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Topological defects after a quench in a Beard-Marangoni convection system
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We report experimental evidence of the fact that, in"a@d-Marangoni conduction-convection transition,
the density of defects in the emerging structure scales as a power law in the quench time needed for the control
parameter to ramp through the threshold. The obtained scaling exponents differ from the ones predicted and
observed in the case in which the defects correspond to zeros in the amplitude of the global two-dimensional
field.
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Pattern formation in space extended systems is a subjeatso the initial density of defects in the structure. Further-
that has received much attention in nonlinear science duringnore, it is expected that this process leads to a universal
the last decadegd]. One of the most important features of a scaling law for the defect density in the appearing structure,
pattern-forming system is the appearance of phase singulafthich depends only upon the space dimension, topology,
ties or topological defects, associated, in general, with &nd dissipative character of the systgi

growing pattern. If one considers fields extended in two_ ' Order to give a solid ground to the above argument,
. . o several experiments were performed in nonequilibrium phase
space dimensions, defects are pointlike structures such th

. : o ) nsition systems, among others in superfluid heli@hand
the circulation of the phase gradient is a multiple of 2n jiquid crystals[10]. More recently, another kind of experi-
any path surrounding thefthus the name “phase singulari- ment, where the breaking supercritical transition was consid-
ties”). ered between two stationary nonequilibrium states, was re-

Defect formation, statistics, and dynamics were largelyported in a nonlinear optical systei].

investigated in the past, both theoretically and experimen- Both theoretical[8] and experimental11] evidence of
tally [2,3]. Moreover, their role in mediating turbulence in universal scaling laws for the defect density in second order
large aspect ratio hydrodynamical systems was investigatd@hase'transmons_focused on the case of defects generateq as
in fluid thermal convectiof4,5], in surface wavefs], and in ~ Z€ros in the amplitude of the global field. The purpose of this

numerical and analytical treatments of partial differentialP2P€r IS twofold. We first aim at verifying that a scaling law
equationg7]. is present in symmetry-breaking phase transitions, leading to

At this stage, it should be remarked that a topologicalthe appearance of defects whiake notzeros of the global

. ; . . s field. Second, we aim at comparing these results with results
defect oftho—dmje.n_sm_nal f'e.ld may b_e realized in d'ffere.mobtained previously, pointing out analogies and differences
ways. A first possnpmty IS havmg a point Where th? ampl[— between the two cases. The most important difference is that
tude of a complex field vanishes, thus inducing a singularit

, AR ) 9 < ¥in the former case the defects correspond to points where the
in the phase. This is the case of a dislocation in a pattergy siem retains the amplitude of the state before the bifurca-
where the field has a zero value in its amplitude and a disgon while in the latter case this does not occur.
continuity in its phas¢3]. However, in a hexagonal pattern, — Here we report experimental results for the defect density
three coupled normal modes with generally different ampli-in a conduction-convection bifurcation of a  ®wd-
tudes concur in the formation of the global field. In this caseMarangoni system. The considered bifurcation is a
the most stable topological defect is realized in a point ofsymmetry-breaking one. The state below the transition point
space wherein only the amplitudes of two modes vanish at a homogeneous conduction state, while the state above the
once. An example of this latter situation is the appearance afansition is a hexagonal pattern. This bifurcation was re-
the so called penta-hepta structure in hexagonal fi&Hs ported[12] as a subcritical one. Due to the small value of the
Recently it was argued that defects played a role in phassubcriticality (e, is of the order of 102?), for all quench
transitions occurring in the universe cooling process after théimes the system is already frozen when the control param-
Big Bang, yielding to the apparition of galaxi¢8]. The eter e reaches a value,. As a result, we argue that this
argument may be summarized as follows. Consider a systegubcriticality is not relevant to the expected behavior of the
in a state just below a symmetry-breaking transition. By apsystem in the reported time quenches. In our experiment, the
proaching the bifurcation point with the control parameter,defect creation takes place at characteristic times on the or-
the correlation length tries to adapt adiabatically to its stader of 1 min, while the pattern evolution time scale is on the
tionary value, but, due to the slowing down near the criticalorder of 1 h, thus allowing one to cross over the threshold
point, its change rate is limited by a maximum velocity in theand observe defects over a sufficiently large time range.
propagation of perturbations in the system. At the point at The experiments were performed with two similar setups
which the correlation length can no longer follow the [see Fig. 1a)]. The convective fluid consists in a layer of
changes in the control parameter, it freezes, setting up thsilicone oil confined in a cylindric containefof po-
initial value after the breaking symmetry transition, and thuslioximetilene and polyamide, both having thermal conduc-
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a) = Polsicfightsaies ity k=1.037x10 7, 1.067x10 /, and 1.1X 10 ' m?s %
Mifror _— (c) Prandtl numbers: 482, 937 and 3097/4); (d) fluid
y depths 1.3, 1.4, and 1.9 mrte) and diameters of the cell
i ------------------- e 127, 137, and 137 mm.
Local temperatures were measured by three T-type ther-
mocouples[see Fig. 1a)], the first one located under the
[ Beam splitter EPQ— metallic plate [4), the second over the metallic platé,],
A and the third on the fluid surfac&{). T, andT; were put in
\ w the cell center only when necessary for the measurement. All
L thermocouples are connected with a computer controlled
Silicone oil multimeter. Information on the global temperature field is
Heater_ | e gathered through shadowgraph-type techniq@8$ and the
: , Thermoeouples; Hear flux sersor resulting image is captured by a charge-coupled-device cam-
s i era and sent to a computer.

Let us summarize the measurement trial. The system is
initially set in a stationary conductive stafbke the one
shown in Fig. 1b), left] just below the convective threshold
by applying a poweP; to the heater. The control parameter
is the reduced temperature difference, definedeby(AT
—AT.)/AT,, where AT=T,—T;, and AT, is the AT in
which the conduction state is linearly unstable. Then, we
suddenly increase the power delivered to the systerR,to
[see the curve in Fig.(b), top]. As a consequence, in-
creases linearlysee the curve in Fig.(Ib), bottom], with a
slope depending oR,— P;. The linear dependence efvs
P,— P, was verified by a previous learning section. For each
chosen viscosity, a well defined temperatligeexists which
corresponds to a formed pattern with a value of the control

FIG. 1. (a) The experimental setufh) Sketch of the experimen- parameter equal té €5, which depends on the measurement.
tal process. Starting with a conductive stéédt pattern and apply- ~ We furthermore define the quench tim@, the time thafT;
ing a step in the delivered poweupper plo}, a linear increase in  requires to attain & value, assuming the initial time to be
the control parameter is inducéidwer plod, leading the system to  the instant at which the linear ramp of the control parameter
cross the conduction-convection threshold and to reach a fixed COlhegins. Afterr,, an image of the pattern is captured. This
trol parameter value after a timg, . At this moment, a framéike process is repeated ten times for each slog@t, this num-
the one shown in the right patteris captured in which the bright e eing a satisfactory compromise between the reduction
points correspond to the hotter fluid going upward. of the statistic error and the time spent in each measurement

(of the order of hours
tivities of the order of the silicone 0il The bottom of the cell This way one obtains imagékke the one shown in Fig.
is a metallic plate polished on the upper side, and with &l(b), right] where the bright zones correspond to hot points
glued circular heater on the lower side connected to a comwith the fluid going upwards. The image analysis begins
puter controlled power supply. with a program determining the hot point positions, and

The choice of fluids used in the experiment was dictateduilding its corresponding Voronoi cdll4], thus identifying
mainly by their physical properties, i.e., namely by the factsthe connectivity properties of each poiigbordination num-
that they behave as an Oberbeck-Boussinesq fluid for thiber, etc). Since the structure emerging in a’r2ed-
range of temperatures applied along the whole experimentalarangoni convection near the primary bifurcation is a hex-
trial, they are transparent to the light, and they are allowableagonal pattern, the centers of the hexagons form a collection
over a wide range of kinematical viscosities. In particular,of points, each one having six nearest neighbors. The most
the high Prandtl number of the three fluids points out that thestable topological defect is the penta-hepta structure, leading
velocity field is slaved to the temperature field. Moreover,to two adjacent points with five and seven nearest neighbors
the control parameter distance between the primary and seeach. On the other side, in a state far from stationarity many
ondary bifurcations is much larger than the changes perether defects may be observed, thus making complicated the
formed during the experimental procedure. The fluid layeruse of complex demodulation techniques. As a consequence,
depths used induce a mostly surface tension driven instabibur approach to count defects consists of considering them as
ity. The relevant physical parameters used in the experimentsne of the following possibilitie$15]: (a) points with a co-
are reported beloWfirst, second, and third numbers refer to ordination number different from @p) points with a coor-
fluid with a kinematic viscosityr of 50, 100, and 350 ¢S dination number equal to 5, ar{d) points with a coordina-
(centistokey respectively: (a) thermal conductivities tion number equal to fmostly corresponding to penta-hepta
0.1505, 0.1557, and 0.16 Wm°C™*; (b) thermal diffusiv-  defects.
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It is important to remark that, in general, all these count- -16F T ' ' ]
ing methods introduce a coarsening spatial scale of the order
of the pattern wavelength. However, this problem becomes

relevant only for defect densities greater tlianof the order —~ 2} .
of) 1, which is not the case presented in this paper. =

Let us report how the density of defect§p 220 |
= (number of defec)¢(number of hot points) depends 24k i
upon 7. The aspect rati@a= ¢/\ is the ratio between the 5 6lP= (0.3710.08)1‘]‘(0-27‘—'0-05) ]

diameter of the celkp and the characteristic wavelength of 3 I S
the patternk. In our experiment is 25, 22, and 15 for 50, In(t,)
100, and 350 cS, respectively.

Several time scales in our experiment contribute to limit-

ing the range for the choice of;. In fact, in order to make 02

comparisons with the relevant time scales associated with the -

pattern formation, it is useful to refer te;=74/2, which g'0‘3_ {

marks the time interval the system is above threshold. The 2.

first time scale is imposed by our power supply and the ther- (5 -04[ o nearest neighbors =7

mal inertia of the metallic platéof the order of 80 s), lim- i o mearest neighbors = 5 b)
iting the hand of fast quenches. A further limit to smaj| -0.51 0_nearest nelghbors # 6

comes from the vertical thermal diffusion time, defined as I a0 300400
the ratio of the square of the fluid depth to the thermal dif- Viscosity [cS]

fusivity (from the parameters reported above, this may be
estimated as 16, 18, and 32 s, for viscosities of 50, 100, and FIG. 2. (a) Defect density(adimensional quantijyvs 7, (adi-

350 cS respectivejy A natural limit to |argeq-(’1 comes from  mensional quantityfor a viscosity of 350 cS. Both horizontal and
the following. Due to the particular boundary conditions im- vertical axes are on a logarithmic scale. The defect counting method
posed in our setup, the resulting temperature gradients af®rresponds to a coordination number oft.Scaling exponent for
spatially nonuniform, the dissipated energy being larger athe 'defect dens_ither_ticaI axis,_ ad_imensional guantjtys the vis-

the periphery than at the center of the heater. As a cons&osity of thg fde(honzonta! axis, in cP Results are drawn for the
quence, a drift process of the structure from the center to thire counting methods, giving the same result. The legend in the
periphery is induced, making the center a source of defecté'?s_et specifies the partlcular method used to measure the different
and the boundary a defect sink. In other words, during th&°Nts represented in the plot.

formation of the cellular pattern, defects are nucleated close

o th I ¢ dvected by the drift ¢ d th In all cases the number of measured defects is much
0 the cell center, advected by the ariit process towar ?arger than 50, usually being around 75. This fact warrants
cell boundaries, and eventually annihilated in the cell bound

e that we have enough statistics to extract results about scalin
ary layer. In order for our statistics not to be altered by th 9 g

Saw properties
above process, we limit the calculation of the defect density — ; ;
) ’ . From an experimental point of vi n n th
in the central area of the pattefthat is, we do not count om an experimental point of viewry depends on the

. . . initial and final chosen values &T. However, this depen-
dgfects whose d|st.a'nce s less t'han ffom the bqundarles, dence can be avoided by taking new measurements of the
this way also avoiding accounting for all spurious defects

. . -~ " “temperature differenceAT in the fluid during the power
e[nergmg within the boundary layer ajeas well as we limit ramp delivery. This way, one obtains the slope of the tem-

7q to be smaller than the drift characteristic tintg perature difference vs time A/=[AT(t=ry)—AT(t
— ~ i . q
= (M vnexagond~ 2304, 2616, and 3840 s for viscosities of =0)]/7q. Now 7, plays the same role as the quench time,

50, (1103 and|350 €S rr]eSpeCtivelvh@xagonsbei”9 the mea- 't does not depend on the initial and final points. Four
sured drift velocity of the structuje measurements of this type for each ramp have been per-
Furthermore, once, has been selected, one has o takegrmed. With the help of 40 temperature measurements cor-

care that the quench time is compatible with the mean anniresponding to ten different ramps, a function to transfogm
hilation time of defectsty, to prevent the defect statistic ;, . is obtained
3 :

from being altered by defect annihilation processes, whose |, Fig. 2(a) we report the defect density versas. Each
time scale can be estimated as the ratio of the mean defectyre point is the mean of ten measurements, and the error
defect distancé to the mean defect velocityy. By assum-  pars in the two axes are the standard deviations of the density
ing | to be equal the correlation lengtwhich depends upon ot gefects and ofr, . The best fit for this curve is a power

7¢) and by estimating 4, the associatet=1/v4 comes out |5 Similar curves are obtained for the other counting meth-
to be of the order of 2850, 2500, and 6000 s when the largpds, and also for the other chosen viscosities.

est Ta is considered in the measurements for viscosities of Figure 2b) reports the power law exponent for the three
50, 100, and 350 cS, respectively. As a result of all theviscosities, with their errors. Within the experimental error,
above limitations, the smalldtargen 7-[q used in the experi- the results are the same for all the counting methods used,
ment are 821550, 96 (2045, and 103(2182s for 50, 100, and point to an exponent always greater thah. Only the

and 350 cS, respectively. method that considers defects as points with coordination
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numbers equal to 7 differs from the other two methods. Onef the global field amplitude, and the dynamics of the three
explanation for this fact is the existence of defects formedlifferent modal amplitudes concurring to the formation of
only by points with a coordination number equal to 5. Con-the structure should be taken into account. Another possible
sequently, this kind of defect is not taken into account by thiseason could be related to the fact that our case cannot be
method. encompassed within the assumption of mean field theory
In conclusion, our results show that the density of defectsg].
vs the characteristic quench time follows a scaling law for a
conduction-convection transition in a Bard-Marangoni The authors acknowledge F. T. Arecchi, M. Bestehorn, J.
system. The values of the scaling exponents increase as tBairguete, J. Kurths, D. Maza, |. Procaccia, and P. L. Ra-
viscosity increases, for the whole range of considered vismazza for useful discussions. Work was partly supported by
cosities. Italy-Spain integrated action HI97-30 and by the Spanish
The values for the exponents differ from the ones pre-DGICYT Contract No. PB98-0208. S. C. acknowledges fi-
dicted by Zurek for condensed matter systems. A possibl@ancial support from the “Asociacibde Amigos de la Uni-
explanation for this difference may rely on the fact that ourversidad de Navarra.” S. B. acknowledges financial support
experiment displays defects whicdo notresult from zeros from EU Contract No. ERBFMBICT983466.
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