The group(Γ E, τS) is complete.
(e) Every character onE, which is continuous on eachS ∈S, is continuous on(E, τ).
(f) (Γ E, τS) is BB-reflexive, i.e., it is bicontinuously isomorphic toΓcΓc(Γ E, τS) .

Proof. The equivalence between (a) and (b) is exactly the Grothendieck theorem. The
proof can be seen in any classical treatise, for example, [21]. In [8] it is proved that a
locally convex vector space is complete if and only if it is BB-reflexive as a vector space,
thus(a)⇔ (c).
(b)⇔ (e) is precisely (ii) of Lemma 3.1.
(c)⇔ (f) and(a)⇔ (d) are obtained through the topological isomorfismρ :LSE→

ΓSE (Lemma 3.2). 2
Remark. For any topological vector spaceE,LcE is BB-reflexive, without any conditions
on E [4]. Taking into account thatLcE is bicontinuously isomorphic toΓcE (for any
convergence vector spaceE, Satz 1 of [9]) it can be easily proved that alsoΓcE is BB-
reflexive as a group.
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Theorem 3.10.Let (E, τ) be a Hausdorff locally convex space. The following assertions
are equivalent:

(a) E is complete.
(b) Every linear form onLE which isω(LE,E)-continuous on every equicontinuous

subset ofLE, isω(LE,E)-continuous on all ofLE.
(c) Every character onΓE which isω(Γ E,E)-continuous on every equicontinuous

subset ofΓ E, isω(Γ E,E)-continuous on allΓE.
(d) E is BB-reflexive as a topological vector space.
(e) E is BB-reflexive as a topological group.

Proof. (a)⇔ (b) is a standard corollary of GT, see, for example, [21].
(a)⇔ (d) and(d)⇔ (e) are proved in [8] and [9], respectively.
(c)⇒ (e) In order to see thatκE is a topological isomorphism, only surjectivity is to

be seen, sinceκE is already an embedding (Lemma 3.6). Letχ ∈ Γ ΓcE. If H ⊂ ΓE is
equicontinuous,χ |H is ω(Γ E,E)-continuous by Lemma 3.3. We apply (c) together with
Lemma 3.7(2) and we obtain that there is somex ∈E such thatχ = κE(x).
(e)⇒ (c) Let χ :ΓE→ T be a character such thatχ |H isω(Γ E,E)-continuous for all

H ⊂ ΓE equicontinuous. Taking into account thatΓcE is a locally compact convergence
group and that every compact subset ofΓcE is equicontinuous, by Lemma 3.5(3) we
have thatχ is aΛc-continuous character. Applying now (e) there existsx ∈ E such that
κG(x)= χ . Thusχ is ω(Γ E,E)-continuous. 2

In Theorem 3.10 BB-reflexivity cannot be substituted by reflexivity in ordinary sense.
There is a famous example of Komura of a noncomplete locally convex vector space
E which is topologically isomorphic to(E∗b )∗b. HereE∗b denotes the dual vector space
endowed with the topology of uniform convergence on the weakly bounded subsets ofE.

4. The Grothendieck theorem for locally quasi-convex groups

In this section we deal with some approximation to the Grothendieck theorem, for
Hausdorff locally quasi-convex groups. Comparing Theorems 3.9 and 3.10 with the results
obtained in this section, we see that, with respect to completeness, the underlying groups
of topological vector spaces behave better than locally quasi-convex groups in general.
The equivalence between (a) and (b) in Theorem 4.1 confirms in a sense that the tools
of continuous convergence and BB-duality theory are appropriate in order to obtain a
generalization of the Grothendieck theorem.

Theorem 4.1. LetG be a Hausdorff locally quasi-convex topological group. Consider the
statements:

(a) G is BB-reflexive.
(b) Every character onΓG which isω(Γ G,G)-continuous on every equicontinuous

subset ofΓG, isω(Γ G,G)-continuous on all ofΓG.
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(c) G is complete andαG is surjective.
Then(a) is equivalent to(b) and they imply(c).

Proof. For the proof of(a)⇔ (b), mimic the proof of(b)⇔ (e) in Theorem 3.10, since
the vector space structure is not used there.

We now prove that each of them implies (c). Let us show thatαG is surjective. Take any
continuous characterψ onG∧. Since on equicontinuous subsets ofG∧ the compact open
topology coincides with the pointwise one, it follows thatψ satisfies the assumption of (b),
thus it is pointwise continuous onG∧ and so, by Lemma 3.7(2), it belongs toαG(G).

In order to prove thatG is complete, we use the following general theorem [5, Chap-
ter X, Section 6, Corollary 2 to Theorem 2]:

LetX be a topological space,S a collection of subsets ofX andY a complete uniform
space. Then, the space of all maps fromX into Y whose restrictions to the sets ofS

are continuous, equipped with the topology of uniform convergence on the sets ofS,
is complete.

TakeX asΓcoG, Y = T and S as the family of all equicontinuous subsets ofΓG.
By the quoted theorem, the spaceH(X,T) of all maps whose restriction to the sets ofS

are continuous, endowed with theS-topology, is complete. Observing thatS coversΓG,
we obtain that the subset formed by all characters inH(X,T) is closed, therefore also
complete. By (b) together with Lemma 3.5 we have that the latter coincides with the set of
all charactersω(Γ G,G)-continuous, and by Lemma 3.7 it can be algebraically identified
with G. On the other hand, taking into account thatG is locally quasi-convex, its original
topology coincides with theS-topology, whereS is the family af all equicontinuous
subsets ofΓG (see [13, Proposition 3.9]). Thus the identification is also topological and
G is complete. 2

Observe that for locally convex vector spaces completeness is equivalent to BB-
reflexivity ((a)⇔ (d) of Theorem 3.10). However, an analog in the framework of locally
quasi-convex groups does not hold as we now state:

Corollary 4.2. LetG be a Hausdorff locally quasi-convex group. The implications(a)⇒
(c) and (a)⇒ (e) of Theorem3.10 do not hold even ifG is complete metrizable and
separable.

Proof. TakeG := LpZ[0,1] (see Section 2). BeingG a closed subgroup ofLp[0,1], it is
complete. SinceG is metrizable and locally quasi-convex,αG is continuous, injective and
open in its image. By Proposition 2.3G is not reflexive, thereforeαG is not surjective.
Now we apply Theorem 4.1.2
Corollary 4.3. LetG be a Hausdorff locally quasi-convex group. The implication(d)⇒
(e) of Theorem3.9 does not hold even ifG is a σ -compact hemi-compact locally quasi-
convex group with the property that the quasi-convex hull of any compact subset is again
compact.
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Proof. TakeG as in the previous corollary and putE = (Γ G,ω(Γ G,G)). TheS-family
will be now the set of allω(Γ G,G)-compact subsets ofΓG. The groupΓSE is precisely
E∧ and by Theorem 3.8 can be identified withG, therefore it is complete. As proved in
Corollary 4.2αG is not surjective. Now we apply Theorem 4.1.2

Each of the properties mentioned in Theorem 4.1(c), separately, do not imply (a) or (b)
as shown by the groupsG= LpZ[0,1] and the Komura space respectively. We do not know
if (c) implies (a) and (b). For the very special class of nuclear groups [2], the following can
be stated:

Corollary 4.4. LetG be a nuclear topological group(or a locally convex vector group).
The following assertions are equivalent:

(a) G is BB-reflexive.
(b) Every character onΓG which is pointwise continuous on every equicontinuous

subset ofΓG, is pointwise continuous on all ofΓG.
(c) G is complete.

Proof. We prove that completeness is equivalent to BB-reflexivity, and the equivalence
between (a) and (b) is as in Theorem 4.1.

Let G be a complete nuclear topological group. By [1, Theorem 21.3],G can be
embedded as a dually closed and dually embedded subgroup of a product of complete,
metrizable nuclear groups. The BB-reflexivity ofG is proved taking into account the
following facts:

(1) Every complete metrizable nuclear group is reflexive in Pontryagin sense [2, (17.3)].
(2) Metrizable Pontryagin reflexive groups are BB-reflexive [11]. Thus every factor

group in the above mentioned product is BB-reflexive.
(3) Products of BB-reflexive groups are BB-reflexive [10].
(4) Dually closed and embedded subgroups of BB-reflexive groups are also BB-

reflexive [7].
Conversely, any BB-reflexive group must be complete. The proof for locally convex vector
groups is similar [2, (15.7)]. 2
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