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We study the convective motion forced by lateral heating on a liquid layer. The movement is
caused by two forces: buoyancy and thermocapillarity on the free surface, which is open to the
air. As soon as a temperature gradient is imposed along the liquid layer, the fluid begins to
move. When a certain threshold of the temperature difference is attained, this flow destabilizes
and oscillations appear. We have performed an experiment to characterize the thermocapillary
waves in a rectangular container whose dimensions can be continuously changed. This way, we
are able to investigate how boundaries affect the threshold for the instability, as well as their
consequences on other features of the waves.

1. Introduction

The convective motion generated in a fluid layer
open to the air heated from the sides is not com-
pletely understood. A wide variety of instabilities
rise up in this system depending on the value of sev-
eral parameters: height of fluid h, horizontal tem-
perature difference between the sides ∆T , value of
the length lx between these sides or ly between the
horizontal walls perpendicular to them, Pr Prandtl
number of the fluid, Bi the Biot number, and so
on. In the case of a very small fluid layer — typi-
cally one or two millimeters — subjected to a hor-
izontal temperature difference, two forces appear
which are responsible for the movement of the fluid:
the surface tension σ and the buoyancy. As the
temperature increases the surface tension decreases
according to the law

σ(T ) = σ(T0) + γ(T − T0)

γ being usually negative and T0 a reference
temperature. The density ρ of the fluid varies in
the way

ρ(T ) = ρ(T0)[1− α(T − T0)]

α being the thermal expansion coefficient. As a
consequence, as soon as a temperature difference is

imposed, the fluid begins to move, forming a basic
flow which goes from the hot side (T+) to the cold
side (T−) on the surface, and in the opposite sense
at the bottom. For a bigger value of the tempera-
ture difference the basic flow destabilizes giving rise
to a pair of hydrothermal waves that travel towards
the hot side forming an angle with respect to the
temperature gradient.

Such waves — hydrothermal waves — were
predicted by Smith and Davis [1983] in their lin-
ear stability analysis. However, these authors did
not consider the buoyancy forces but only the ther-
mocapillary ones. In these conditions, the desta-
bilization process was explained qualitatively by
Smith [1986] some years later in terms of two dif-
ferent mechanisms depending on the value of the
Prandtl number. Later, the works of Parmentier
et al. [1993] and Mercier and Normand [1996] took
into account the role of the gravity in the stabil-
ity analysis. And thus other transitions were found
when the basic flow destabilizes — steady and os-
cillatory modes, rolls and waves — as the thermo-
capillary forces dominate over the buoyancy or vice
versa. These were observed in the experiments of
Daviaud and Vince [1993], Ezersky et al. [1993],
Garcimart́ın et al. [1997], Pelacho et al. [1999,
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Fig. 1. Sketch of the container (side view and top view),
showing the placement of the thermocouples. The geometry
of the cell (both lx and ly) can be changed.

2000] and Burguete et al. [1999]. However, the
characteristics of the waves (angle of propagation,
wave number, frequency, etc.) and the values of
the temperature difference for the threshold — the
stability diagram — varied from one experiment to
another.

In this work we focus on the origin of these dif-
ferences using a container with variable dimensions.
As it is shown in Fig. 1, the distance lx between the
walls at different temperatures, and the distance
ly between the walls at same temperature, can be
changed for a constant fluid height. The aspect
ratio of the container is defined as Γ = lx/ly. We
think that the geometry of the container has a
relevant influence on the mechanism and on the
appearance of the hydrothermal waves. Thus, in
our experiment the external parameters are the dis-
tances lx and ly, and the temperature difference
∆T = T+ − T− between the side walls. As the
instability mechanism has not been yet completely
explained, we hope that our study will help to un-
derstand it. In the next section the experimental
setup is reported. In Sec. 3 we provide our results
and the conclusions are drawn in Sec. 4.

2. Experimental Setup

The fluid used is a silicon oil of Pr = 10 and kine-
matic viscosity ν = 0.65 cSt. The physical prop-
erties of the fluid remain approximately constant
in the range of the applied temperatures, so that
the Boussinesq approximation is valid. The fluid
is placed in a container open to the air. Its height
is kept constant at h = 1.5 mm, as measured us-
ing a micrometer with an accuracy of 10 microns.
A transparent cover is placed over the container in
order to reduce the evaporation of the fluid, which
is about 2% in volume during the time needed to
make an experimental trial.

The open container (Fig. 1) is formed by four
walls. Two of the opposite walls are made of copper
in order to provide a constant temperature along
each one. The distance between them is called lx.
The other two opposite walls are made of Plexiglas,
having a similar thermal conductivity with respect
to that of the fluid. The distance between these
sides is ly. Both lengths lx and ly can be varied
between 41 mm and 100 mm. A temperature T+

is imposed on one of the copper walls (x = 0) and
a temperature T− < T+ on the other wall. These
temperatures are approximately symmetrical to the
room temperature (' 22◦C). Thus, a temperature
gradient is established along the x axis. The mass
of the copper pieces is big enough to ensure that
their temperature is not disturbed by the tempera-
ture oscillations of the fluid. At the bottom of the
container an aluminum sheet provides an approxi-
mately linear temperature profile.

In order to measure T+ and T− two thermocou-
ples are held on the inner side of the copper blocks
near the fluid. A thermocouple is also placed above
the fluid at the middle of the cell to monitor the
room temperature. The control of T+ and T− was
achieved as follows. Cool water coming from a ther-
mostatic bath (±0.01◦C) is circulated inside one of
the copper blocks. On the other copper block an
electrical heater, glued to its outer side, is controlled
by means of a PID loop (see Fig. 1). The amplitude
of temperature oscillations on both sides is smaller
than 0.02◦C.

As it is shown in Fig. 2, a shadowgraph of the
fluid is captured by a camera and stored in a com-
puter. Spatiotemporal diagrams are made in or-
der to obtain the main physical properties of the
waves: frequency, wave number and angle of prop-
agation. Other characteristics of the waves, such
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Fig. 2. Experimental setup: the shadowgraphy, along with the procedure to obtain the group (vg) and phase (vph) velocity.

as the group velocity and the local values of the
frequency and wave number, have been found using
the complex demodulation technique (see [Burguete
et al., 1999]).

Most of the measurements of the temperature
field in the fluid were obtained by introducing a
thermocouple in it. This thermocouple was moved
by a computer-controlled micrometric positioning
system along the xyz axes. Temperature data were
taken at different space and time intervals depend-
ing on whether the thermocouple was moving in the
x, y or z axis. Depending on the value of lx, 50 to
100 temperature data points are registered to ob-
tain a good temperature profile. The time spent in
each measurement is longer than the response time
of the thermocouple τth < 0.2s. The temperature
on the surface was obtained by an infrared sensor
placed 10 mm above the surface.

3. Results

As it is well established, as soon as a temperature
gradient is imposed along a shallow fluid layer open
to the air, a flow develops in it. There is no thresh-
old for the temperature gradient below which the
fluid is at rest. Therefore the circulation is called
basic flow. It consists of a single convective roll
moving toward the cold wall at the surface and from
the wall to the heater at the bottom. If the temper-
ature gradient is increased, the basic flow destabi-
lizes in a way that depends on the particular values
of the parameters that define the fluid layer. A
summary of them can be found in [Burguete et al.,
2001]. Here we choose the conditions such that
the primary instability gives rise to thermocapil-
lary waves. The features of these waves agree with
the theoretical description provided by Smith and

Fig. 3. (Left) Temperature oscillations versus depth for h = 2 mm. Each line corresponds to a different depth: from top
to bottom, every 0.5 mm. The geometry of the container for which these series have been obtained is lx = 60 mm and
ly = 50 mm. (Right) Power spectrum of the temperature oscillations for the same situation at half depth.
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Davis [1983], as described elsewhere [Pelacho et al.,
2000]. They travel from the cold to the hot wall,
at a certain angle with respect to the temperature
gradient. The underlying physical process involves
an interaction between the velocity field and the
temperature field [Smith, 1986].

One important aspect that we have confirmed
is that hydrothermal waves extend over the whole
depth of the fluid layer, as opposed to surface waves.
This was explained by Smith [1986]. In order to
prove this, we have measured the temperature os-
cillations at different depths (Fig. 3). The interest-
ing feature is that the amplitude of the waves does
not decrease inside the fluid; on the contrary, waves
seem to be weaker near the surface, but this may
be due to heat losses to the air and no conclusive
explanation can be provided at the moment.

Another piece of information that adds to the
description is the variation of the wave amplitude
along the direction of the temperature gradient.
This can help to establish whether the instability
is convective or absolute. With the dispersion rela-
tion — obtained by complex demodulation — group
velocity has been determined [Pelacho et al., 2000],
and indeed waves travel from the cold to the hot
side. As the group velocity is not zero at thresh-
old, the instability is convective. In fact it is possi-
ble that waves are only observed after having de-
veloped to a certain point, but they could form
elsewhere near the cold wall and be entrained by
the flow towards the hot side. Recently, Xu and
Zebib [1998] performed numerical simulations and
the picture they obtain strongly suggests something
similar to this scenario. We have then measured
the amplitude of the waves along the x axis. As
the frequency of the waves is sharply defined, we
have taken the temporal series of the temperature
and then calculated the peak-to-peak amplitude by
Fourier analysis (Fig. 4). This was done at points
spaced 1 mm in the region where waves are seen.
First of all it must be noticed that from x = 0
to x = 12 mm the effects of the meniscus are not
negligible; it is from x = 12 mm where the measure-
ments make sense. In that region, it is seen that the
amplitude of the waves grows as they travel from
the cold to the hot side. The resolution of the mea-
surements is not enough to determine the growing
law. In any case, this is qualitatively similar to the
results of Xu and Zebib [1998].

The fact that the amplitude of the waves grow
as they approach the hot side may be related to
the fact that, as we showed recently [Pelacho et al.,

2000], the right way to characterize the criticality
is to give the local Marangoni number MaL, i.e. the
Marangoni number calculated with the temperature
gradient at the point considered, instead of using a
mean temperature gradient. This MaL is not con-
stant along the cell; instead it is bigger near the
walls. The temperature profile is approximately lin-
ear at the center of the cell (Fig. 5) but near the end
walls the gradient is bigger; when the temperature
difference is increased, the threshold is therefore at-
tained near the walls before than at the center.

The aim of performing this experiment in
a container with variable geometry is to try to

Fig. 4. Fourier spectra as a function of distance from the
hot side. The maximum is obtained at 12 mm. Near the wall
the waves disappear, maybe due to the meniscus.

Fig. 5. Temperature profile along x at the center of the cell,
obtained with an infrared sensor (sensitive to the surface tem-
perature). Dimensions of the fluid layer are lx = ly = 100.
The gradient is approximately constant.
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Fig. 6. The confinement effect: temperature threshold for
the appearance of the waves (+) as a function of ly, keeping
lx = 100. The solid line is a quadratic fit (see the text for an
explanation).

Fig. 7. The angle of propagation of the waves (Ψ) versus
the angle θ, which depends on the aspect ratio lx/ly.

reconcile the seemingly diverging experimental re-
sults concerning the threshold for the appearance of
the waves. Indeed, several authors provide different
results (see [Burguete et al., 2001] for a summary).
The only noticeable changes are in the geometries of
the containers. Besides, the threshold is calculated
analytically for an infinite container. Therefore dis-
crepancies could be explained by a finite size effect.

We have measured the threshold for the appearance
of the waves changing the transversal dimension ly.
As seen in Fig. 6, there is a damping effect when
ly is small. A one-dimensional Ginzburg–Landau
model gives the following law for the increase of the
threshold:

β = β∞

(
1 +

ξ2
0π

2

l2y

)

(where β is the temperature gradient at threshold,
β∞ the gradient for an infinite system and ξ0 the
correlation length) which indeed fits well the exper-
imental data. The increase in lx just causes a linear
increase in the threshold, as one could expect from
the expression of the gradient.

The direction of propagation of the waves could
also be related to the geometry. In Fig. 7 we show
the angle of propagation of the waves Ψ versus the
aspect ratio of the container through the variable
θ = arctan(lx/ly). Although the fit does not reveal
a strong dependence, a trend is clear between both
angles. We cannot provide a sound explanation to
this fact for the moment.

4. Conclusions

We have presented experimental evidence sup-
porting three important facts about hydrothermal
waves.

Hydrothermal waves are volume waves and fill
the whole depth. Their amplitude is bigger near
the bottom. This result is in agreement with the
theoretical results, even if the force involved is the
surface-tension at the interface.

The instability is convective in nature, because
of the existence of a group velocity. Consequently,
the amplitude of the waves grows as they travel
from the cold to the hot side. This fact makes
difficult determination of the threshold, causing an
overestimation.

Finally, finite size effects greatly affect the
threshold and the characteristics of hydrothermal
waves. The threshold increases as the transversal
dimension of the fluid layer ly decreases. This can
be explained by means of simple models, as for ex-
ample a Complex Ginzburg–Landau Equation. The
direction of propagation of the waves depends also
on the geometry of the cell. Future work will be
devoted to explain this behavior.
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