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Abstract. The acoustic emission of fracture precursors, and the failure time of samples of heterogeneous
materials (wood, fiberglass) are studied as a function of the load features and geometry. It is shown that
in these materials the failure time is predicted with a good accuracy by a model of microcrack nucleation
proposed by Pomeau. We find that the time interval δt between events (precursors) and the energy ε are
power law distributed and that the exponents of these power laws depend on the load history and on the
material. In contrast, the cumulated acoustic energy E presents a critical divergency near the breaking

time τ which is E ∼
�
τ−t
τ

�−γ
. The positive exponent γ is independent, within error bars, on all the

experimental parameters.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 61.43.-j Disordered solids

1 Introduction

Heterogeneous materials are widely studied not only for
their large utility in applications but also because they
could give more insight to our understanding of the role
of macroscopic disorder on material properties. The statis-
tical analysis of the failure of these materials is an actual
and fundamental problem which has received a lot of at-
tention both theoretically [1–7] and experimentally [8–12].
When an heterogeneous material is stretched its evolu-
tion toward breaking is characterized by the appearance
of microcracks before their final break-up. Each microc-
rack produces an elastic wave which is detectable by a
piezoelectric microphone. The microcraks constitute the
so called precursors of fracture. It is very well known
that these materials subjected to a constant load may
break after a certain time, which is a function of the
applied load. Many models have been proposed to pre-
dict this failure time, but the physical mechanisms re-
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main unclear [3,4,13,14]. Very recently it has been pro-
posed [15,16] a model, which explains quite well the fail-
ure time of microcrystals [17] and gels [19] submitted to a
constant stress load. This model is based on the idea that
a nucleation process of a microcrack has to take place in-
side the materials, in order to form the macroscopic crack.
This nucleation process is controlled by an activation law,
as the coalescence of a phase into another in a liquid-
solid transition. Based on this prediction [16], Pauchard
et al. [17] found that if a constant load is applied to a bidi-
mensional microcrystal [18], it breaks after a time τ given
by the equation τ = τ0eP

2
0 /P

2
, where P is the applied pres-

sure, and τ0 and P0 are constants. Bonn et al. [19] found
a similar law for gels. Pomeau predicted that for three-
dimensional microscopic systems the life-time should be:

τ = τ0 exp
(
P0

P

)4

(1)

where τ0 is a characteristic time and P0 a characteristic
pressure, which mainly depend on the material character-
istics, the experimental geometry and temperature. The
idea, that the life time of a material might be due to a
thermally activated process,has been proposed long time
ago by Mogi [20] and Zhurkov [13]. They got a different



142 The European Physical Journal B

expression for τ

τ = τ0 exp
(
− P
P0

)
· (2)

This equation was accurately checked in many homoge-
neous materials and it shows a good agreement with ex-
perimental data [13]. However it has to be stressed that
equations (1, 2) are certainly first order approximation
because they neglect the tensorial nature of crack pertur-
bations and their long range interactions [6]. These ideas
are quite interesting and it is important to check exper-
imentally whether they can be applied in heterogeneous
materials, such as fiber glass and wood panels [21]. In two
recent papers [9,10], we have shown that in these materi-
als the microcracks, preceding the main crack form some-
thing like a coalescence around the final path of the main
crack. The purpose of this paper is to investigate more
deeply the behaviour of these materials, and specifically
the statistical properties of fracture precursors and their
relationships with the failure time. The paper is organized
as follows: in Section 2 we describe the different experi-
mental settings. In Section 3 we study the time failure for
the samples submitted to a constant load (3.1) and its
statistical properties (3.2). Then we generalize to a time
dependent load. In Section 4 the statistical behaviour of
the fracture precursors is studied as a function of the load
features and the geometry. Discussion and conclusions fol-
low in Section 5.

2 Experimental setups

In order to verify the dependence of the results on the ge-
ometry and on the fracture’s mode, we used three different
experimental setups. We performed mode-I fracture exper-
iments both with a classical tensile machine (TM) and a
high pressure chambers (HPC). In the case of the TM the
stress distribution is very simple but, due to moving me-
chanical parts, we have to deal with a large acoustic noise.
In order to avoid noise and to detect reliably microcracks
with a weak sound emission, we have designed a set-up in
which there are no moving parts except the sample itself,
the HPC. Here, the stress distribution is very complicated
but numerical calculations [22] show that the experience
can be thought of as a Mode-I test with circular symme-
try. Finally, we used a flexion-machine to perform mode-I
tests.

2.1 Samples

Several materials have been used. Most of the runs have
been carried out on two fibrous composite materials: chip-
board wood panel, which is made of small wood fibers
randomly oriented, and different fiberglass panels made
of a fiber fabric and an epoxy resin. The Young modulus
of the samples is 1.8× 108 N/m2 and 1010 N/m2 for the
wood panels and the fiberglass respectively. The Poisson’s
modulus is ν = 0.35 for both materials. The longitudinal

sound velocity is 1900 m/s for wood panels and 2200 m/s
for fiberglass. The choice of the materials was determined
by their features: they consist of small fibers, randomly
oriented, and they are elastic and heterogeneous. The ge-
ometry of the samples, which depends on the experimental
set up used to test it, is described in the following sections.

2.2 High pressure chambers (HPC)

A circular wood or fiberglass sample having a diameter of
22 cm and a thickness between 1 and 5 mm is placed be-
tween two chambers between which a pressure difference
P = P2−P1 is imposed(see Fig. 1b). If the deformation of
the plate at the center is bigger than its thickness, which
is the case here, the load is mainly radial [23,24]. There-
fore, the experience can be thought of as a Mode-I test
with circular symmetry. The pressure difference P sup-
ported by the sample is slowly increased and it is mon-
itored by a differential transducer. This measure has a
stability of 0.002 atm. The fracture pressure for the dif-
ferent tested materials ranges from 0.7 to 2 atm. We reg-
ulate P by means of a feedback loop and an electronically
controlled valve which connects one of the two chambers
to a pressurized air reservoir. The time taken to correct
pressure variations (about 0.1 second) is smaller than the
characteristic time of the strain rate. An inductive dis-
placement sensor (Linear Differential Variable Transducer
500HR from PM Instrumentation) gives the deformation
at the center of the plate with a precision of about 10 mi-
crons (the deformation just before fracture is of the order
of one centimeter, depending on the material). The appa-
ratus is placed inside a copper box covered with a thick
foam layer to avoid both electrical and acoustic noise.
Four wide-band piezoelectric microphones (Valpey-Fisher
Pinducer VP-1093) are placed on the side of the sample
(see Figs. 1a, b). The signal is amplified, low-pass filtered
at 70 kHz , and sent to a digitizing oscilloscope and to
an electronic device which measures the acoustic energy
detected by the microphones. The signal captured by the
oscilloscope is sent to a computer where a program auto-
matically detects the arrival time of the acoustic emissions
(AE) at each microphone. If the signal is detected by more
than two microphones, a calculation yields the position of
the source inside the sample. A fraction of the detected
events are rejected, either as a result of a large uncertainty
of the location, or because they are regarded as noise.
The mean standard error for the calculated positions is
about 6 mm, which results mainly from the uncertainty
of the arrival time. The electronic device that measures
the energy performs the square of the AE amplitude and
then integrates it over a time window of 30 ms, which is
the maximum duration of one acoustic event. The out-
put signal is proportional to the energy of the events, and
its value is sent to the computer. The dynamic range for
the energy measurement is four decades, and the device is
adjusted in such a way that only the strong sound emit-
ted by the final crack saturates it. The global results of
the measurements are the following: a list of the positions
of microcracks, the strain of the samples and the energy
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Fig. 1. (a, b) Sketch of the high pressure chamber (HPC) apparatus. S is the sample, DS is the inductive displacement sensor
(which has a sensitivity of the order of 1 µm). M are the four wide-band piezoelectric microphones. P = P1−P2 is the pressure
supported by the sample. P is measured by a differential pressure sensor DPD( sensitivity 0.002 atm). EV is the electronic valve
which controls P via the feedback control system Ctrl. (c) Sketch of the tensile machine. An uniaxial force, which is measured
by a piezoresistive sensor, is applied to the sample by a stepping motor. Four wide-band piezoelectric microphones measure the
acoustic emissions emitted by the sample. Experiments have been done using rectangular (20 × 29 cm) wood samples of 4 mm
thickness. The whole apparatus is surrounded by a Faraday screen.

Fig. 2. The bending machine (BM). A vertical force is imposed in the center of the sample by using weights (up to 65 kg), so
that the sample is broken by bending. The edges of the sample can be clamped or free. The displacement is measured by the
sensor DS.

released as a function of the control parameter P . Further
details of the setup are described elsewhere [9,10,21,22].

2.3 Tensile machine (TM)

The experimental apparatus consists of a tensile machine
(see Fig. 1c) which can apply a maximum force of about
23000 N. During the load we measure the applied force F ,
the strain, the AE produced by microcracks and the time
at which the event was detected. The data acquisition set-
up is the same used with the HPC. The samples have a

rectangular shape of size l = 30 cm, w = 20 cm and
thickness of 2 mm. More details of the experimental setup
can be found in [25].

2.4 Bending-machine (BM)

The apparatus is a three-points flexion machine, Figure 2.
The rectangular sample lies horizontally with fixed edges
and vertical load is imposed in its center. The size of the
samples is l = 8 to 22 cm, w = 1 to 2 cm, and the thickness
is 0.2 cm. With this setup we only used fiberglass samples.
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We can load the sample up to 65 kg (that is the machine
critical load) by minimum steps of 100 g. An inductive
displacement sensor, similar to the one used in the HPC,
has been used to measure the displacement of the center of
the sample f . The sensor is connected to a computer that
samples the signal at 1 Hz. The failure time τ is obtained
by the analysis of the signal f(t); The uncertainty of τ is
then 0.5 s. No acoustic emissions are measured with this
apparatus. More details are described in [26].

3 The failure time

The aim of this section is to study the lifetime τ of het-
erogeneous materials and to check whether equation (1)
could be useful in order to predict it. We first investigate τ
when samples are submitted to a constant load using the
HPC and the BM . Then we consider the case of a time
dependent load, and we try to generalize equation (1).

3.1 Constant load

We first impose a constant strain to our samples (using
all the apparatus), as it has been made for crystals [17].
As strain is fixed, every microcrack leads to a pressure de-
crease: in fact each microcrack weakens the material, so
that a lower pressure is needed to keep the strain constant.
It follows that if the imposed strain is small enough1, the
system reaches a stationary state, where the pressure re-
mains constant and no more microcracks are detected [22]
(see Fig. 3b). One sample was submitted to a large defor-
mation (i.e. close to the critical value) and it did not break
after three days. Therefore, at imposed strain, the effect
observed in microcrystals is not valid for heterogeneous
materials.

On the other hand, if a constant stress is imposed to
the system, no matter which apparatus we use, it will
break after a certain time which depends on the value of
the applied load. This can be done by imposing a constant
pressure with the HPC (see Fig. 3a) or a constant force
with the TM and BM. The reason for this is that after ev-
ery single microcrack the same load must be endured by
the weakened sample, so that it becomes more and more
unstable. Using either the TM or HPC, we have submit-
ted several samples to different constant loads P and we
have measured the life-time τ . The values obtained are
well fitted by equation (1), that is the exponential func-
tion predicted by Pomeau. On the other hand, the life-time
expression τ = ae−bP proposed by Mogi [20] does not con-
form to our data [27]. The same law has been found exper-
imentally by Zhurkov [13]. However it’s worth noting that
his work deals mainly with homogeneous, visco-elastic and
plastic materials, whereas the materials we used are het-
erogeneous and elastic: this could explains why he found
a different dependence of τ on the imposed load. In Fig-
ure 4 τ is plotted versus 1

P 4 in a semilog scale and a
1 It is clear that if the imposed strain has to be smaller than

a critical value, at which the sample breaks instantaneously.

Fig. 3. A sample is submitted to a constant load with the
HPC. During the load we measure the pressure (continuous
line) and the deformation of the sample in its center (dashed
line). (a) A constant pressure is imposed to the sample. The
deformation increases continuously – even after that the pres-
sure has reached a constant value – till the sample fails. (b) A
constant deformation is imposed to the sample. In this case,
after a transient period, the pressure decreases till the system
reaches a stationary state (not shown in this picture).

straight line is obtained. Figure 4 corresponds to the case
of wood samples broken in the HPC, while in Figure 5
we show the points for fiberglass samples broken in the
BM. Each point corresponds to the mean value obtained
with 20 samples. Even if the load is very small the sam-
ple will eventually break, although the life-time can be
extremely long. For example, using equation (1) and the
best fit parameters of Figure 4a, one estimates τ ' 5000 s
at P = 0.43 atm. Halving the imposed pressure causes
τ to become extremely large: τ = 4.4 × 1037 years at
P = 0.21 atm).

The value of τ0 seems to depend on the geometry and
the material but not, within the error bar, on the sample
size. In fact, for the circular samples broken with the HPC,
we find τ0 = 50.5±0.2 s for wood and τ0 = 44.6±0.2 s for
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Fig. 4. Measurements on wood samples. The time τ needed
to break the wood samples under an imposed constant pres-
sure P is here plotted as a function of 1/P4 in a semilog scale.
The dashed line represents the solution proposed by Mogi [20]
(τ = ae−bP ). The continuous line is the solution proposed

by Pomeau for microcrystals (τ = τ0e(P0/P )4). In the plot
τ0 = 50.5 s and P0 = 0.63 atm. Every point is the average
of 10 samples. The error bar is the statistical uncertainty. For
the fiberglass samples, we find τ0 = 44.6 s and P0 = 2.91 atm.

fiberglass. While in the the BM we find τ0 = 2.5 ± 0.3 s
and τ0 = 2.7± 0.3 s for the samples with W = 1 cm and
W = 2 cm respectively.

The value of P0 depends both on the geometry, the
size and the material of the sample, and indeed we find
P0 = 2.91 atm and P0 = 0.63 atm for fiberglass and wood
broken in the HPC. For the fiber glass samples broken
with the BM the values of P0 are P0 = 71.1 kg for W =
2 cm and P0 = 35 kg for W = 1 cm.

3.2 Statistic of the failure times

It is interesting to study the statistical distribution N(τ)
of the failure times. This information can give more insight
on the physical phenomena.

The main hypothesis of Pomeau is that the failure
of a sample is due to the thermal nucleation of one de-
fect. Thus one expects that the failure time τ follows a
Poisson’s distribution. This has been experimentally ob-
served in gels [19]. Conversely, in all the measures made
with the HPC and the TM the failure time follows a nor-
mal distribution. This is also the case for crystals [17].

This difference can be explained by the fact that in our
samples the failure is due to the nucleation and coalescence
of a large number of defects, each of one is thermally ac-
tivated and would eventually follows a Poisson’s law, if it

Fig. 5. Failure time τ of the samples in fiberglass broken with
the FM (clamped edges). The sample’s size are 22 × 2 × 0.2 cm
(a) and 22 × 1 × 0.2 cm (b). Each point represents the
mean value of 20 measures. Lines represent the best fit with

τ = τ0 exp
�
P0
P

�4
(solid line), τ = τ0 exp

�
P0
P

�2
(dashed-dotted

line), τ = A exp(−bP ) (dotted line), and τ = A P−b (dashed
line).

were isolated. Numerical simulations and analytical calcu-
lations seem to confirm this idea [28–30].

In the case of the experiments performed with the BM,
the failure time distribution N(τ) seems not to follow a
Poisson’s law nor a normal distribution, Figure 6a. In this
case we observed that the cumulative distribution

Q(τ) =

∫ τ
0 N(t)dt∫∞
0
N(t)dt

is best fitted by the sum of two exponentials, Figure 6b.
We believe that this is due to the fact that the two com-
ponents of these samples (the resine and the texture of
glass fibers) give rise to different characteristic times. We
think that this “separation effect” is observed only with
the BM because of the small size of the samples.
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Fig. 6. Distribution of the lifetimes τ of 100 samples in
fiberglass broken with the BM (clamped edges) with a load
P = 54 kg. The sample’s size are 22 × 2 × 0.2 cm. a) The
histogram of τ shows that the distribution of lifetimes is not

Gaussian. b) The cumulative distribution Q(τ ) =
R τ
0 N(t)dt

R∞
0 N(t)dt

(solid line) is best fitted by the sum of two exponential terms
(dotted line).

3.3 Time dependent load

In order to find a law that holds for a time dependent im-
posed stress, we intend to generalize the equation (1). If
the pressure P changes with time, it is reasonable to con-
sider the entire history of the load. Therefore we consider
that

1
τ0

exp

[
−
(
P0

P

)4
]

is the density of damage per unit time, where τ0 and P0

are fitting parameters obtained in the constant load case.
The certitude of breaking is obtained after a time τ such
that: ∫ τ

0

1
τ0

exp

[
−
(
P0

P

)4
]

dt = 1 (3)

where τ0 and P0 have the previously determined value. No-
tice that this equation is equivalent to equation (1) when
a constant pressure is applied.

To check this idea, we have applied the load to the
sample (using the HPC) following different schemes. We
have first applied successive pressure plateaux in order to
check whether memory effects exist. In Figure 7a the pres-
sure applied to the sample is shown as a function of time.
A constant load has been applied during a certain time
τ1, then the load is suppressed and the same constant
load is applied again for a time interval τ2. The sample
breaks after a loading a time τ1 + τ2 which is equal to the
time needed if the same load had been applied continu-
ously without the absence of load during a certain interval.
Therefore a memory of the load history exists. The life-
time formula (Eq. (3)) is also valid if different constant
loads are applied successively (Fig. 7b). This concept can
explain the violation of the Kaiser effect in these materi-
als [10].

If the load is not constant, the life-times resulting from
the proposed integral equation are still in good agreement
with experimental data. A load linearly increasing at dif-
ferent rates Ap has been applied to different samples. The
measured breaking times are plotted in Figure 8 along
with a curve showing the values computed from equa-
tion (3). Even if a quasi-static load is applied erratically
(Fig. 7c), the calculated life-time agrees with the measured
one. These experiments show that equation (3) describes
well the life-time of the samples submitted to a time de-
pendent pressure.

3.4 The dependence of τ on the temperature

The question is to understand why equations (1, 3) works
so well for a three dimensional heterogeneous material.
Indeed, in the Pomeau formulation [16]

P0 = G

(
η3Y 2

KT

)1/4

(4)

where Y is the Young modulus, T the temperature, K
the Boltzmann constant and η the surface energy of the
material under study. G is a geometrical factor which may
depend on the experimental geometry, on defect shape and
density.

In our experiment with HPC, we found P0 = 0.62 atm
for wood, which has Y = 1.8 × 108 N/m2, and P0 =
2.91 atm for fiberglass, which has Y = 1010 N/m2. Thus
the ratio between the values of P0 found for the two mate-
rials is closed to the ratio of the square root of their Young
modula.

In contrast temperature does not seem to have a strong
influence on τ . In fact we changed temperature, from
300 K to 380 K which is a temperature range where the
other parameters, Y and η, do not change too much. For
this temperature jump one would expect a change in τ
of of about 50% for the smallest pressure and of about
100% for the largest pressure. Looking at Figure 8 we
do not notice any change of τ within experimental errors



A. Guarino et al.: Failure time and critical behaviour of fracture precursors in heterogeneous materials 147

Fig. 7. The imposed time dependent pressure (bold dotted
line) is plotted as a function of time in the case of wood sam-
ples. The continuous line is the integral in time of the function

f (P ) = 1
τ0

e−P
4
0 /P

4
. On the basis of equation (3) the predicted

breaking time τ is obtained when the integral of f (P ) is equal
to 1. The horizontal distance between the two vertical dashed
lines in each plot represent the difference between the predicted
and the measured breaking time. In (a) a constant pressure
has been applied during about 700 s, then the load is sup-
pressed and then the same constant load is applied again. The
difference between the life-time predicted by (Eq. 3) and the
experimental result is of 3%. (b) Here two pressure plateaux
of different value are successively applied to the sample. The
difference between the measured and the predicted life-time is
of 5%. In (c) an erratic pressure is applied to the sample. Here
the error is of 10%.

Fig. 8. A load linearly increasing at different rates Ap has been
applied to different samples. The measured breaking times are
plotted as a function of Ap in a loglog scale; circles and squares
represent the measures on wood and fiberglass samples respec-
tively at T = 300 K. Bold circles represent measures on wood
samples at T = 380 K. The lines are the life time calculated
from equation (3) using the best fit values for P0 and τ0. These
experiments show that equation (3) describes well the life-time
of the samples submitted to a time dependent pressure.

which are about 10%. In order to maintain the change of
τ within 10% for a temperature jump of 80 K one has
to assume that the effective temperature of the system is
about 3000 K. Notice that this claim is independent on
the exact value of the other parameters and G.

These observations seem to indicate that the nucle-
ation process of microcracks is activated by a noise much
larger than the thermal one. Such a large noise can be
probably produced by the internal random distribution of
the defects in the heterogeneous materials that we used
in our experiments. This internal random distribution of
material defects evolves in time because of the appear-
ance of new microcracks and the deformation of the sam-
ple. Therefore this internal and time dependent disorder
of the material could actually be the mechanism that ac-
tivates the microcrack coalescence and play the role of a
very high temperature. Numerical simulations and ana-
lytical calculations, which we performed in fuse networks,
confirm this hypothesis [28–30]. Similar conclusions on the
role of disorder in the crack activation processes have been
reached by other authors [31,6]. The experimental test of
these models is a very important point which merits to be
deeply explored in the future.

4 Statistical behavior of fracture precursors

When a constant pressure is applied to the sample using
the HPC, the acoustic emissions of the material are mea-
sured as a function of time. We find that the cumulative
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acoustic energy E diverges as a function of the reduced
time τ−t

τ , specifically E ∝ ( τ−tτ )γ with γ = 0.27 (see
Fig. 10). Notably, the exponent γ, found in this experi-
ment with a constant applied pressure, is the same of the
one corresponding to the case of constant stress rate [9].
Indeed it has been shown [9,10] that if a quasi-static con-
stant pressure rate is imposed, that is P = Apt, the sample
breaks at a critical pressure Pc and E realesed by the fi-
nal crack precursors (microcracks) scales with the reduced
pressure or time (time and pressure are proportional) in
the following way:

E ∝
(
Pc − P
Pc

)γ
=
(
τ − t
τ

)γ
(5)

where τ = Pc/Ap in this case. Thus it seems that the real
control parameter of the failure process is time, regard-
less of the fact that either a constant pressure rate or a
constant pressure is applied. In the case of constant load
rate (P = Apt or u = Bt) the system has not a charac-
teristic scale of energy or time: the histogram N(ε) of the
released energy and the histogram N(δt) of the elapsed
time δt between two consecutive events reveal power laws,
i.e. N(ε) ∼ ε−α and N(δt) ∼ δt−β . The exponents α, β
and γ do not depend on the load rateAp orB [9,10]. Power
laws for similar magnitudes are found experimentally on
cellular glass [12], and numerically in a related process, the
dielectric breakdown [32]. The value of the exponents are
not too different. We are interested in studying the expo-
nents in different geometries and when a constant (creep
test), cyclic or erratic load are imposed. To check the de-
pendence of α, β and γ on the geometry we used the TM.
The force applied to the sample is slowly and constantly
increased till the sample fails. During the loading we mea-
sure the applied force F , the strain, the AE produced by
microcracks and the time at which the event was detected.

4.1 The dependence of α and β on the load features

In the experiments performed with the HPC, power laws
are obtained for the distributions of ε and of δt. As an
example of two typical distributions obtained at constant
imposed pressure, we plot in Figures 9a and b N(δt) and
N(δε) respectively. The exponents of these power laws (αc

for energies and βc for times) depend on P . In Figure 9c,
αc and βc are plotted versus P . Note that both exponents
grow with pressure. We observe that the rate of emissions
increases with pressure, so that the weight of big values
of δt decreases. This explains the fact that βc grows with
pressure. We have compared the histograms of energy ε
for several pressures, and we noticed that the number of
high-energy emissions is almost the same, while the num-
ber of low-energy emissions increase with pressure, so that
the exponent αc increases as well. Moreover, as the pres-
sure increases, the exponents αc and βc attain the values
α = 1.9±0.1 and β = 1.51±0.05 obtained in the case of a
constant loading rate [10]. We imposed to the sample a er-
ratic and an cyclic load, which are plotted as a function of
time in Figures 11a and b respectively. Power laws are ob-
tained for the distributions of ε and for δt. The exponents

Fig. 9. (a, b) Two typical time δt and energy ε distributions
obtained at imposed constant pressure (P = 0.56 atm). (c) The
exponents αc (empty circles) and βc (black points), plotted as
a function of the value of the imposed constant pressure. Note
that as the pressure increases, the values of the exponents tend
to those obtained in the case of constant pressure rate. The
error bars represent the statistical uncertainty.
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Fig. 10. The cumulative energy E, normalized to Emax, as a
function of the reduced control parameter τ−tτ at the neigh-
borhood of the fracture point (case of imposed constant pres-
sure). The circles are the average for 9 wood samples. The

solid line is the fit E = E0

�
τ−t
τ

�−γ
. The exponent found,

γ = 0.26, does not depend on the value of the imposed pres-
sure. In the case of a constant pressure rate the same law has
been found [9,10].

of these power laws do not depend on the load behavior;
their value is the same of that at constant loading rate.
These and previous results [9,10], allows us to state that
if dP

dt 6= 0, the histograms of the released energy ε and of
the time intervals δt do not depend on the load history.
The fact that α and β do not depend on dP

dt seems to be
in contrast with the fact that αc and βc depend on P .
This result can be interpreted by considering that the mi-
crocracks formation process is not the same when dP

dt = 0
and dP

dt 6= 0. In the former case, imposed constant P ,
the mechanism of microcrack nucleation is the dominant
one and the nucleation time depends on pressure. In the
other case, dP

dt 6= 0, the dominant mechanism is not the
nucleation but the fact that, when pressure increases as
a function of time, several parts of the sample may have
to support a pressure larger than the local critical stress
to break bonds. The fact that at high constant pressure
αc and βc recover the value αc and βc has a simple ex-
planation. Indeed, in order to reach a very high pressure
Ph, dP

dt is different from zero for a time interval which is
comparable or even larger than the time interval spent at
constant pressure Ph. Thus at high constant pressure the
system is close to the case dP

dt 6= 0.

4.2 The dependence of γ on the load features

The measures performed with the HPC imposing an er-
ratic and a cyclic pressure, plotted respectively in Fig-
ures 11a and b, allow us to check the dependence of γ on

Fig. 11. The imposed pressure, normalized at Pmax, (solid
line) and the cumulative energy E, normalized to Emax,
(dashed line) are plotted as a function of time t. (a) An ex-
ample of erratic pressure. (b) A cyclic pressure.

the history of the sample, i.e. on the behavior of the im-
posed pressure. The cumulated energy E for the erratic
and the cyclic pressure, shown in Figures 11a and b as a
function of t, is plotted in log-log scale as a function of
the reduced parameter τ−t

τ in Figures 12a and b respec-
tively. We observe that, in spite of the fluctuations due
to the strong oscillations of the applied pressure, near the
failure the energy E, as a function of τ−t

τ , is fitted by a
power law with γ ' 0.27±0.02. In Figure 12c (reproduced
in Fig. 10 for the sake of clearness), E measured when a
constant pressure is applied to the sample is plotted as a
function of τ−tτ . A power law is found in this case too [21].
The exponent γ is, within error bars, the same in the three
cases. Hence it seems not to depend neither on the applied
pressure history nor on the material [9,10,21].
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Fig. 12. The cumulative energy E, normalized to Emax, as a function of the reduced control parameter τ−t
τ at the neighborhood

of the fracture point. Figure (d) represent the measure taken, at imposed constant rate force, on the tensile machine. The other
figures represent measures made on the HPC apparatus at: imposed constant pressure (c), imposed cyclic pressure (a) and

imposed erratic pressure (b). The dotted lines are the fit E = E0

�
τ−t
τ

�−γ
. The exponents found are: γ = 0.29 (a), γ = 0.25 (b),

γ = 0.29 (c) and γ = 0.27 (d). In the case of a constant pressure rate (on the HPC machine) the same law has been found [9,10].

Further, experiments made with the TM show that γ is
independent on the geometry. In fact we observe that the
behavior of the energy near the fracture as a function of(
τ−t
τ

)
is still a power law of exponent γ ' 0.27, as shown

in Figure 12d.

5 Discussion and conclusions

We presented the results of experiments regarding fracture
of heterogeneous materials (chipboard and fiberglass).
When these materials are submitted to a strain, one ob-
serves acoustic emissions (precursors) before the samples
fails. We have measured the acoustic emissions and the
lifetime τ of the samples.

We have shown that equation (1) proposed by Pomeau
predicts well the functional dependence of τ on the ap-
plied load. However the original Pomeau’s theory is un-
able to explain some features that are observed in our
experiments, in microcrystals [17] and gels [19]. In fact
equation (1) is based on the idea that the fracture is due

to the nucleation of one preexisting defect, which is ther-
mally activated. We have shown that in our experiments
the fracture is due to the nucleation and coalescence of a
large number of defects, as confirmed by the presence of
acoustic emissions and the shape of the statistical distri-
bution of lifetimes. Moreover, we found that the lifetimes
are not affected, within the experimental errors (20%),
by the temperature. We have calculated that in order
to estimate the measured lifetimes, the temperature T
to insert in equation (1) and in equation (4) should be
about 3000 K. Similar results have been found in 2D crys-
tals [18] and gels, where the temperature T to insert in
equation (3) should be about 1000 K < T < 2500 K and
Teff > 1010 K respectively. As for wood and fiberglass,
also in gels the lifetime τ of the sample is not influenced,
in the limit of experimental errors, by a variation of the
temperature T from 20 to 90 ◦C. In contrast, experiments
on 2D-crystals [17] show that τ depends on T .

To explain these points we propose to modify in a sta-
tistical model the one of Pomeau. In this revised model
the failure of the sample is due to the nucleation and
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coalescence of a certain number of defects, each of which is
thermally activated. The parameters Y , η and T of equa-
tion (3), become average parameters, which keep into ac-
count that the interaction between defects have a tensor
nature and are long range [6]. To explain the fact that the
thermal temperature has a minor influence on the lifetime,
we suppose that the strong time-dependent fluctuations
of the internal forces induced by the heterogeneity (de-
fects, microcraks...) can be considered as a sort of noise.
Thus T depends on the thermal temperature but mainly
on the disorder in the medium. In this way the hetero-
geneity of the material enhances thermal fluctuations so
that the nucleation time of defects becomes of the order of
the measured ones. Recently Arndt et al. reached a similar
conclusion [31] using a different approach, which is coher-
ent with the generation of a time dependent distribution
of the microcrack ensemble [6]. Numerical simulation that
we have performed on a very simple model [29,30] are in
agreement with these results. This model allows us to gen-
eralize equation (1) to the case of a time dependent load,
and to explain the violation of the Kaiser effect in these
materials.

We also studied the statistical properties of the frac-
ture precursors. We have found that the histograms of the
energy and of time between two consecutive AE follow
power laws of exponents β and α respectively. In proxim-
ity of the fracture the cumulated energy follows a power
law, typical of phase transitions. Notably, the critical ex-
ponent γ seems to be independent on the geometry and
the applied load. Indeed if AE is considered as a suscep-
tibility it is not easy to put together the observed critical
divergency with a nucleation process. Probably the stan-
dard phase transition description can be only partially
applied to failure because of the intrinsic irreversibility of
the crack formation.

We thank P. Metz, M. Moulin and F. Vittoz for very useful
technical assistance.
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