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Abstract

We prove that the asterisk topologies on the direct sum of topological Abelian groups, used by
Kaplan and Banaszczyk in duality theory, are different. However, in the category of locally quasi-
convex groups they do not differ, and coincide with the coproduct topology.
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1. Introduction

For a family, G;, i € I, in the category of topological Abelian groups, different
topologies can be considered on their prodliEt; G; or their direct sumd,_; Gi,
depending on the aim. The situation on the direct sum is intriguing, at least for uncountable
families of groups.

Kaplan defined in [9] thesterisktopology 7, , to obtain a duality principle between
products and direct sums. He pointed out in his paper that, for countable direct sums, the
asterisk topology coincide with the topology induced by the rectangular topology of the
product. Since then, different authors (Noble [10], Venkataraman [14], Varopoulos [13],
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etc.) have used the asterisk topology on the direct sum of topological groups in the context
of duality. Banaszczyk gave a new definition of the asterisk topology in [2], and proved a
similar duality result but, as we see in the present paper, both definitions are not equivalent.
They coincide in the category of locally quasi-convex groups, and the result of Kaplan was
addressed for reflexive groups, which are within the mentioned category.

Another point of view is to consider the direct sum of a family of Abelian topological
groups as the algebraic coproduct of the family. In this case the natural topology is named
coproductopology7y. Itis the final group topology with respect to the family of canonical
monomorphisms; : G; — ,.; G;. The topologyZ; was considered by Higgins in a
paper [7], where he describes some other topologies on the direct sum (including the
asterisk topology of Kaplan). He proved in the same paper that the coproduct topology
is not in general the direct limit of the topologies on the finite sums. Nickolas has taken
recently [11] the work of Higgins and has found necessary and sufficient conditions for the
coincidence of the considered topologies.

We show in this paper that in the category of locally quasi-convex groups the asterisk
and coproduct topologies are closely connected: the first one is the locally quasi-convex
topology associated to the second one.

2. Someinequalitiesin T

We will use the following notations (the second one is due to Kaplan): For a stbset
of an Abelian grouf, we write

Vi ={xeG: x,2x,...,nx eV}, neN,
(1/2")\Vv={xeV: 2xeVVke{0,1,....,n}}, neNU{O.

T denotes the multiplicative group of complex numbers with modulus 1 endowed with its
usual topology.
Given anyr € T, 6(¢) is the real number characterized by

0(1) el—1/2,1/2], exp(2mio (1)) =t.

We also denote

Tle, Bl = {exp2mir): A €la,Bl}, a,BeR, a<B; Tq ='JI‘|:—} }]
Proposition 1. Let g8 € [0, 1/3[. Letr, ..., t, € T[-8, B]. If

]_[tj.f e T[-B,B] V(e1,...,en) €{—1,0,1}",
j=1

then|0(r1)| + [0 (t2)| + -+ - + 10 (1) < B.
Proof. We can supposé(z;) > 0 for everyj e {1,...,n}. We will prove this result by

induction. Fom = 1 the assertion is trivial. Let us suppose that it is truesfer 1, and fix
t1,...,t, With 6(z;) € [0, ] for everyj in {1,...,n} and satisfying the above hypothesis.



M.J. Chasco, X. Dominguez / Topology and its Applications 133 (2003) 209-223 211

Considen =112+ - -t,—1. The familyzy, 22, ..., t,_1 also satisfy]'[?jt;’ e T[—8, B] for
every(e1, ..., e,—1) in {—1,0,1}"~1 since we can take, = 1 above; hence, applying
the induction hypothesis we dedu€é&i) + 0(r2) + - -- + 0(t,—1) < B, and in particular

6(t) =6(t1) +0(r2) + - - - + 0(t,—1). We have
tty = exp(2mi(0(1) +60(ty))) € T[—B, B]
and hence,
O(ty) + -+ 0(ta—1) + 0(t) = 0(1) + 0(1,)
€ ([-B. B1+7Z)N[0,28]1=10, B]. O

From Proposition 1 we obtain

Corollary 2.

(a) For any n € N and g € [0,1/3[, T[-8, Blw = TI[—B/n, B/n]. In particular
(T4) @y =T[—1/4n,1/4n].

(b) For any n €e N U {0} and 8 € [0,1/3[, (1/2")T[-8, B] = T[—B/2", 8/2"]. In
particular (1/2")T1 = (T4)2n).

Proof. (a) The inclusioil[—8/n, B/n] C T[—B, Bl is trivial. For the reverse inclusion,
givent € T[—8, Blwx), we apply Proposition 1 with; = for every j € {1,..., n}; we
deducen|6(¢)| < B and thug € T[—8/n, B/n].

(b) Again, the inclusiorT[—g/2", 8/2"] C (1/2")T[—-8, g1 s trivial. The proof of the
reverse inclusion can be made by induction. ket 0 it is trivial. If we suppose that the
assertion is true fot — 1, and fixt € (1/2")T[—p, B], in particular we have

0,202, 2 e T-B, B,
2.2 (2. (D)% eTI-p. B

and by hypothesis; and 12 both are inT[—p/2"~1, /2"~1]. From (a) we deduce
teT[-p/2",p/2"]. O

3. Thefunctionals (-/U) and (-/U)g

We include the definitions of the two functionals/U) and (-/U)g, which are
generalizations of the well-known Minkowski functional to groups. These two functionals
take part in the definition of asterisk topologies on the direct sum.

Let G be an Abelian group and a nonempty subset @f. The functional-/U) g was
defined by Kaplan [9] in the following way:

(x/U)k :=inf{2in: kaeUVke{O,...,n}}, Vx e U. (1)

Note that(-/U)g takes its values if0} U {1/2": n € N U {0}}, and that for every
neNU{0}, (1/2U ={x e U: (x/U)g < 1/2"}.
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In[2, p. 8] Banaszczyk introduced the following variant:
1
(x/U)::inf{—: kerVke{l,...,n}}, VxeU. (2)
n

The functional(-/U) takes its values if0} U {1/n: n e N}. Foranyn e N, U,y = {x €
U: (x/U) < 1/n).
Next we will prove a natural inequality involving/U) and(-/U)k:

Proposition 3. For every Abelian grougs, U € G andx e U
(x/U)k <2(x/U).

Proof. Clearly this inequality is fulfilled in the cage /U) = 0. Suppose now thatr € U
foreveryk € {1,...,n} but(n + 1)x ¢ U. Since #°%" < 5, we have

2

2
2llogz n] = 2logn — 5 T 2(x/U)

(x/U)k <

(here[«] stays for the greatest integer less or equal than the real numben

We cannot give a similar inequality (valid in general) in the opposite sense: if we put
G=R,U={2" neN}andx =2, itis immediate thatx/U) = 1/2 while (x/U)g = 0.

The following proposition (cf. Lemma 1.14 in [2]) collects some other properties of
(-/U); its proof is immediate.

Proposition 4. Let G be an Abelian group andf, U nonempty subsets Gf.

(@ Ifvcu,then(x/U) < (x/V)foreveryx e V.
(b) If V+V C U, then(x/U) < 3(x/ V) for everyx e V.
() fV+VcU,then(x+y/U)<max(x/V), (y/V)} foreveryx,ye V.

The same properties are true for Kaplan’s functiotall ) x .

4. Description of thefinal and box topologies

Let 7 be a nonempty set; an Abelian group(;, i € I topological Abelian groups
andv; : G; — G, i € I group homomorphisms. In general the finest topology imaking
all v; continuous is not a group topology; examples of this situation can be found in [6,
Exercises 2.10.21, 2.10.22], and [5, Example 2.9(a)]. However, it can be shown easily
that the family of group topologies o6& which make all thev; continuous contains
its supremum. The group topology obtained in this way is usually referred dmtie
topology onG corresponding to the family of homomorphiskas: i € I}.

We next give a neighborhood basis of zero for the final topologyorfollowing a
construction which is known for the topological vector space case (see e.g., [8, 4.1]). In
what follows, for a topological Abelian grou@, AVo(G) will denote the family of all
neighborhoods of zero i6.
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Proposition 5. Let I be a nonempty set; an Abelian groupG;, i € I topological Abelian
groups an; : G; — G, i € I group homomorphisms. L&} denote the final topology on
G corresponding to the family of homomorphisfns i € I}. We define

N
uvre=U U DwWiw,

NeN (iq,...,iy)elN n=1

U= (Uin) €] [No(GH".
iel
The family{Us: U= (U; ) €[]
topology7y.

i1 No(G)N} is a neighborhood basis of zero for the

Proof. Let us first clarify the definition of the sets;: given a family of sequences of
neighborhoodsU; ), y € G is in Uy if and only if there existV e N andiy, ...,iy €1
such thaty = v;, (x1) + - - - + v;, (xn), beingx, € U;, , foreveryn € {1, ..., N}.

The above family fulfills the axioms of neighborhood basis for a group topology;
only some proof is needed to show that gives= (U; ) € ]_[I-GIJ\/Q(G,-)N there exists
V= (Vin) €[lic; No(G)HY such thav s +V; C Uy. Once fixed the neighborhoods
we take for every € I andn € N, someV; , € No(G;) satisfyingV; , C U;.2,—1 N U; 2,.
Giveny andy’ in V¢, we have

Jiy,...,iy € I suchthaty =v;, (x1) +--- +viy (xn), Xk € Vip s
Jig..... iy € I such thay' = vy (x1) + -+ vy (x)y).  x/ €V
We can suppos® = N’ adding zeros if necessary. Hence
Y+ = v (v0) + v (x) + - vy (ev) + v, (xy)
beingxy € Vi x C Uiy, 21, x| € V,-[/J C Uj,,21. Renaming indices we obtain

2N

Y+Y' =) 0, @) 2 €Ujn
n=1

and hencey + y" € Uy.

Now we prove thaf’; is the finest group topology making all continuous. Givet =
(Uin) € [lic; No(GHN and j € 1, v;(U;1) C Uy for every j € I, sov; is continuous.
Let now t be a group topology making all; continuous. Given a-neighborhood of
zeroW in G, we fix a sequencéW,),n of r-neighborhoods of zero id such that
W1+ ---+ W, C W for everyn € N (this can be done inductively in such a way that
W1+ Wi C W, Wo+ Wa C Wy, etc.). If we selecl; , € No(G;) such that; (U; ) C Wy,
foreveryn e Nandi e I, we haveUy C W. O

Remark 6. It can be proved without great effort that the above introduced basis of
neighborhoods of zero fafy; can be modified in such a way that for every element in
each neighborhood, the indices which take part in its decomposition are all different.
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Next we will consider another important topology on the raggef a family of group
homomorphisms; :G; — G.
In what follows,§ (1) will stay for the family of all finite subsets of a sét

Proposition 7. With the above notations, we define

U, = U Zvi(Ui),

AeF(I) ieA

U=(Uier € HNO(Gi)~
iel
The family{U;: U = (Uj)ic1 € [],; No(Gi)} is a neighborhood basis of zero for a group
topology7, on G, which makes all; continuous.
If 1 is countable, and7 coincide onG.

Proof. It is easily checked that the given family is a basis of neighborhoods of zero for a
group topology orG which makes alb; continuous; in particular it is coarser th@np.

If I is countable, we can suppogec N. We will show that7;, is the finest group
topology for which allv; are continuous: Lef be a group topology o making allv;
continuous. Given & -neighborhood of zerdV in G, let (V,,) be a sequence Vo (G)
such thatVy + --- + V,, ¢ W for everyn € N. If U; € No(G;) satisfiesv; (U;) C V; for all
i € I, we have

VAeF) Y wUHCY VicW = U,CW. O
ieA ieA

Remark 8. In [3] (Corollary to Proposition 1) it is proved that the topologiEsand 7,
coincide on any countable direct sum of locally compact groups.

We call 7, box topology(or rectangulartopology) onG associated with the family of
homomorphisms$v; : G; — G}. This name is usually given to the topolo@y when the
construction is carried out on the direct sum of a family of topological Abelian groups.

5. Topologieson thedirect sum

Coproduct and box topologies on the direct surhet G; be a topological Abelian
group, for eachi € I. We may consider on the Abelian grou@®,.; G; the final
topology 7 (Proposition 5) or the box topology, (Proposition 7) with respect to the
family of canonical monomorphisms :G; — ;.; Gi. We will use the denomination
coproduct topologyfor the final topology7; associated to this concrete system of

groups and homomorphisms. We will use the nota@f@ G, for the topological group
Dic; Gi. Tp); and@(h) G for (P;.; Gi. Tp). If U; is a neighborhood of zero iG; for

iel
eachi € I, we will write €, _; U; for the neighborhood of zerd; (Proposition 7).

iel
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Proposition 9. Let 7 be a group topology o#p;.; G; such that7, c 7 C 7. Then,
for every j € I, the natural homomorphism;:G; — (;.; Gi.7) is a topological
embedding.

iel

Proof. Fix j € 1. Itis immediate thab; is one to one and (sincgé C 7¢) continuous; let
us show that it is relatively open. L&t € V(G ). If we take(U;)icr € [];<; No(G;) such
thatU; = U, clearlyv; (G ;) N @;.; Ui Cv;(U). Sinced; ., U; is a7 -neighborhood of
zero, the assertion follows.O

iel iel

Corollary 10. 7 is the finest group topology o5
topologies on all groupss; .

;<7 Gi which induces the original

The asterisk topologies.Let G; be an Abelian group antd; a nonempty subset @f; for
eachi € I. We define

EB(*K)U,- = {x cePui D (x)/Ui), < 1},

iel iel iel

(%)
@ = {x ce@ui: > (xi)/Ui) < 1}.
iel iel iel

Using basic properties of the function@) U) (Proposition 4), and their analogues for
(-/U)k, itis easy to check that both the families formed by the@ﬁg) U; and@P'?, U;

as (Uj)ier runs over] [;.; No(G;), satisfy the axioms corresponding to a neilger{borhood
basis of zero for a group topology. We will denote these topologies respectively, by
and7,. The first one was introduced by Kaplan in [9], and the second one was defined by
Banaszczyk in [2]. Both authors used the teasterisk topologyor their definitions. We

shall keep this denomination only fG.

We will denote the topological grougéb,.; G:, 7, ) and(p
by @(*K) G; and@(*) G;.

iel iel

G;, T,) respectively

iel

Comparison of topologies.The following results collect some facts about the relations
between the different topologies above defined on the direct sum. We will use the preceding
notations, and also denote By the topology on the direct sum induced by the Tychonov
topology.

Proposition 11. Let (G;);<; be a family of topological Abelian groups. On the direct sum

@ie] Gi,

(@) Ty CTp C Ty C T CT5.
(b) If I isfinite, thenZ, =7, =Ty, =T, =15.
(c) If Iis countable, theM, =T, =T, =T .

Proof. (a) Only the inclusionZ,, C 7, needs proof: LetU; be a neighborhood of
zero inG;, for everyi € I. We will prove that@(*) Vi C @(*K) U; for any (Vy)ies €

iel iel
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. No(Gy) with V; + V; Cc U;, i € 1. Indeed, ifx € ) V;, thenx (i) € V; C U; for
iel iel
everyi € I and we have

b
YU L 2 (/) Y e/ Vi) < 1

iel iel iel

(b) It is immediate that fod finite, any group topology o#b,.,; Gi which induces
original topologies on alG; is coarser than the product topology. In particllarC 7
and we deduce that all these topologies coincide.

(c) This follows from the fact that in generd}, and 7, coincide for countabld

(Proposition 7). O

Remark 12. Recently [11] Nickolas has found necessary and sufficient conditions for the
coincidence between any two of the topolodigs7,, and7;.

We devote the remaining of this section to investigate the relation between the
topologiesZ,, andZ,.

Proposition 13. Let {G;: i € I} be a family of topological Abelian groups. The following
are equivalent

(@) Tup =T onP;, G
(b) For all but countably many < I, givenU < No(G;) there existsV € Np(G;) such
that(1/2")V C U for everyn e N.

Proof. Suppose that (b) is not satisfied. Then clearly we can find an uncourdiatlé
and a family of set{V;);c;, such that for every € I, V; is a neighborhood of zero
in G; and for eachW; € No(G;) there existsN; € N with (1/2N)W; ¢ (Vi) 2Miy - Fix

Vi € No(G;) arbitrary fori € I\ I; and let us show th@g*) V; is not a7, -neighborhood

iel
of zero in@;; G;. Clearly it suffices to prove that for any family;);c;, with W;

No(G;) for everyi e I, @f;’,‘l) @f?, . Let N; (i € I) be the natural number
associated with eacW; as above. Slncél is not countable, there exisié € N such that
{i € Ii: N; = N} is infinite. Let A be a subset of this set with cardinal 2 1. We define
X € @ie]l G; in the following way: for every € A, we takex (i) in (1/2Y)W; but not in

(Vi) (avy; for everyi ¢ A, we putx (i) = 0. Then

1 *
Y@/ V) = Y/ V) > (¥ 1) s =1 = x ¢ @

iely ieA iely

: . 1 (+k)
D@/ W) = 2w i)/ W) <2V =Ygy <1 = xe P W
iely icA iely

Suppose that (b) is satisfied, and let us prove (a)./bdie a countable subset &f
such that, for every e I \ Io, the neighborhoods of zero @&; satisfy the condition in (b).
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Fix a basic7,-neighborhood®'*, U; in @, ., Gi. We will find a family (W;);c; with

icl

W; € No(G;) for everyi € I and

@(*K)Wi c @(*)Ul

iel iel
For everyi € I, let V; be a neighborhood of zero i6; such thatV; + V; c U;. Fix
now W; € No(G;) (i € Ip) such that@,-go Wi C GB,(?,OV this can be done since for
countable index sets the topologi&sand7, coincide (Proposition 11(c)). Fare I \ I,
fix W; € No(G;) such that1/2")W; C (V;)(2») for everyn € N.

Takex € @K W;.

For everyi e I \ Ip, (x(i)/ Vi) < (x(i)/W))k. Indeed, if(x(i)/W;)xk = 0, we have
x(i) € (1/2H)W; C (Vi) for everyn € N, and hencex(i)/V;) = 0. If (x(i)/ Wik =
1/2", thenwe have (i) € (1/2")W; C (V;)2) and hencéx(i)/ V) < 1/2" = (x(i)/ W)k
We deduce

Prop 4(c) 1

Y (x@y/ui) < —Z(x(i)/%)é > (x@)/vi)+ Z (x()/ Vi)
2 2

iel iel ielp el\lp

Since the family(x (i));cy, is in EB,-e, W; and hence, |r®

> (x)/Ui) < %<1+ > (x(i)/W,-)K> <1

icl iel\Ip

iel, Vi» We have

thus we have proved that= (x(i));c; is in the7,-neighborhood of zer@}?, U;. O

Next we show that the topologi€s andZ,, are in general different.

Consider the Abelian group. In [12] the following fact is proved: For any € Z there
exists a unique decompositionofasx =Y _a,2", a, € {—1, 0, 1} (the sum ranging over
N U {0} and including only finitely many nonzeg) satisfying the condition

=21, a#0 = ap-1=a,+1=0]. 3

For a decreasing and convergent to zero sequence of positive real ndnbes, >o,
we define the map

qs 7. — [0, 00[, qg(ZanZ”) = Z |an|8s.

In [12] it is proved that in fact, for every € Z, gs(x) is the infimum of all sum$_ |a, |8,
where(a,) is any eventually zero sequenceZrsuch thatc = " a,2". Using this fact, it
is easy to show thafs is a separated quasinorm, i.e., that for every € Z

gs(x) =0 < x=0; qs(—x) = gs(x); gs(x +y) < gs(x) +gs(y).

Let 75 be the metrizable topology dA associated with the pseudonosm andZ;s the
topological Abelian grougZ, 7). For eacte > 0, B, denotes the sef; “[ 0, €.
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Lemma 14. If we define, for every € N,

on _ 4n+l 1

Li=22+224+...42 T

n
k=1
8;j=1/n form,_1<j<m,,

kj=1, form,—1 < j <my,
thengs(k;2/) > 1Vj e N.

Proof. Fix j € N. Letn € N be such thay € {m,_1,...,m, — 1}. We have
s (k;2)) = qs((2°+ 22+ -+ 22)2)) = g5 (2 + 2772 ... 4 20F20),
which by definition ofys is exactlys; +8;42+8j44+ -+ 842, > (n + 1)L = |
Proposition 15. Let I be an uncountable set and for eacch I, let G; be the topological
Abelian groupZs, with § = (8,),en as in Lemmal4. Then the topolog¥,. on@,.; G; is
strictly finer thanZ, .
Proof. By Proposition 13(b), it is sufficient to show that in the metric grétpgs)
Ve>0IneN,  (1/2")B. ¢ (B .

It is immediate that for everyx € Z andn > 0, ¢s(2"x) < gs(x), and in particular
(1/2")B. = B, for everyn € N ande > 0. Hence it suffices to prove that

Ve>03dkeN3IxeZ, gqsix)<e, gqslkx)>1.

Givene > 0, take j € N such thats; < . Then g5(2)) = 8; < e, but by Lemma 14,
qs(k; 2h>1. O

6. Duality and quasi-convexity of direct sums

Let G be a topological Abelian group. The nardearacterof G is used for a group
homomorphismy : G — T. We denote by HofG, T) the group of characters @ and
by G* the group of continuous characters@f G” is called thedual groupof G. The
groupG” is usually endowed with the compact open topology andtteal groupG™*
is the dual group 0o&”. The groupG is said to baeflexivewhen the canonical evaluation
ag .G — G™ given byag (x) (k) = k(x) is a topological isomorphism.

For a subsed of G, thepolar of A is

A" ={x € G": x(A) CT4}.

A charactery of the topological Abelian groug is continuous if and only ify € U” for
some neighborhood of zet in G.
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In the same way, for a subsBtof G* theinverse polarof B is
B*={xeG: x(x) e T4+ ¥x € B}.

The subsetd of G is quasi-conveif A< = A, that is, if it satisfies the following
condition:

VieG\Adx eG", x(A)CTy x(&x)¢T,.

Polars and inverse polars are quasi-convex sets.

We say that a topological Abelian group iscally quasi-convexf it admits a
neighborhood basis of zero formed by quasi-convex sets. Locally quasi-convex groups
are a natural generalization of locally convex spaces, since by Hahn-Banach theorem, in
any locally convex space the bipolars of all neighborhoods of zero form themselves a
neighborhood basis. In fact the underlying group of any locally convex space is locally
quasi-convex [2, Proposition 2.4]. Since polars are quasi-convex sets, for any topological
Abelian groupG its dualG” is locally quasi-convex; in particular, any reflexive topological
Abelian group is locally quasi-convex.

Proposition 16. Let (G, 7) be a topological Abelian group. The family of s@t&: U €
No(G)} is a neighborhood basis of zero for a group topolagy on G; 1, is the finest
among those locally quasi-convex group topologiesGowhich are coarser than. The
topological groupgG, t) and(G, t,.) have the same continuous characters.

Proof. This resultis presented and proved in both the references [1, Proposition 6.18] and
[4,4.6]. O

Proposition 17. Let {G;: i € I} be a family of topological Abelian groups. If all but
countably many groups in the family are locally quasi-convex, then the topol@gies
and7, coincide ondp;; G;.

Proof. It suffices to prove (Proposition 13) that given a locally quasi-congeand
U € No(G), there existsV € Np(G) such that(1/2")V C U for everyn € N. For
that, take asV any quasi-convex neighborhood of zero contained/inLet x be an
element ofG andn a natural number such that the finite sequenc2x, 22x, ..., 2"x
is contained inV. We need to see that for atle {1,...,2"}, kx € U. It is enough to
prove thatkx € V> =V C U for any suchk. Fix any y € V*. The finite sequence
x(X). x ()2, x ()%, ..., x(x)?" is contained i, so (Corollary 2(b)) (x) € (T4 ).
Theny(kx) = x(x)keT,. O

Remark 18. It is a well-known fact that for a family of topological Abelian groups
(Gi)ier, the canonical map betwe€f]; ., G;, 7,)" and@;.; G/ becomes a topological
isomorphism if we consider the compact-open topology on the domain and the topology
T« on the range. This was firstly stated for reflexie by Kaplan [9]; Banaszczyk [2]
proved the same result for arbitraG; and considering the topolod¥ on the sum of

the dual groups. Note that the fact that both asterisk topologies coincide on this sum is an
immediate consequence of Proposition 17, since dual groups are locally quasi-convex.
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Lemma 19. Let G be a topological Abelian group and a subset ot5.

(a) Foreveryx e U, (x/U) = 4sup,cy- 10 (x (x))].
(b) If U is quasi-convex, then for everye U (x/U) < 8sup, ¢y 10 (x (x))].

Proof. (a) If (x/U) =0, thennx € U and in particulary (nx) = x (x)" € T for every
n € N and x € U”. From Corollary 2(a) we deducg(x) = 1 for every x € U and
thus, SUpcp= 10(x (x)| = 0. Otherwise,(x/U) = 1/N for someN € N. In particular
x,2x,...,Nx € U and hencey (x), x(x)2, ..., x(x)V € T, for any x € U”. Again by
Corollary 2(a),

0(x(1) < = = 2(x/V)
XSy T
for any suchy, and the inequality follows.

(b) If (x/U) = 0 the inequality is trivial. Otherwisgx/U) = 1/N for someN € N;
in particular(N + L)x ¢ U. SinceU is a quasi-convex set, we can finde U” with
x (N +1Dx) = x(x)N*t1 ¢ T . Hence

1 1

o(x(0)]| > ——+>

av+D~ 8™V

and the inequality follows. O

Let {G;: i € I} be a family of Abelian groups anép,_; G; their algebraic direct
sum. Clearly, for any character: @,.; G; — T there exist uniquely defined characters
xi:Gi — T, i €I such thaty(x) = [];c; xi(x(i)) for everyx € @,.; G;. Inversely,
for any family (x)ies in [[;,c; Hom(G;, T), the expression — [];.; xi(x(i)) defines
a character of the Abelian grop),; _; G;. According with this, in the following lemma
we identify the Abelian group|;., Hom(G;, T) with the algebraic dual ofp,_; G;; in
other words, we considé€p; _, G; equipped with the discrete topology.

iel

iel

Lemma 20. Let G;, i € I be topological Abelian groups, and for evarg I, let V;, U;
be nonempty subsets Gf.

@ [lie, U C (@1(2)1 Ui)”.

(b) It V; +V; +V; CU; foreveryi e I, then([[;,.; V/)" C @fz), ur.

Proof. (a) Fixx € @f?, U; and(xi)ier € [;e; U - We denote by the finite set formed
by thosei € I such thatx(i) #0. Letn; (i € A) be natural numbers such thati)
(Ui) ;) for everyi € A, and) ;4 ni < 1. By Corollary 2(a), for every € A we have
xi(x(@) € (T) ;) = T[—1/4n;, 1/4n;], and hence[ [;c; xi (x (@) = [Tjen xi(x(@)) €
T,.
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(b) Let x € (J[;c; V/)". Let us denote again by the finite set formed by those
i € I such thatx(i) # 0. It is clear thatc(i) € U7 for everyi e I; we must prove that
Y ieax(@)/U") < 1. By Lemma 19(b)

(x()/U77) <8 sup 0(x(x@))| =8 5%p|9(x(x(i)))| Vi € A.
xeur= xeuy

Let now x; € UF for everyi € I. Fix (g;)ie; € {—1,0,1}). SinceV; + V; + V; C U;
for everyi € I, the families(xl.’””),-e“ for k € {1,2,3}, are in[[;.,; V7 and sincex €
([Tie; V9)<, we have

k
(]_[ X (x(i))> eTy, ke{l,23}

icA

By Corollary 2(a),[ [;c4 Xf[ (x(@)) € (T+) @ =T[-1/12,1/12] and by Proposition 1,

S0 G (x@))] < 1_12

icA
Since the charactepg were arbitrary, we deduce

> (x@/U7) <8 supla(x(x(®))[ <8- 1 o

12
icA ieA X€U;

Let now (G;);c; be a nonempty family ofopological Abelian groups, and lel” be a
group topology defined on the direct séy, ., G;, for which all mapsy; : G; — @;; Gi
are continuousi.e., 7 C 7r). Then we can define the canonical monomorphism

VAN
D:xe (@Gi,T) = (X oVi)ierl GHG;\.
iel iel
Kaplan [9] proved that if the groups; are reflexive and” = 7, then® is a topological
isomorphism, considering compact-open topology on duals and product topology on the
product. Banaszczyk [2] proved the same for Hausd@yfind7 = 7. An easy adaptation
of their proofs leads to the same result wh&rés any group topology on the direct sum
which containsZ . ; in particular, for7 = 7.

Theorem 21. Let (G;);<; be a family of locally quasi-convex topological Abelian groups.
The asterisk topolog¥ is the finest locally quasi-convex topology @, G; which
makes the canonical injections continuous.

Proof. 7, is locally quasi-convex: Let/; be a quasi-convex neighborhood of zeradp

for everyi € I. Let V; be neighborhoods of zero i@i; such thatV; + V; + V; c U; for
eachi e 1. By Lemma 20(@)[T;c; Vi € (@D, Vi)", hence®?, Vi ¢ (@2, viy= c
(['Tie; V7). Using now Lemma 20(b), we conclude that

@(*)Vi c (1—[ VI-D)Q c @(*)Ui.

iel iel iel
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([Iie; V) is a quasi-convex subset of the discrete gréPp.; G; (recall that inverse
polars are quasi-convex sets); moreover, it if-aeighborhood of zero, since it contains
@f?, V;. Hence it is a quasi-convex neighborhood of zero for the asterisk topology.

7T, makes they; continuous: this is an immediate consequence of Propositions 9 and 11.

7T, is the finest one under these conditions: Zebe a locally quasi-convex topology
on@;.; G; for which the monomorphismg are all continuous. Lel/ be a quasi-convex
neighborhood of zero itd),.; Gi, 7). For everyi € I there existd/; € Np(G;) such that
v; (U;) C U. LetU” be the polar ot/ for the topology7 . SinceZ makes all; continuous,
any 7 -continuous character can be identified with a fandjly);c; in [[;c; G/; since for
everyi € I we havev; (U;) C U, it is immediate that in fact” C [[,.; U7. We deduce
that (T[;c; UP)* c U™ =U, but ([];c; U") is aZ,-neighborhood of zero; indeed, by

Lemma 20(a) it contain€®'*), U;, as above. O

The fact that, for locally quasi-convey;, the asterisk topology on the direct sum of
the family is locally quasi-convex, was mentioned in [2] (Proposition 1.16), and proved
independently in [1] (Proposition 6.8 (iii)).

Corollary 22. Let (G;);<; be a family of locally quasi-convex topological Abelian groups.
The asterisk topology ofb,.; G; is the locally quasi-convex topology associated With
(in the sense of Propositialb).

Proof. We must show that under the above conditiéhds the finest locally quasi-convex
group topology among those coarser tHan We know that7, C 7¢; and thatZ, is
locally quasi-convex (Theorem 21). L&t be a locally quasi-convex group topology on
P;c; Gi coarser thaf . SinceT C 7y, T makes the canonical injections continuous. By
Theorem 217 Cc7,.. O

Corollary 23. Let (G;);<; be a family of locally quasi-convex topological Abelian groups.
The topologyZ; on@;; G; is locally quasi-convex if and only if it coincides wiff.

Proof. This is an immediate consequence of Corollary 221

Nickolas [11] pointed out that on any direct sum of topological Abelian groups which
topologically are P-spaces, the topologi&sand 7, coincide. Such groups are locally
quasi-convex, since they have a neighborhood basis of zero formed by open subgroups.
This provides a nontrivial example of the situation characterized in Corollary 23.

Remark 24. Theorem 21 may be reformulated saying that the coproduct, in the category of
locally quasi-convex groups, is the direct sum endowed with the asterisk topology. Hence
in this category, the coproduct of reflexive groups is reflexive.
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