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Abstract

It is natural to extend the Grothendieck theorem on completeness, valid for locally convex
topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to
be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable
locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By
means of the continuous convergence structure on the dual of a topological group, we also state some
weaker forms of the Grothendieck theorem valid for the class of locally quasi-convex groups. Finally,
we prove that for the smaller class of nuclear groups, BB-reflexivity is equivalent to completeness.
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Introduction

The character group' G of an Abelian topological groug is the set of all continuous
homomorphisms fron into the torudTl = {z € C: |z| = 1}, with pointwise multiplication.
Homomorphisms fronG into T are usually named characters. The dual grou aé
defined as" G, endowed with the compact-open topology. It will be denoted byG”",
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while G := (G™)" stands for the bidual. BHom(G, T) and Hom(G, R) we denote
homomorphisms of the corresponding groups, whilkomG, T) (also calledI"G) and
CHomG, R) denote continuous homomorphisms.

The canonical embedding; : G — G is defined byag(g)(x) = x(g) for every
g € G and everyy € G". If a¢ is a topological isomorphism, the topological groGp
is called reflexive (more precisely, Pontryagin reflexive). The Pontryagin—Van Kampen
theorem states that locally compact Abelian groups are reflexive. However the class of
reflexive groups includes other types of groups, like complete metrizable locally convex
spaces and reflexive topological vector spaces [22] (both classes considered as topological
groups, i.e., forgetting the linear structure), arbitrary products of reflexive groups [17],
complete metrizable nuclear groups [2], etc.

Our aim in this paper is to study completeness of a topological Abelian group and also
of its dual, and how these properties are related with reflexivity. Since completeness of
locally convex vector spaces is totally characterized by the Grothendieck theorem and its
corollaries, it seems natural to center the question for locally quasi-convex groups and
to start with the underlying group of a topological vector space. For such an abject
completeness is independent of the point of view, i.e., if it is looked at as a vector space or
as a group. However the character grdup is no longer a vector space, and is obviously
different from the set of continuous linear forid& , which roughly speaking is the natural
dual of a vector space. Thus, if a theorem of Grothendieck-type is to be obtained for the
dual group of a locally convex vector space, some work must be done, even for this very
particular class of topological groups.

On the other hand, the continuous convergence structure can be defined in the dual of
a topological vector space and some fundamental results in duality theory heavily rely on
it, although it may not be explicitly stated. Continuous convergence was first defined in
the dual of a convergence group by Binz and Butzmann giving rise to the notion of BB-
reflexive convergence groups [3]. In [8] it is proved that a locally convex vector space is
BB-reflexive if and only if it is complete. In Corollary 4.4 we see that this result is also valid
for nuclear groups, a class of topological Abelian groups introduced by Banaszczyk in [2].

1. Preliminary background

A topology defines in a natural way a convergence structure, namely, the one given by
its convergentfilters or nets. Conversely, one can start declaring which nets (or filters) on a
setX converge, and the corresponding limit points, and this is a convergence structure for
the setX. If some general conditions (convergence axioms) are satisfied so that there exists
a topology inX for which the convergent nets (or filters) are the given “a priori” [18], it
can be said that the convergence derives from a topology, or simply that it is topological.

If the convergence structure does not fulfill all the requirements to be derived from a
topology, then we only have a convergence space. In the literature there is not an unanimous
acceptance of which are the axioms that must define this concept. We are interested just
on the continuous convergence structure and we have followed the text of Binz [3], where
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the reader can find a good account of information. We also take his notations. Topological
notions such as continuity, cluster point, closed, open or compact sets, etc. can be stated
in terms of convergence of filters or nets, therefore they have corresponding definitions for
convergence spaces. Convergence groups are groups endowed with a convergence structure
compatible with the group operation [15]. ¢f is a convergence group, we also use the
symbol I"G to denote the group of all continuous homomorphisms fi@rmto T. The
continuous convergence structwe in I"G is defined in the following way: A filtetF

in I'G converges ind, to an element € I'G if for every x € G and every filter{ in G

that converges ta, e(F x H) converges tg(x) in T (here,e(F x H) denotes the filter
generated by the set§F x H) :={f(x); f € F, x € H}, whereF € F, H € H). By

means of nets, the definition should be as follows: A(gdyecp in I'G is A.-convergent

to f € I'G if for every net(xg)ger in G converging tax € G, the net( f, (xg)) . g)eDxE

(D x E has the product direction) convergesftor) in T.

It is well known that a topology in"G for which the evaluatior: I'G x G — T is
continuous ("G x G has the natural product structure) must be finer than the compact
open topologytco, but e itself very seldom makescontinuous. Therefore a convergence
structure may be designed IRG in order to obtain the continuity of the evaluation
mappinge:: I'G x G — T as well as the property of being the coarsest with this condition.
This is the real motivation to introduce the continuous convergence structure on a dual. The
dual groupI’ G of a convergence groufs, A), endowed with the convergence structure
A¢, IS a convergence group, denotediiyG and called theonvergence dual of;.

A convergence group is calleBB-reflexiveif the canonical homomorphismg :

G — I.I.G is a bicontinuous isomorphism (heré .G has the obvious meaning).
Observe that, due to the continuity ef I'.G x G — T, kg is always continuous.
Analogously, a convergence vector spacds BB-reflexive as a spadé the canonical
embeddingg: E — L L E is a bicontinuous isomorphism. Her® E denotes the set

of all continuous linear forms of’, endowed with the continuous convergence structure.
In the category of Hausdorff topological groups, BB-duality and Pontryagin duality are
independent notions [12], but they coincide, for instance, in the family of metrizable
topological groups [11].

The compact open topology and the continuous convergence structure in the dual of
a locally compact Abelian topological group, have the same convergent filters. This fact
characterizes the locally compact groups in the class of reflexive topological groups [19].

If E is a real topological vector space, the dual grdip, and the dual Pontryagin
vector spaceE™ (i.e., the set of all continuous linear forms endowed with the compact
open topology) are related through the exponential mapging exp(2ri f), which in
this case happens to be a topological isomorphism (see [2, (2.3)]). Here the compact open
topology plays some role; it would not be a topological isomorphism if the supporting sets
were endowed by the corresponding weak topologies.

The duality theory for topological vector spaces is usually restricted to locally convex
spaces where the Hahn—Banach theorem holds. In an arbitrary topological group, the notion
of convexity has no sense. Nevertheless, a similar notion, the so called quasi-convexity, was
introduced by Vilenkin in [24], where he also defined the locally quasi-convex groups.
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A subsetA of a topological grou is called quasi-convex if for evegye G\ A, there
is somey € A?:={x € I'G: Rex(z) >0, Vz € A}, such that Rg (g) < 0. The quasi-
convex hull of any subset C G is defined as the intersection of all quasi-convex subsets
of G containingH . An Abelian topological groug is called locally quasi-convex if it has
a neighborhood basis of the neutral elemgntgiven by quasi-convex sets. The d@&t
of any topological Abelian groug is locally quasi-convex. In fact, the sek&’, where
K runs through the compact subsetghfconstitute a neighborhood basisegf~ for the
compact open topology.

The additive group of a topological vector space is locally quasi-convex if and only if
the vector space itself is locally convex [2]. Therefore it is natural to restrict the duality
theory of topological Abelian groups to the locally quasi-convex ones. Some of the well
known results on locally convex spaces have analogic versions valid for locally quasi-
convex groups. In particular a topology on a grauips locally quasi-convex if and only
if it is an G-topology (uniform convergence topology) for the famiyof equicontinuous
subsets of the duab” [13, Proposition 3.9]. A duality theory for groups is extensively
presented in [13]. Here we will only state what is needed for our aims.

If G is a topological group, the Bohr topology 6his the weakest topology that makes
continuous all characters éfG. We will denote it byw (G, I G), and the pointwise topol-
ogy onI"G will be denoted by (I"G, G). Very interesting results on the Bohr topology
of a locally compact Abelian group, from a topological point of view, are obtained in [14].

The paper is organized as follows: in Section 2 we present examples of complete
metrizable locally quasi-convex groups which are not Pontryagin reflexive. In doing so
we are concerned with lifting of characters on a grébpp homomorphisms frong: into
R. We use essentially a result of Nickolas.

In Section 3 we present the Grothendieck completeness theorem for the underlying
group of a locally convex space and its dual group.

In the last section we see that the most natural version of the Grothendieck theorem
for topological groups does not hold, even in the class of metrizable locally quasi-convex
groups. The examples which prove it, are precisely the groups considered in Section 2.
We then study a weaker form of the Grothendieck theorem valid for locally quasi-convex
groups and prove that for the smaller class of nuclear groups, or that of locally convex
vector groups, the result can be improved.

2. A family of nonreflexive complete metrizable locally quasi-convex groups

The groupng[O, 1], for 1 < p < oo, have the properties mentioned in the title of this
section. For the sake of completeness we describe here these groups.

Let L7[0, 1] or simply L? be the vector space of all classes of real measurable functions
f such that]| f|| := (fol | (0)|Pdr)YP < co. Itis well known that the spaces” endowed
with the norm| || are Banach spaces. Nomg is the subset of.? of all the classes of
integer valued functions, with the induced topology. Evidently it is a complete metrizable
locally quasi-convex topological Abelian group, but it is not a vector subspace.
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Now we summarize the steps which lead to the proof ltgais a nonreflexive group.
Crucial to all of them is the following result of Nickolas:

If an Abelian topological grougy is a k-space, then the path component
of the identity inG” is the union of all the one-parameter subgroup& 6f ()

By a one-parameter subgroup 6f it is commonly understood the image &f by a
continuous homomorphism frof into G.

First we are concerned with lifting of characters to real valued characters. As we already
mentioned, every continuous character defined in a topological vector space can be lifted
to a continuous linear form. The same assertion can be made for certain groups, as we
expose in the next proposition. Its proof is essentially contained in the proef,ajiyen
in [20].

Proposition 2.1. Let G be a topological Abelian group such thétis a k-space and its
dual G* is pathwise connected. Then every continuous homomorghigsim— T can be
lifted to a continuous homomorphigin G — R such thatpg = ¢, wherep : R — T is the
covering projection.

Remark. The assumption thaG is a k-space is not a necessary condition. In [1,
Corollary 8.12], an example of a locally convex vector spagsvhich is not a k-space is
presented. Clearly, the lifting property férderives from the natural isomorphism between
E*andE™.

We can now state the following:

Theorem 2.2. If G is a metrizable, reflexive pathwise connected Abelian group; then
(a) Every continuous charactegr: G — T can be lifted to a real continuous character
(i.e., there existg: € CHomG”, R) such thatpg = ¢),
(b) G is the union of its one-parameter subgroups,
(c) Gisdivisible.

Proof. (a) If G is metrizableG” is a k-space as shown in [11]. On the other h&ad)”
is topologically isomorphic ta@s, therefore pathwise connected. By Proposition 2.1, every
continuous charactep: G — T can be lifted to sayp: G — R such thatpg = ¢.
Furthermore the lifting is unique (see [23, p. 69, 2nd paragraph]), since any lifting to a
continuous characteir must be such thaﬁ(uo) = 0 € R, whereyyg is the neutral element
of G".

(b) Follows also from#).

(c) In order to prove the last assertion, we expréssas the union of its one-
parameter subgroups, s&y= | J{£(R): £ € CHom(R, G)}. For anyx € G and anyn € N,
there existss € CHomR, G) andr € R, such thats(r) = x. Now &(r/n) is such that

n&(r/n) =x.
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Remark. A topological group which is the union of its one-parameter subgroups must be
pathwise connected. Thus, the condition thatbe pathwise connected cannot be dropped
in Proposition 2.1.

It was known to Dixmier (see [16, p. 393]) that for a locally compact Abelian group
G the condition that every character @ can be lifted to a real character is equivalent
to the fact that the duali” is the union of its one-parameter subgroups. That this also
holds for metrizable reflexive groups can be deduced from the proad) @abgether with
Theorem 2.2.

Proposition 2.3. The groupG = LQ[O, 1] (p > 1) is not Pontryagin reflexive.

Proof. The proof follows easily from the fact thai is contractible, therefore pathwise
connected. Since it is a metrizable group, if it were reflexivewould satisfy all the
assumptions of Theorem 2.2, therefore it would be divisible. But this is not the case;
obviously for the functionf constant to one, there is noe L? such that 2 = f. The

fact thatL’Z’ is contractible can be seen in [1]. Nevertheless we sketch the proof. Denote by
x10,)) the characteristic function ¢0, /) in [0, 1]. The mapping

F:L)x[0,1] — LY
(i) = xo01-n-f

establishes a homotopy between the identity mapping/nand the constant to null
mapping. It is therefore a contractionbg. O

Remark. The fact thatLg is not Pontryagin reflexive had been proved earlier by
Aussenhofer in [1]. She follows a different method and gives also a precise description
of the dual ofL?.

3. The Grothendieck completeness theorem on the additive group of a locally convex
vector space

In this section we prove that the underlying group of a topological vector space and
its dual group satisfy an analogue to the Grothendieck theorem (GT). We first give a few
lemmas which will simplify our job.

In the next propositiong; will denote a topological vector space. We keep the standard
notationsE”, I'. E andl'g E for the character group &, endowed with the compact open
topology, with the continuous convergence structure and with-d@opology, respectively.

Also by E* , by L. E and byLs E we mean the set of continuous linear forfs endowed
with the compact open topology, with the continuous convergence structure and with an
G-topology, respectively.
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Lemma 3.1. Let (E, t) be a locally convex vector space and &tbe a family of closed
bounded and balanced sets coverifig
(i) Denote by :Lin(E, R) — Hom(E, T) the exponential mapping, /) = exp2rif),
Vf eLin(E,R). A characterp belongs tdm(p) if and only ifp|, is continuous for
all one-dimensional vector subspate- E.
(i) The following assertions are equivalent
(a) Every character with continuous restriction on dlke &, is continuous.
(b) Every linear form with continuous restriction on &lle G, is continuous.

Proof. (i) Supposep = p(f) for somef € Lin(E,R). If L C E is a one-dimensional
vector subspacef| ;. is continuous, thereforg|;, is continuous.

Conversely, letp € Hom(E, T). Denote by[a] the subspace generated by a non null
vectora € E. Sinceg|[,) is continuous, it can be considered as a continuous character
defined onRR, and consequently there is a unique real numpesuch thaty(ra) =
exp(2rit,r) for all » € R. It is easy to check thag, = At, andz,4, = t, + 15, fOr any
A € R and anyb € E. Therefore by superposition of the one-dimensional linear forms
fa(ra) =1t,r we obtain a linear forny : E — R. Clearlyp = exp(2ri f).

(i) (@ = (b) Let f:E — R be a linear form continuous on alf € &. The
corresponding character @i f) is continuous in allS € G, and by (a) it is continuous.
Therefore, by [2, (2.3)]f is continuous.

(b) = (a) Let x : E — T be a character with continuous restriction on efieh&. From
this it is easily seen that the restriction pfto finite-dimensional subspaces is continuous
and, by (i), there exists a linear forf. E — R such that ex@rif) = x.

Now for S € &, ande > 0, there is some balanced neighborhoodeo$uch that
lexp(2rif(x)) — 1] < /2, for allx e SN U. Then|exp2rirf(x)) — 1| < ¢/2, for all
|t <1,andallx € SNU. Consequentlyf (x)| < ¢ and the restriction of to all elements
of & is continuous. By (b)f is continuous orE, and so isy = exp(2zif). O

Lemma 3.2. Let (E, ) be a locally convex vector space and &tbe a family of closed
bounded and balanced sets coverifigThe exponential mapping: L E — I'cE is a
topological isomorphism.

Proof. The continuity ofp is straightforward, and holds without any conditions on the
setsS € 6. An argument similar to that ofo) = (a) of the previous lemma proves the
continuity of the inverse mapping. In fact only the properties that the $eisS are
balanced and cover are used. O

Next we state that the continuous convergence restricted to equicontinuous subsets of
I' G coincides with the pointwise convergence. The proof is straightforward.

Lemma 3.3. Let G be a topological group and letf be an equicontinuous subsetiot .
If (&) is a net contained irtH and& € "G, the following assertions are equivalent
(1) (&) is A.-convergent tc .
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(2) (&x) Is tco-cONvergent tc .
(3) (&) iIsw(I"G, G)-convergent t&.

By the previous lemma equicontinuous subset$ @ are topological. The family of
closed equicontinuous subsets/o; actually coincides with that aft .-compact subsets.
If ag is continuous, then they also coincide with the familyrgf-compact subsets. For
complete metrizable groups, more can be said. The following statement is comparable to
the uniform boundedness principle. Since the latter is a significant result in the theory
of topological vector spaces, one can reasonably expect that this sort of “equicontinuity
principle” may have some importance for Abelian topological groups. The proof of it can
be seenin [13, Theorem 1.5], where it is established in a more general setting.

Lemma 3.4.If G is a complete metrizable topological Abelian group, then every
o(I"G, G)-compact subset df G is equicontinuous.

The convergence dual of a topological group is locally compact, and has properties
similar to those of k-spaces.

Lemma 3.5. Let G be a topological group. The following assertions hold
(1) I'-G is alocally compact convergence group.
(2) Ifacharactery : I'.G — Tis such thay |k is continuous for all compadt C I'.G,
theny is continuous.
(3) I.I.G istopological and carries the compact open topology relative to the compact
subsets of . G. Furthermore, it is complete.

Proof. It can be seenin [6, (3.2.2), (1.5.4) and (3.2.5)

Lemma 3.6. If G is a Hausdorff locally quasi-convex group, thep:G — xg(G) C
I, TG is an embedding.

Proof. In order to prove thak¢ is open and injective, take into account Lemma 3.5(3)
and follow the proof of the same facts fer; [2, (14.3)]. On the other hang; is always
continuous. O

Next we see thab (G, I'G), andw(I" G, G) are the natural analogs to the weak and to
the weak* topologies defined in a topological vector space and in its dual respectively.

Lemma 3.7. Let G be an Abelian topological group.
(1) The dual group ofG, w(G, I'G)) is I'G.
(2) If I’ G separates points daf, then every continuous character 6RG, w(I"G, G))
is an evaluation at some point 6f, i.e., the dual group ofI"G, w(I" G, G)) can be
algebraically identified withG.

Proof. It can be seenin [13, Theorem 3.7]0
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The identification of Lemma 3.7(2) is even topological for some classes of groups, as
we prove now:

Theorem 3.8.If G is a complete metrizable locally quasi-convex group, then the dual
groupX = (I'G, w(I'G, G))" is topologically isomorphic t@.

Proof. By Lemma 3.7(2),X can be algebraically identified witly. If K € I'G is
o(I'G, G)-compact, then it is equicontinuous by Lemma 3.4. This mean§that {z €
G: Rex(z) >0,Vx € K}is a0-neighborhoodity. On the other han®ik can be identified
with K©, and so we have that every 0-neighborhoo#iis a 0-neighborhood i6.

Conversely, ifV is a quasi-convex 0-neighborhooddh v is w(I'G, G)-compact [2,
1.5], thereforeV = 9(v9) is a 0-neighborhood iX. O

Corollary. The Pontryagin dual of a topological Abelian group is not necessarily reflexive.

Proof. Take E := (I'G, w(I"G, G)), with G = LQ[O, 1], being p > 1, and follow the
argument of Theorem 3.8.

For a locally convex vector spade we bring together the two view points, as a group
and as a space, in the next two theorems.

Theorem 3.9. Let(E, t) be alocally convex space and ®tbe a family of closed bounded
convex and balanced sets coverifigThe following statements are equivalent

(a) LE is complete under th&-topology.

(b) Every linear formf on E which ist-continuous on eachi € G, is continuous on

(E, 7).

(c) (LE,1s) is BB-reflexive, i.e.E is bicontinuously isomorphic t6. L. (LE, ts) .

(d) The group(I"E, ts) is complete.

(e) Every character orE, which is continuous on eache &, is continuous oRiE, 7).

(f) (I'E, 1s) is BB-reflexive, i.e., it is bicontinuously isomorphicltal . (I'E, ta) -

Proof. The equivalence between (a) and (b) is exactly the Grothendieck theorem. The
proof can be seen in any classical treatise, for example, [21]. In [8] it is proved that a
locally convex vector space is complete if and only if it is BB-reflexive as a vector space,
thus(a) < (c).

(b) < (e) is precisely (ii) of Lemma 3.1.

(c) & (f) and(a) < (d) are obtained through the topological isomorfismlg E —
I'sE (Lemma3.2). O

Remark. For any topological vector spaég L. E is BB-reflexive, without any conditions
on E [4]. Taking into account that’.E is bicontinuously isomorphic td@. E (for any
convergence vector spadg Satz 1 of [9]) it can be easily proved that alBpE is BB-
reflexive as a group.
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Theorem 3.10.Let (E, t) be a Hausdorff locally convex space. The following assertions
are equivalent
(a) E is complete.
(b) Every linear form onLE which isw(LE, E)-continuous on every equicontinuous
subset ofCE, is w(LE, E)-continuous on all o E.
(c) Every character on” E which isw(I" E, E)-continuous on every equicontinuous
subset of " E, isw(I"E, E)-continuous on all"E.
(d) E is BB-reflexive as a topological vector space.
(e) E is BB-reflexive as a topological group.

Proof. (a) < (b) is a standard corollary of GT, see, for example, [21].

(8 < (d) and(d) < (e) are proved in [8] and [9], respectively.

(c) = (e) In order to see thatg is a topological isomorphism, only surjectivity is to
be seen, sinceg is already an embedding (Lemma 3.6). et I'[.E. If HC T'Eis
equicontinuousy |y is w(I" E, E)-continuous by Lemma 3.3. We apply (c) together with
Lemma 3.7(2) and we obtain that there is soime E such thaty = «g (x).

(e) = (c) Let x : I'E — T be a character such thaty is w(I" E, E)-continuous for all
H C I' E equicontinuous. Taking into account thatE is a locally compact convergence
group and that every compact subsetlof is equicontinuous, by Lemma 3.5(3) we
have thaty is a A.-continuous character. Applying now (e) there exists E such that
kg (x) = x. Thusy isw(I"E, E)-continuous. O

In Theorem 3.10 BB-reflexivity cannot be substituted by reflexivity in ordinary sense.
There is a famous example of Komura of a nhoncomplete locally convex vector space
E which is topologically isomorphic t¢E});. Here E;; denotes the dual vector space
endowed with the topology of uniform convergence on the weakly bounded subgets of

4. The Grothendieck theorem for locally quasi-convex groups

In this section we deal with some approximation to the Grothendieck theorem, for
Hausdorff locally quasi-convex groups. Comparing Theorems 3.9 and 3.10 with the results
obtained in this section, we see that, with respect to completeness, the underlying groups
of topological vector spaces behave better than locally quasi-convex groups in general.
The equivalence between (a) and (b) in Theorem 4.1 confirms in a sense that the tools
of continuous convergence and BB-duality theory are appropriate in order to obtain a
generalization of the Grothendieck theorem.

Theorem 4.1. Let G be a Hausdorff locally quasi-convex topological group. Consider the
statements
() G is BB-reflexive.
(b) Every character on”G which isw(I" G, G)-continuous on every equicontinuous
subset of "G, is w(I"G, G)-continuous on all of " G.
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(c) G is complete and is surjective.
Then(a) is equivalent tdb) and they implyc).

Proof. For the proof of(a) < (b), mimic the proof of(b) < (e) in Theorem 3.10, since
the vector space structure is not used there.

We now prove that each of them implies (c). Let us show dhats surjective. Take any
continuous charactef on G”. Since on equicontinuous subsets®f the compact open
topology coincides with the pointwise one, it follows thjasatisfies the assumption of (b),
thus it is pointwise continuous ai” and so, by Lemma 3.7(2), it belongsde (G).

In order to prove thaG is complete, we use the following general theorem [5, Chap-
ter X, Section 6, Corollary 2 to Theorem 2]:

Let X be atopological spac& a collection of subsets of andY a complete uniform
space. Then, the space of all maps fréninto Y whose restrictions to the sets &f
are continuous, equipped with the topology of uniform convergence on the €&fs of
is complete.

Take X as oG, Y = T and & as the family of all equicontinuous subsets 0 .
By the quoted theorem, the spakgX, T) of all maps whose restriction to the sets®f
are continuous, endowed with ti&topology, is complete. Observing th@tcoversl" G,
we obtain that the subset formed by all characterd(itX, T) is closed, therefore also
complete. By (b) together with Lemma 3.5 we have that the latter coincides with the set of
all characters (I"G, G)-continuous, and by Lemma 3.7 it can be algebraically identified
with G. On the other hand, taking into account tidats locally quasi-convex, its original
topology coincides with thes-topology, whereS is the family af all equicontinuous
subsets of"G (see [13, Proposition 3.9]). Thus the identification is also topological and
G is complete. O

Observe that for locally convex vector spaces completeness is equivalent to BB-
reflexivity ((@) < (d) of Theorem 3.10). However, an analog in the framework of locally
quasi-convex groups does not hold as we now state:

Corollary 4.2. Let G be a Hausdorff locally quasi-convex group. The implicatitas=
(c) and (a) = (e) of Theorem3.10do not hold even G is complete metrizable and
separable.

Proof. TakeG := LQ[O, 1] (see Section 2). Being a closed subgroup at”[0, 1], it is
complete. Sinc& is metrizable and locally quasi-convex; is continuous, injective and
open in its image. By Proposition 2@ is not reflexive, therefore is not surjective.
Now we apply Theorem 4.1.0

Corollary 4.3. Let G be a Hausdorff locally quasi-convex group. The implicatidpn=

(e) of TheorenB.9does not hold even ifi is a o-compact hemi-compact locally quasi-
convex group with the property that the quasi-convex hull of any compact subset is again
compact.
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Proof. TakeG as in the previous corollary and pat= (I"G, w(I"G, G)). The G-family
will be now the set of allo (I" G, G)-compact subsets df G. The groupl's E is precisely
E” and by Theorem 3.8 can be identified with therefore it is complete. As proved in
Corollary 4.2u is not surjective. Now we apply Theorem 4.10

Each of the properties mentioned in Theorem 4.1(c), separately, do not imply (a) or (b)
as shown by the groups = LQ[O, 1] and the Komura space respectively. We do not know
if (¢) implies (a) and (b). For the very special class of nuclear groups [2], the following can
be stated:

Corollary 4.4. Let G be a nuclear topological groupor a locally convex vector groyp
The following assertions are equivalent
(a) G is BB-reflexive.
(b) Every character onI"G which is pointwise continuous on every equicontinuous
subset of" G, is pointwise continuous on all dfG.
(c) G iscomplete.

Proof. We prove that completeness is equivalent to BB-reflexivity, and the equivalence
between (a) and (b) is as in Theorem 4.1.

Let G be a complete nuclear topological group. By [1, Theorem 21G3Jcan be
embedded as a dually closed and dually embedded subgroup of a product of complete,
metrizable nuclear groups. The BB-reflexivity 6f is proved taking into account the
following facts:

(1) Every complete metrizable nuclear group is reflexive in Pontryagin sense [2, (17.3)].

(2) Metrizable Pontryagin reflexive groups are BB-reflexive [11]. Thus every factor

group in the above mentioned product is BB-reflexive.

(3) Products of BB-reflexive groups are BB-reflexive [10].

(4) Dually closed and embedded subgroups of BB-reflexive groups are also BB-

reflexive [7].
Conversely, any BB-reflexive group must be complete. The proof for locally convex vector
groups is similar [2, (15.7)]. O
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