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Topological defects after a quench in a Be´nard-Marangoni convection system
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~Received 5 October 2000; revised manuscripts received 3 January 2001; published 24 April 2001!

We report experimental evidence of the fact that, in a Be´nard-Marangoni conduction-convection transition,
the density of defects in the emerging structure scales as a power law in the quench time needed for the control
parameter to ramp through the threshold. The obtained scaling exponents differ from the ones predicted and
observed in the case in which the defects correspond to zeros in the amplitude of the global two-dimensional
field.
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Pattern formation in space extended systems is a sub
that has received much attention in nonlinear science du
the last decades@1#. One of the most important features of
pattern-forming system is the appearance of phase singu
ties or topological defects, associated, in general, wit
growing pattern. If one considers fields extended in t
space dimensions, defects are pointlike structures such
the circulation of the phase gradient is a multiple of 2p on
any path surrounding them~thus the name ‘‘phase singular
ties’’!.

Defect formation, statistics, and dynamics were larg
investigated in the past, both theoretically and experim
tally @2,3#. Moreover, their role in mediating turbulence
large aspect ratio hydrodynamical systems was investig
in fluid thermal convection@4,5#, in surface waves@6#, and in
numerical and analytical treatments of partial different
equations@7#.

At this stage, it should be remarked that a topologi
defect of a two-dimensional field may be realized in differe
ways. A first possibility is having a point where the amp
tude of a complex field vanishes, thus inducing a singula
in the phase. This is the case of a dislocation in a pat
where the field has a zero value in its amplitude and a
continuity in its phase@3#. However, in a hexagonal pattern
three coupled normal modes with generally different am
tudes concur in the formation of the global field. In this ca
the most stable topological defect is realized in a point
space wherein only the amplitudes of two modes vanish
once. An example of this latter situation is the appearanc
the so called penta-hepta structure in hexagonal fields@5#.

Recently it was argued that defects played a role in ph
transitions occurring in the universe cooling process after
Big Bang, yielding to the apparition of galaxies@8#. The
argument may be summarized as follows. Consider a sys
in a state just below a symmetry-breaking transition. By
proaching the bifurcation point with the control paramet
the correlation length tries to adapt adiabatically to its s
tionary value, but, due to the slowing down near the criti
point, its change rate is limited by a maximum velocity in t
propagation of perturbations in the system. At the point
which the correlation length can no longer follow th
changes in the control parameter, it freezes, setting up
initial value after the breaking symmetry transition, and th
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also the initial density of defects in the structure. Furth
more, it is expected that this process leads to a unive
scaling law for the defect density in the appearing structu
which depends only upon the space dimension, topolo
and dissipative character of the system@8#.

In order to give a solid ground to the above argume
several experiments were performed in nonequilibrium ph
transition systems, among others in superfluid helium@9# and
liquid crystals@10#. More recently, another kind of exper
ment, where the breaking supercritical transition was con
ered between two stationary nonequilibrium states, was
ported in a nonlinear optical system@11#.

Both theoretical@8# and experimental@11# evidence of
universal scaling laws for the defect density in second or
phase transitions focused on the case of defects generat
zeros in the amplitude of the global field. The purpose of t
paper is twofold. We first aim at verifying that a scaling la
is present in symmetry-breaking phase transitions, leadin
the appearance of defects whichare notzeros of the global
field. Second, we aim at comparing these results with res
obtained previously, pointing out analogies and differen
between the two cases. The most important difference is
in the former case the defects correspond to points where
system retains the amplitude of the state before the bifu
tion, while in the latter case this does not occur.

Here we report experimental results for the defect den
in a conduction-convection bifurcation of a Be´nard-
Marangoni system. The considered bifurcation is
symmetry-breaking one. The state below the transition po
is a homogeneous conduction state, while the state above
transition is a hexagonal pattern. This bifurcation was
ported@12# as a subcritical one. Due to the small value of t
subcriticality (ea is of the order of 1022), for all quench
times the system is already frozen when the control par
eter e reaches a valueea . As a result, we argue that thi
subcriticality is not relevant to the expected behavior of
system in the reported time quenches. In our experiment,
defect creation takes place at characteristic times on the
der of 1 min, while the pattern evolution time scale is on t
order of 1 h, thus allowing one to cross over the thresh
and observe defects over a sufficiently large time range.

The experiments were performed with two similar setu
@see Fig. 1~a!#. The convective fluid consists in a layer o
silicone oil confined in a cylindric container~of po-
lioximetilene and polyamide, both having thermal condu
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 057301
tivities of the order of the silicone oil!. The bottom of the cell
is a metallic plate polished on the upper side, and with
glued circular heater on the lower side connected to a c
puter controlled power supply.

The choice of fluids used in the experiment was dicta
mainly by their physical properties, i.e., namely by the fa
that they behave as an Oberbeck-Boussinesq fluid for
range of temperatures applied along the whole experime
trial, they are transparent to the light, and they are allowa
over a wide range of kinematical viscosities. In particul
the high Prandtl number of the three fluids points out that
velocity field is slaved to the temperature field. Moreov
the control parameter distance between the primary and
ondary bifurcations is much larger than the changes p
formed during the experimental procedure. The fluid la
depths used induce a mostly surface tension driven insta
ity. The relevant physical parameters used in the experim
are reported below@first, second, and third numbers refer
fluid with a kinematic viscosityn of 50, 100, and 350 cS
~centistokes!, respectively#: ~a! thermal conductivities
0.1505, 0.1557, and 0.16 W m21 °C21; ~b! thermal diffusiv-

FIG. 1. ~a! The experimental setup.~b! Sketch of the experimen
tal process. Starting with a conductive state~left pattern! and apply-
ing a step in the delivered power~upper plot!, a linear increase in
the control parameter is induced~lower plot!, leading the system to
cross the conduction-convection threshold and to reach a fixed
trol parameter value after a timetq . At this moment, a frame~like
the one shown in the right pattern! is captured in which the brigh
points correspond to the hotter fluid going upward.
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ity k51.03731027, 1.06731027, and 1.1331027 m2 s21;
~c! Prandtl numbers: 482, 937 and 3097 (n/k); ~d! fluid
depths 1.3, 1.4, and 1.9 mm;~e! and diameters of the cel
127, 137, and 137 mm.

Local temperatures were measured by three T-type t
mocouples@see Fig. 1~a!#, the first one located under th
metallic plate (T1), the second over the metallic plate (T2),
and the third on the fluid surface (T3). T2 andT3 were put in
the cell center only when necessary for the measurement
thermocouples are connected with a computer contro
multimeter. Information on the global temperature field
gathered through shadowgraph-type techniques@13#, and the
resulting image is captured by a charge-coupled-device c
era and sent to a computer.

Let us summarize the measurement trial. The system
initially set in a stationary conductive state@like the one
shown in Fig. 1~b!, left# just below the convective threshol
by applying a powerP1 to the heater. The control paramet
is the reduced temperature difference, defined bye5(DT
2DTc)/DTc, where DT5T22T3, and DTc is the DT in
which the conduction state is linearly unstable. Then,
suddenly increase the power delivered to the system toP2
@see the curve in Fig. 1~b!, top#. As a consequence,e in-
creases linearly@see the curve in Fig. 1~b!, bottom#, with a
slope depending onP22P1. The linear dependence ofe vs
P22P1 was verified by a previous learning section. For ea
chosen viscosity, a well defined temperatureT0 exists which
corresponds to a formed pattern with a value of the con
parameter equal to1e0, which depends on the measureme
We furthermore define the quench timetq , the time thatT1
requires to attain aT0 value, assuming the initial time to b
the instant at which the linear ramp of the control parame
begins. Aftertq , an image of the pattern is captured. Th
process is repeated ten times for each slope]e/]t, this num-
ber being a satisfactory compromise between the reduc
of the statistic error and the time spent in each measurem
~of the order of hours!.

This way one obtains images@like the one shown in Fig.
1~b!, right# where the bright zones correspond to hot poi
with the fluid going upwards. The image analysis beg
with a program determining the hot point positions, a
building its corresponding Voronoi cell@14#, thus identifying
the connectivity properties of each point~coordination num-
ber, etc.!. Since the structure emerging in a Be´nard-
Marangoni convection near the primary bifurcation is a he
agonal pattern, the centers of the hexagons form a collec
of points, each one having six nearest neighbors. The m
stable topological defect is the penta-hepta structure, lea
to two adjacent points with five and seven nearest neighb
each. On the other side, in a state far from stationarity m
other defects may be observed, thus making complicated
use of complex demodulation techniques. As a conseque
our approach to count defects consists of considering them
one of the following possibilities@15#: ~a! points with a co-
ordination number different from 6,~b! points with a coor-
dination number equal to 5, and~c! points with a coordina-
tion number equal to 7~mostly corresponding to penta-hep
defects!.

n-
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BRIEF REPORTS PHYSICAL REVIEW E 63 057301
It is important to remark that, in general, all these cou
ing methods introduce a coarsening spatial scale of the o
of the pattern wavelength. However, this problem becom
relevant only for defect densities greater than~or of the order
of! 1, which is not the case presented in this paper.

Let us report how the density of defects@r
5(number of defects)/(number of hot points)# depends
upon tq . The aspect ratioa[f/l is the ratio between the
diameter of the cellf and the characteristic wavelength
the patternl. In our experimenta is 25, 22, and 15 for 50
100, and 350 cS, respectively.

Several time scales in our experiment contribute to lim
ing the range for the choice oftq . In fact, in order to make
comparisons with the relevant time scales associated with
pattern formation, it is useful to refer totq85tq/2, which
marks the time interval the system is above threshold.
first time scale is imposed by our power supply and the th
mal inertia of the metallic plate~of the order of 80 s), lim-
iting the hand of fast quenches. A further limit to smalltq8
comes from the vertical thermal diffusion time, defined
the ratio of the square of the fluid depth to the thermal d
fusivity ~from the parameters reported above, this may
estimated as 16, 18, and 32 s, for viscosities of 50, 100,
350 cS respectively!. A natural limit to largetq8 comes from
the following. Due to the particular boundary conditions im
posed in our setup, the resulting temperature gradients
spatially nonuniform, the dissipated energy being large
the periphery than at the center of the heater. As a co
quence, a drift process of the structure from the center to
periphery is induced, making the center a source of defe
and the boundary a defect sink. In other words, during
formation of the cellular pattern, defects are nucleated cl
to the cell center, advected by the drift process toward
cell boundaries, and eventually annihilated in the cell bou
ary layer. In order for our statistics not to be altered by
above process, we limit the calculation of the defect den
in the central area of the pattern~that is, we do not coun
defects whose distance is less than 2l from the boundaries
this way also avoiding accounting for all spurious defe
emerging within the boundary layer area!, as well as we limit
tq8 to be smaller than the drift characteristic timeth

5(l/vhexagons);2304, 2616, and 3840 s for viscosities
50, 100, and 350 cS respectively (vhexagonsbeing the mea-
sured drift velocity of the structure!.

Furthermore, oncetq8 has been selected, one has to ta
care that the quench time is compatible with the mean a
hilation time of defectstd , to prevent the defect statisti
from being altered by defect annihilation processes, wh
time scale can be estimated as the ratio of the mean de
defect distancel to the mean defect velocityvd . By assum-
ing l to be equal the correlation length~which depends upon
tq8! and by estimatingvd , the associatedtd5 l /vd comes out
to be of the order of 2850, 2500, and 6000 s when the la
est tq8 is considered in the measurements for viscosities
50, 100, and 350 cS, respectively. As a result of all
above limitations, the smaller~larger! tq8 used in the experi-
ment are 82~1550!, 96 ~2045!, and 103~2182!s for 50, 100,
and 350 cS, respectively.
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In all cases the number of measured defects is m
larger than 50, usually being around 75. This fact warra
that we have enough statistics to extract results about sca
law properties.

From an experimental point of view,tq depends on the
initial and final chosen values ofDT. However, this depen-
dence can be avoided by taking new measurements of
temperature differencesDT in the fluid during the power
ramp delivery. This way, one obtains the slope of the te
perature difference vs time 1/tv5@DT(t5tq)2DT(t
50)#/tq . Now tv plays the same role as the quench tim
but it does not depend on the initial and final points. Fo
measurements of this type for each ramp have been
formed. With the help of 40 temperature measurements
responding to ten different ramps, a function to transformtq
in tv is obtained.

In Fig. 2~a! we report the defect density versustv . Each
curve point is the mean of ten measurements, and the e
bars in the two axes are the standard deviations of the den
of defects and oftv . The best fit for this curve is a powe
law. Similar curves are obtained for the other counting me
ods, and also for the other chosen viscosities.

Figure 2~b! reports the power law exponent for the thr
viscosities, with their errors. Within the experimental erro
the results are the same for all the counting methods u
and point to an exponent always greater than2 1

2 . Only the
method that considers defects as points with coordina

FIG. 2. ~a! Defect density~adimensional quantity! vs tv ~adi-
mensional quantity! for a viscosity of 350 cS. Both horizontal an
vertical axes are on a logarithmic scale. The defect counting me
corresponds to a coordination number of 5.~b! Scaling exponent for
the defect density~vertical axis, adimensional quantity! vs the vis-
cosity of the fluid~horizontal axis, in cS!. Results are drawn for the
three counting methods, giving the same result. The legend in
inset specifies the particular method used to measure the diffe
points represented in the plot.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 057301
numbers equal to 7 differs from the other two methods. O
explanation for this fact is the existence of defects form
only by points with a coordination number equal to 5. Co
sequently, this kind of defect is not taken into account by t
method.

In conclusion, our results show that the density of defe
vs the characteristic quench time follows a scaling law fo
conduction-convection transition in a Be´nard-Marangoni
system. The values of the scaling exponents increase a
viscosity increases, for the whole range of considered
cosities.

The values for the exponents differ from the ones p
dicted by Zurek for condensed matter systems. A poss
explanation for this difference may rely on the fact that o
experiment displays defects whichdo not result from zeros
or
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of the global field amplitude, and the dynamics of the thr
different modal amplitudes concurring to the formation
the structure should be taken into account. Another poss
reason could be related to the fact that our case canno
encompassed within the assumption of mean field the
@16#.
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