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Abstract. A reflexive topological group G is called strongly reflexive if each closed sub-
group and each Hausdorff quotient of the group G and of its dual group is reflexive.

In this paper we establish an adequate concept of strong reflexivity for convergence
groups. We prove that complete metrizable nuclear groups and products of countably
many locally compact topological groups are BB-strongly reflexive.
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Introduction

Throughout this paper we deal with strong reflexivity of topological groups and
convergence groups. All groups considered will be Abelian. For an Abelian topologi-
cal group G, the symbol ΓG denotes the set of continuous characters (i.e., continuous
homomorphisms from G into T, the multiplicative group of complex numbers with
modulus 1). The set ΓG with multiplication defined pointwise and endowed with
the compact open topology is a Hausdorff topological Abelian group which is called
the dual group of G and is denoted by G∧. The bidual group of G, G∧∧ is defined
as (G∧)∧ and αG : G → G∧∧ stands for the canonical embedding. A topological
Abelian group is said to be reflexive if αG is a topological isomorphism.

The Pontryagin duality theorem states that every locally compact Abelian group
is reflexive. This yields, in an obvious way, that also closed subgroups and Hausdorff
quotients of locally compact Abelian groups are reflexive. This is not the case for
other reflexive groups, which may have non reflexive closed subgroups or non reflexive
quotients. For instance, Leptin proved in [11] the existence of a product of discrete
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groups with a non reflexive closed subgroup. Thus, it is natural to introduce a new
class of reflexive groups stable for those operations. This is done in [1], where such
groups are called strongly reflexive.

On the other hand, in a set of papers by Beattie, Binz, Butzmann, Müller and
several others, appears a new notion of reflexivity for topological groups which is
obtained endowing the dual of the topological Abelian group with the continuous
convergence structure. Since the continuous convergence structure does not derive
in general (unless the departure group is locally compact) from a topology, the dual
group is only a “convergence group”. However, this incursion into convergence groups
is only an auxiliary tool because the convergence bidual of a topological group is again
topological. The reflexivity obtained in this way is named BB-reflexivity in [7], where
it is proved that the BB-reflexivity is independent of the classical notion of Pontryagin
reflexivity.

The class of BB-reflexive groups is more likely to be stable for the operation
of taking closed subgroups so, in this respect BB-reflexivity behaves better than
Pontryagin reflexivity and it makes sense to define BB-strongly reflexive groups, as
the BB-reflexive groups such that the Hausdorff quotients of them and of their duals
are also BB-reflexive. As Theorem 3.4 states, in the class of BB-strongly reflexive
groups, the general correspondences between duals of closed subgroups and the whole
character groups modulo annihilators, characteristic for Pontryagin duality, are also
valid.

1. Preliminary background

For the definitions of convergence structure and convergence space we refer the
reader to [9] and [2]. Topological notions such as continuity, cluster point, closed,
open or compact sets, etc, can be stated in terms of convergence of filters, therefore
they have the corresponding definitions for convergence spaces. A topology defines
in a natural way a convergence structure, namely, the one given by its convergent
filters or nets. However, not every convergence structure comes from a topology on
the supporting set. A convergence structure Λ on a set X is said to be topological if
it is given by the convergent filters of some topology.

A set A ⊂ X is open if it belongs to every filter which converges to a point
of A. The family of all open sets in the convergence space (X,Λ) fulfils the axioms
of a topology τΛ, called the associated topology to the convergence structure Λ.
The convergence in τΛ has more convergent filters than Λ and they coincide if the
convergence structure Λ is topological. One may prove that a map f defined on
a convergence space (X,Λ) with values in a topological space Y is continuous iff
f : (X, τΛ)→ Y is continuous.
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If H is a subspace of a convergence space (X,Λ), τΛ|H is finer than the topol-
ogy associated to the convergence structure Λ|H , and they coincide for compact
convergence subspaces, as stated in the following Lemma.

Lemma 1.1. If (X,Λ) is a convergence space and H ⊂ X is compact, then

τΛ|H = τΛ|H .

Proof. Since the convergence structure Λ is finer than τΛ, H is compact
in τΛ. Then, τΛ|H and τΛ|H are comparable compact topologies and therefore, they
coincide. �

A Hausdorff topological space X is a k-space if its closed sets are characterized by
the following fact: F ⊂ X is closed in X if and only if F ∩K is closed in K for every
compact subset K of X . This condition means that the topology of a k-space is
the finest topology with the same compact sets and it is equivalent to the following
one: A function defined on X with values in a topological space Y is continuous
iff its restriction to any compact subset is continuous. It is well known that for a
topological Abelian group the finest topology with the same compact subsets is not in
general a group topology. For this reason Noble introduced in [13] the notion of a k-
group as the appropriate analogue to the k-space for Hausdorff topological groups.
A topological group is a k-group if its topology is the finest group topology with
the same compact subsets (equivalently: each homomorphism from G into another
topological group is continuous if its restriction to each compact is continuous). This
notion has some better permanence properties than that of the k-space. Quotient
groups and products of k-groups are k-groups. Obviously, every k-space topological
group is also a k-group.

In the framework of convergence spaces we have the following result.

Proposition 1.2. Let (X,Λ) be a convergence space such that the associated
topological space (X, τΛ) is Hausdorff. Then the following conditions are equivalent.

a) F ⊂ X is closed in X if and only if F ∩ K is closed in K for every compact
subset K of X .

b) A function f defined on X with values in a topological space Y is continuous if
and only if its restriction to any compact subset of X is continuous.

Proof. a) ⇒ b) Let f : (X,Λ) → (Y, τ) be such that f |K is continuous for
every Λ-compact K. In order to prove that f is continuous, it is enough to see that
f−1(C)∩K is Λ-closed in K for each closed subset C of Y , but this follows from the
equality f−1(C) ∩K = (f |K)−1(C) and the continuity of f |K .

b)⇒ a) Consider the family

H = {H ⊂ X such that K ∩H is Λ-closed for all Λ-compact K}.
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This family fulfils the axioms of closed sets for a topology τH which is finer than τΛ
and coincides with it on the Λ-compact subsets of X . Hence the identity map from
(X, τΛ) to (X, τH) is bicontinuous and that means that H is the family of closed
subsets of (X,Λ). �

Remark. Observe that each of the above equivalent conditions implies, by
Lemma 1.1, that the associated topological space (X, τΛ) is a k-space. We will call
k-convergence spaces the convergence spaces satisfying one of them.

Locally compact convergence spaces are convergence spaces for which every con-
vergent filter has a compact member. Many of them are k-convergence spaces as will
be shown in the following Proposition.

Proposition 1.3. Let (X,Λ) be a locally compact convergence space such that
(X, τΛ) is Hausdorff. Then a function f defined on X with values in a convergence
space Y is continuous iff its restriction to any compact subset is continuous.

Proof. Let f : (X,Λ) → (Y,Λ′) be such that f |K is continuous for every
Λ-compact K. Let F be a filter in X convergent to x. Since X is locally compact,
the filter F has a compact member K. The trace of F inK is a filter which converges
to x in K, so its image by the continuous function f |K is a filter in Y which converges
to f(x). Therefore, the filter f(F) converges to f(x). �

2. BB-reflexive convergence groups

Fischer defined the convergence groups as groups endowed with a convergence
structure compatible with the group operation. All convergence groups considered
in this paper will be Hausdorff, that is, a filter converges to at most one point.

If G is a convergence group, we use the symbol ΓG to denote the set of all contin-
uous homomorphisms from G into T. The continuous convergence structure Λc in
ΓG is defined in the following way:

A filter F in ΓG converges in Λc to an element ξ ∈ ΓG if for every x ∈ G and every
filter H in G that converges to x, ω(F ×H) converges to ξ(x) in T (here, F × H
denotes the filter generated by the products F × H , where F ∈ F , H ∈ H, and
ω(F ×H) denotes the filter generated by ω(F ×H) := {f(x); f ∈ F, x ∈ H}).

It can be said that Λc is the coarsest convergence structure in ΓG for which the
evaluation mapping ω : ΓG×G→ T is continuous (ΓG×G has the natural product
structure). The dual group ΓG of a convergence group (G,Λ), endowed with the
convergence structure Λc is a convergence group which is denoted by ΓcG and is
called the convergence dual group of G.
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A convergence group is called BB-reflexive if the canonical homomorphism
κG : G→ ΓcΓcG is a bicontinuous isomorphism (here ΓcΓcG has the obvious mean-
ing). Observe that, due to the continuity of ω : ΓG×G→ T, κG is always continuous.

For locally compact Abelian topological groups, the compact open topology and
the continuous convergence structure in the dual group have the same convergent
filters. This fact characterizes the locally compact groups in the class of topological
BB-reflexive groups [12].

Proposition 2.1. Let G be a locally compact convergence group, then:
a) The continuous convergence structure on the dual group is topological and it
coincides with the compact open topology.

b) If compact subsets of G are topological, then ΓcG is complete.

Proof. a) Let F be a filter τco-convergent to the neutral element of ΓG and let
H be a convergent filter in G. Since G is locally compact the filter H has a compact
member H . If W ∈ BT(1), the set (H,W ) is a neighbourhood of the neutral element
of ΓG and therefore, it contains some F ∈ F . As ω(F ×H) ⊂W , we conclude that
F is Λc-convergent. The converse holds without any restrictions.

b) We are going to see that ΓcG is complete in the uniformity of uniform con-
vergence on compact sets. If (fα) is a Cauchy net in this uniformity, then for
all x ∈ G, (fα(x)) is also Cauchy in T. Let f be the homomorphism defined by
f(x) = lim(fα(x)). Since for each compact K ⊂ G, (fα|K) is in C(K,T ) and this
topological space is complete, we have that f |K is continuous for each compact
K ⊂ G and therefore, by Proposition 1.3, it is continuous on G. It is also clear that
the convergence of (fα) to f is uniform on compact sets. �

In the next proposition we collect some properties of the continuous convergence
structure on the dual of a topological group G.

Proposition 2.2. Let G be a topological Abelian group, then:
a) ΓcG is a locally compact convergence group.
b) (ΓG, τΛc) is a k-space.
c) If A ⊂ ΓG is equicontinuous, the continuous convergence structure on A coin-

cides with the topology of pointwise convergence and with the compact open
topology.

d) Compact subsets of ΓcG are equicontinuous.
e) Compact subsets of ΓcG are topological.
f) ΓcΓcG is topological and complete.
g) If αG is continuous, then G∧ and ΓcG have the same compact subsets, and
therefore G∧∧ is a topological subgroup of ΓcΓcG.
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h) In case that αG is continuous, G∧ is a k-space if and only if τco = τΛc .

Proof. a) This is Proposition 1 of [7]. We observe that the requirement that
αG be continuous can be dropped in the proof.

b) follows from a) and Proposition 1.3.

c) is proved in Lemma 1 of [8].

d) is proved in Theorem 7 of [8].

e) follows from c) and d).

f) follows from a), e) and Proposition 2.1 b).

g) is proved in [7], Remark 1 and Theorem 1.

h) follows from b) and g). �

Theorem 2.3. For a topological group G, the following assertions are equivalent:
a) The topological groups ΓcΓcG and G∧∧ coincide.

b) αG is continuous and every homomorphism Ψ: G∧ → T such that Ψ|K is con-

tinuous for all compact subsets K, is continuous.

Proof. a)⇒ b) Suppose ΓcΓcG and G∧∧ are the same topological group. Since
κG is continuous it is clear that αG is continuous. Take now Ψ: G∧ → T such that
Ψ|K is continuous for every compact K ⊂ G∧. In particular, Ψ|K is continuous for
every compact K ⊂ ΓcG. Now Propositions 1.3 and 2.2 a) imply the continuity of
Ψ: ΓcG→ T. Thus Ψ ∈ ΓcΓcG = G∧∧.

b) ⇐ a) From Proposition 2.2 g) we have that G∧∧ is a topological subgroup of
ΓcΓcG. In order to see that they coincide, take Ψ ∈ ΓcΓcG. Again Proposition 2.2 g)
and b) imply that Ψ: G∧ → T is continuous, so it belongs to G∧∧. �

Corollary 2.4. Let G be a topological group such that αG is continuous and G∧

is a k-group. Then G∧∧ and ΓcΓcG coincide as topological groups.

The following example shows that G∧ can be a k-group without being a k-space
and in this case, h) in the above proposition does not hold. It shows furthermore
that the topology associated to the continuous convergence structure on the dual of
a topological group is not in general a group topology.

Example. Let G be the topological group ωR × R
ω where ωR and R

ω denote
the countable direct sum and the product of real lines, respectively. We have that
G∧ = R

ω × ωR is a k-group but not a k-space (see [1], (17.9)). Thus, (G∧, τΛc)
cannot be a topological group; for otherwise, being τΛc a k-space topology, it should
be also k-group topology but there is already a k-group topology on G∧, namely τco.
On the other hand, ΓcG and G∧ have the same compact subsets, therefore τco �= τΛc .
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The notion of Čech completeness has interesting implications in the context of
topological groups as shown in [14]. Čech complete groups are k-spaces (in particular
k-groups). It is also interesting to note that the class of Čech complete topological
groups contains locally compact groups, metrizable complete groups, and is closed
with respect to the operations of taking closed subgroups, Hausdorff quotients and
countable products.

Corollary 2.5.

a) Čech complete groups are BB-reflexive if and only if they are Pontryagin reflex-
ive.

b) Arbitrary direct sums of locally compact topological groups are BB-reflexive.

Proof. a) Let G be a Čech complete group. It is a k-group, so the canonical
mapping αG is continuous (see [13]). On the other hand, one of the authors proved
in [6] that for a metrizable group, the dual group G∧ is a k-space. The same can be
proved for Čech complete groups in a quite analogous way. Therefore, for this class
of groups we also have that reflexivity is equivalent to BB-reflexivity.

b) A well known theorem of Kaplan in [10], states that arbitrary products and
direct sums of locally compact groups are Pontryagin reflexive, being the duals of an
arbitrary product of topological groups, topologically isomorphic to the direct sum
of the dual groups and conversely, the duals of the direct sum of groups, topolog-
ically isomorphic to the product of the dual groups. On the other hand, arbitrary
products of locally compact groups are k-groups. So, from Kaplan’s result and the
above theorem we conclude that arbitrary direct sums of locally compact groups are
BB-reflexive. �

3. BB-strongly reflexive convergence groups

The definition of strongly reflexive topological groups appeared for the first time
in [3]. According to [1] (17.1), it can be simplified and stated in the following way: A
reflexive topological group G is strongly reflexive if every closed subgroup and every
Hausdorff quotient of G and of G∧ are reflexive. We will show that the analogous
notion of BB-strongly reflexive groups admits further simplification.

A BB-reflexive convergence group G is said to be BB-strongly reflexive if for arbi-
trary closed subgroups H and L of G and of ΓcG, respectively, the quotients G/H
and ΓcG/L are BB-reflexive. In order to justify our definition we will prove in 3.4
that these requirements about quotients imply that closed subgroups of G and of
ΓcG are BB-reflexive.
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A subgroupH of a convergence group (G,Λ) is said to be dually closed if, for every
element x of G \ H , there is a continuous character ϕ in ΓG such that ϕ(H) = 1
and ϕ(x) �= 1. It is said to be dually embedded if every continuous character defined
on H can be extended to a continuous character on G. The annihilator of H is
defined as the subgroup H◦ := {ϕ ∈ ΓG : ϕ(H) = 1}. It is easy to prove that a
closed subgroup H of a topological or a convergence group G is dually closed if and
only if the quotient group G/H has sufficiently many continuous characters. For our
purposes we also need the following result, whose proof is straightforward.

Lemma 3.1. Let G be a convergence group and H a subgroup of G. Then H is

dually closed if and only if κG(H) = H◦◦ ∩ κG(G), where H◦◦ denotes the subgroup
(H◦)◦ of ΓΓcG.

Let f : G → H be a continuous homomorphism of convergence groups. The dual
mapping Γf : ΓcH → ΓcG defined by (Γf(χ))(g) := (χ ◦ f)(g) is a continuous ho-
momorphism ([4]). If f is onto, then Γf is injective. Let H be a closed subgroup
of a convergence group G; denote by p : G → G/H the canonical projection and by
i : H → G the inclusion. By means of the dual mappings Γp and Γi we obtain the
natural continuous homomorphisms ϕ : Γc(G/H) → H◦ and ψ : ΓcG/H◦ → ΓcH .
Observe that if H is dually embedded, ψ is a continuous isomorphism. We prove
now that ϕ is always a bicontinuous isomorphism.

Proposition 3.2. Let H be a closed subgroup of a convergence group G, the
natural homomorphism ϕ : Γc(G/H)→ H◦ is a bicontinuous isomorphism.

Proof. It is clear that ϕ : Γc(G/H)→ H◦ is a continuous isomorphism. In order
to prove that ϕ−1 is continuous, take a convergent filter in H◦, say F → 0. We must
check that ϕ−1(F) → eΓc(G/H) in Γc(G/H), i.e. ωG/H(ϕ−1(F) × H) → 1 in T for
every filter H → [x] in G/H . This is satisfied because, by the definition of a quotient

structure, H ⊃
r⋂
i=1

p(Li) for some filters Li → zi, i = 1 . . . r, with zi ∈ p−1([x]) and

thereof, ωG/H(ϕ−1(F) × H) ⊃ ωG/H
(
ϕ−1(F) ×

r⋂
i=1

p(Li)
)

=
r⋂
i=1

ωG(F × Li) → 1

in T. �

Remark. We have obtained this bicontinuous isomorphism without any assump-
tions on the convergence group G. However, this is not the case for the Pontryagin
duality; if G is a topological group, the natural mapping ϕ : (G/H)∧ → H◦ is a
continuous isomorphism, and further requirements are needed in order that it be a
topological isomorphism.

Proposition 3.3. If G is a BB-reflexive convergence group, every dually closed
and dually embedded subgroup of G is BB-reflexive.
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Proof. The homomorphism κH : H → ΓcΓcH is injective because so is κG.
From the commutativity of the following diagram and taking into account that Γψ
is a continuous monomorphism and ϕH

◦
and κG|H are bicontinuous isomorphisms

we obtain that κH is surjective and that κ−1
H is continuous:

ΓcΓcH
Γψ−−−−→ Γc(ΓcG/H◦)

κH

�
�ϕH◦

H
κG|H−−−−→ H◦◦

The already mentioned example of Leptin of a closed non reflexive subgroup of
a product of discrete groups [11] shows that there are dually closed and embedded
subgroups of Pontryagin reflexive groups which are not Pontryagin reflexive. Hence,
the analogue to the last proposition does not hold in the Pontryagin setting. �

Theorem 3.4. If G is a BB-strongly reflexive convergence group, then:
a) Closed subgroups of G are dually closed.
b) For every closed subgroup H of G, the homomorphisms ϕH : Γc(G/H) → H◦,

Φ: Γc(ΓcG/H◦)→ H and ψ : ΓcG/H◦ → ΓcH are bicontinuous isomorphisms.

c) Closed subgroups of G are dually embedded.
d) Closed subgroups of G are BB-reflexive.
e) ΓcG is BB-strongly reflexive. Therefore it satisfies a), b), c) and d).

Proof. a) For every closed subgroup H of G, the group G/H is BB-reflexive.
Thus, it has sufficiently many continuous characters, and so, H is dually closed.

b) ϕH : Γc(G/H) → H◦ and ϕH
◦
: Γc(ΓcG/H◦) → H◦◦ are bicontinuous isomor-

phisms by Proposition 3.2.
Since H is dually closed and G is BB-reflexive, by Lemma 3.1, κG|H : H → H◦◦

is a bicontinuous isomorphism, and so is also Φ = κG|H
−1 ◦ ϕH◦

.
Now, the commutativity of the diagram

ΓcG/H
κΓcG/H◦
−−−−→ ΓcΓc(ΓcG/H◦)

ψ

�
�ΓϕH◦

ΓcH
ΓκG|H−−−→ ΓcH◦◦

together with the fact that κΓcG/H◦ , ΓϕH
◦

and ΓκG|H are bicontinuous isomor-
phisms, implies that ψ is a bicontinuous isomorphism.

c) Every character χ in ΓcH is the image of a character in ΓcG/H◦ through the
above isomorphism ψ. The latter comes from a character in ΓcG that extends χ.

d) All closed subgroups are dually closed and dually embedded by a) and c),
respectively. Therefore, by Proposition 3.3, they are BB-reflexive.
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e) ΓcG and its quotients are BB-reflexive by the definition of the BB-strongly
reflexive group. The same happens with ΓcΓcG, which is bicontinuously isomorphic
to G. �

The following theorems confirm that we have actually introduced a new class of
topological groups; more precisely, the class of BB-strongly reflexive groups is strictly
larger than that of locally compact Abelian groups.

We will need the following lemma:

Lemma 3.5. If (G,Λ) is a convergence group and H ⊂ G a closed subgroup, then
τΛ/H is the associated topology to Λ/H .

Proof. We must show that τΛ/H = τΛ/H . Let p : G → G/H be the canonical
projection.

⊂: Take O ∈ τΛ/H and let F be a filter in G/H , Λ/H-convergent to [z] ∈ O. Let

Li, i = 1 . . . r, be filters in G such that Li Λ→ xi ∈ p−1[z] and
r⋂
i=1

p(Li) ⊂ F , then

p−1(O) ∈ Li since p−1(O) is τΛ-open and xi ∈ p−1(O). Thus O = p(p−1(O)) ∈
r⋂
i=1

p(Li) ⊂ F and so, O ∈ τΛ/H .

⊃: Let U ∈ τΛ/H and let L be a filter in G such that L Λ→ t ∈ p−1(U). Then
p(L)→ [t] ∈ U in G/H and, since U is τΛ/H -open, U ∈ p(L). Thus p−1(U) ∈ L,
and so U ∈ τΛ/H . �

Theorem 3.6. Let {Gn}n∈N be a sequence of locally compact Abelian groups.
Then, G =

∏
Gn is BB-strongly reflexive.

Proof. In [1] (17.3) it is proved that G is Pontryagin strongly reflexive, hence
for each closed subgroup H of G, the quotient G/H is Čech complete and Pontryagin
reflexive, thus it is BB-reflexive.

Let L be a closed subgroup of ΓcG. Since G∧ is a k-space, τco is the topology
associated to the continuous convergence structure and L is a closed subgroup of
G∧. Being G Pontryagin strongly reflexive, L is dually closed; so, there exists a
closed subgroup H of G such that H◦ = L (see [1] (14.2)). We are going to see that
ΓcG/H◦ is reflexive.

The convergence group ΓcG is locally compact and the same happens with the
quotient ΓcG/H◦. Thus, Γc(ΓcG/H◦) is topological and it carries the compact open
topology. On the other hand, the topological group associated to ΓcG/H◦ is, by
Lemma 3.5, G∧/H◦. Therefore Γ(ΓcG/H◦) = Γ(G∧/H◦).

The group Γc(ΓcG/H◦) is bicontinuously isomorphic to H◦◦ = κG(H) which is
isomorphic to H and ψ : ΓcG/H◦ → ΓcH is a continuous isomorphism, since H is
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dually embedded. So, taking into account the commutativity of the diagram

ΓcG/H◦ κΓcG/H◦
−−−−→ ΓcΓc(ΓcG/H◦)

ψ

�
�ΓϕH◦

ΓcH ←−−−
ΓκG|H

ΓcH◦◦

and due to the fact that ΓcH is locally compact, using Proposition 1.3 we only need
to prove that the restrictions of ψ−1 to the compact subsets of ΓcH are continuous.

Let C be a compact subset of ΓcH , i : H → G the inclusion and p : ΓcG→ ΓcG/H◦

the canonical projection; C is topological and equicontinuous. As is proved in [1]
(8.2), there exists an equicontinuous set E in ΓG such that Γi(E) = C. Let E be
the τco-closure of E; E is closed and equicontinuous and therefore compact in G∧.
Being αG continuous, E is also compact in ΓcG. Consequently, p(E) is compact in
ΓcG/H◦. Since ψ−1(C) ⊂ ψ−1(Γi(E)) = p(E) and ψ−1(C) is closed in ΓcG/H◦, we
have that ψ−1(C) is compact in ΓcG/H◦.

We are going to see now that ψ−1(C) is topological:
The set K = E is topological and compact in G∧ =

∑
G∧
n ; so, there exists some

n ∈ N such that K ⊂ G∧
1 + G∧

2 + . . . + G∧
n =: Gn and p(K) ⊂ p(Gn) which is

topologically isomorphic to Gn/Gn ∩H◦. Let us see that Gn/Gn ∩H◦ inherits from
ΓcG/H◦ the natural topology. Let F be a filter in Gn/Gn ∩H◦ convergent to [x]
in the natural topology, q : Gn → Gn/Gn ∩ H◦ the canonical projection and Hi,

i = 1 . . . r filters in Gn convergent to xi ∈ q−1([x]) such that
r⋂
i=1

q(Hi) ⊂ F . If L

converges to y in G =
∏
Gn, since Hi is in Gn = G∧

1 + G∧
2 + . . . + G∧

n , we have
Hi(L)→ xi(y); therefore Hi → xi in ΓcG and then F → [x] in ΓcG/H◦.

For each compact C of ΓcH , we have seen that ψ−1(C) is compact and topolog-
ical. The map ψ : ψ−1(C) → C, surjective and continuous, is in fact a topological
isomorphism, and consequently the restriction of ψ−1 to the compact set C is con-
tinuous. �

For the class of nuclear groups introduced by Banaszczyk in [1] we have the fol-
lowing result.

Theorem 3.7. Every complete metrizable nuclear group is BB-strongly reflexive.

Proof. By [1] (17.3) every complete metrizable nuclear group G is Pontrya-
gin strongly reflexive. Then, for every closed subgroup H of G, H and G/H are
Pontryagin reflexive. So, H and G/H being metrizable, they are also BB-reflexive
(see [6]).

Dual convergence groups of BB-reflexive groups are also BB-reflexive, therefore
ΓcG and ΓcH are BB-reflexive.
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Let L be a closed subgroup of ΓcG. Being τco the topology associated to the
continuous convergence structure, L is a closed subgroup of G∧. As in the proof of
Theorem 3.6, there exists a closed subgroup H of G such that H◦ = L. Using now
the fact that ΓcG/H◦ is bicontinuously isomorphic to ΓcH (see [5]), we obtain that
ΓcG/H◦ is BB-reflexive. �
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