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Abstract

Recent results on one-dimensional patterns in locally heated experiments are presented. A fluid layer is heated locally by
a nearly one-dimensional heater, and subjected to both horizontal and vertical temperature gradients. Depending on the fluic
depth and on the temperature difference established across the layer different convective regimes appear. When a very sme
temperature gradient is applied a basic convective state appears. It consists of two big rolls parallel to the heater and filling the
convective cell. A primary instability in the homogeneous basic flow gives rise to a one-dimensional cellular stationary pattern.
For higher values of the control parameters, time-dependent patterns appear through a secondary instability. Various regime
are analyzed: oscillations, traveling waves and alternating patterns. The hydrodynamic characteristics of these patterns ari
provided. Local temperature measurements allows to describe the physical mechanisms responsible for the instabilities. The
similarities and discrepancies of the experimental data with some theoretical models are provided.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction understood. This kind of behavior can be found in ex-
periments of lateral heating in thin fluid lay€fs?2],
The analysis of one-dimensional patterns has beenhot-wire convectiorj3], von Karman street flowgl],
widely studied in recent years. Although these systems nematic liquid crystal§s], Taylor—Dean instability7]
are, a priori, easier to describe than the three- or evenor turbulent spirals on Taylor—Couette fld%].
two-dimensional case, there are a lot of questions that The dynamics in these systems has been understood
remain to be answered. with relative success using one-dimensional models.
In the typical scenario, an homogeneous state desta-In particular, a complex Ginzburg—Landau model is
bilizes to a cellular one-dimensional pattern, that can able to reproduce a grate number of the experimental
be either time-dependent or stationary. When the bi- results (see for examp[8,9] and references therein).
furcation leads to a time-dependent pattern, the dy- However, when the first bifurcation leads to a sta-
namics of the large scale pattern amplitude is very well tionary pattern and a secondary bifurcation produces
time-dependent patterns, the dynamics is poorly un-
. derstood. There are a lot of experiments with a very
* Corresponding author. Tel#34-948-425-600x6383; . . L
fax: +34-948-425-649. rich phenomenology for which a whole description
E-mail addressjavier@fisica.unav.es (J. Burguete). is not available. Experimental systems with such
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dynamics are Taylor—Couettd 0], laterally heated 2. Experimental setup
fluid layers (for high fluid depthdgp], directional so-

lidification [11-15] directed fingering (printer insta- We consider an horizontal fluid layer of depth

bility) [16-18] laser spectrd19], Rayleigh—-Bénard  (z-coordinate) in a container of length(y-coordinate)

[20—-23]and Rayleigh—Taylof24—28]instabilities. and widthl, (x-coordinate) contained in a vessel with
Using symmetry arguments Coullet and 10¢23] a rigid bottom plate and an upper surface open to the

made a classification of the different kinds of sec- atmosphere (sd€g. 1). A heater is located in the mid-
ondary bifurcations that appear over one-dimensional dle of the bottom plate at = 0, along they-direction.
cellular patterns. In 1991, Goldstein et al. proposed The width of this heater (1 mm) is smaller than the
a general frame to explain the drifting domains ob- fluid depth, and compared to the container width. The
served inside stationary patterns in experimental sys- bottom plate is made of two first surface mirrors, one
tems. This theory was based in the symmetry breaking at each side of the heater, to allow optical techniques.
process when the secondary bifurcation takes place. We have worked with two different containers:

Recently, Gil[31,32] presented an extension of pre-
vious analysis in secondary instabilities that produce
time-dependent patterns with an spatial period twice
the stationary one. His theory explains some exper-
imental results observed in Rayleigh—Taylor and in
other systems, and predicts some results that have not
been observed yet.

In this paper we present experimental results on a
fluid thin layer locally heated by a nearly one-dimen- .
sional heater. The basic homogeneous state, a pair
of convective rolls oriented along the heater, destabi-
lizes in a one-dimensional cellular stationary pattern.
When the control parameters are further increased, this
structure destabilizes and a new secondary instability
appears, giving rise to three different time-dependent In both cases (BC and SC) the aspect rafip =
patterns. ly/d is large enough to assume that the system is not

Experiments where fluid layers are locally heated affected by the lateral endg-(irection). This point
has been studied in other configurations. The heating will be verified below.
is provided by means of resistive wires placed under  The fluid used is a 5cSt Rine Poulenc silicon oil
the surfacd3,33] or by a laser bearf84,35] Never- (Table J). Although the system is open to the atmo-
theless, the time-dependent patterns of these systemsphere, the evaporation being nearly negligible does
are produced after a primary bifurcation. not affect the dynamics: less than 0.05 mm each day.

In previous works, we have shown the effect of gra- The fluid depth is determined by means of a micromet-
dients of the control parameter on the dynamics of ric screw with an accuracy of 50m. For the depths
the stationary pattern itsel86—38] In this work we considered in this experiment (1-6 mm), the value of
present the results concerning the secondary bifurca-the verticalAT for which convection threshold is tra-
tion and the characterization of the time-dependent versed is less than 1K.

e The small container (SC) i5, = 25cm long and

I, = 4cm wide. The heater temperatufe is con-
trolled with a thermostabilized water circulation that
ensures a temperature stability of 0.05K. The fluid
layer is open to the atmospherBynosph 25°C),
and the lateral wall temperatures are not controlled.
Two experimental parameters can be vari¢dnd
AT, =T; — Tatmosph

The big container (BC) i5, = 45cm long and, =

6 cm wide. In this case the wall temperatdte can

be controlled with a secondary water circulation.
A third parameter appears, the lateral temperature
differenceAT, =T, — T_.

patterns. We characterize the flow and the dynamics by
In Section 2we present the experimental setup, and shadowgraphy associated to image processing and by
the results are introduced Bection 3 In Section 4 means of temperature measurements. A He—Ne laser

we compare with other experiments and models, and beam is expanded and projected over the container
in Section 5we resume briefly our conclusions. in the z-direction. This beam crosses the fluid layer,
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Fig. 1. Experimental setup. Sketch of the experimental cells: top view (top) and cross-section (bottom). The origin of coordinates is placed
at the mirror plates in the vertical directian and at the heater in the-direction. A divergent expanded laser beam crosses vertically the
cell, and is projected over a screen.

reflects on the mirrors, and is projected back into a of about 0.3s when immersed in silicone oil. If the
screen. Because of the largest cell size (45cm), it thermocouple is placed over the surface at any point
was not practical for us to obtain a parallel beam us- near the center of the channel, the dynamics of the
ing lenses. Instead, we have worked with an slightly pattern changes drastically (for example, it fixes the
divergent light beam (about 0.06rad). Once screen secondary cell boundaries). The only non-perturbative
image is recorded with a CCD camera, it is digi- position for the thermocouple is to place it near the
talized and processed in a computer, obtaining both lateral walls. We have therefore used this method to
two-dimensional photographs and spatio-temporal di- record the thermal oscillations only near the lateral
agrams. Space and time Fourier transforms and com-walls.
plex demodulation techniques are used to extract the Second, we use an optical technique to measure the
spatio-temporal behavior of the patterns (see details temperature gradients. A laser beam entering perpen-
in [8] and references therein). We have determined dicular to the free surface and reflected at the bottom
in this way the hydrodynamic characteristics of the is deflected because of the local variations of the in-
patterns. The divergence in the laser beam is takendex of refraction, which depends on the temperature
into account when determining the hydrodynamic [39]. By measuring the oscillations of this laser beam,
characteristics. the ratio between the gradient along the heater and the
Two different techniques have been used to ob- gradient across the cell can be estimated. Moreover,
serve the thermal behavior of the fluid. First we mea- from the reflection at the free surface we notice that
sure the local temperature using a 0.5mm diameter traveling waves induce surface deflections which are
K-thermocouple having a characteristic response time less than Jum for a depth of 3mm.

Table 1
Physical properties of Rime Poulenc silicone oil 5cSt at 20

v (m?/s) o (kg/m?) a (K1) « (m2/s) o (N/m) y = —00/8T (N/mK) P

5x 1076 910 105 x 1073 6.68x 1078 1.97 x 1072 8x 105 75
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3. Results Over this basic flow, successive instabilities appear
depending oA T andd. To clarify the main situations
As described in the previous work36—-38]a small we present the stability diagram firig. 2for the small

AT between the heater and the ambient temperaturecell (top) and the effect oA T}, on the thresholds on

is sufficient to give rise to a convective circulation the big cell (bottom).

across the convective cell. The fluid upon the heater Depending on the values dfand AT, ;, two kinds
becomes unstable and the Marangoni effect entrainsof spatio-temporal patterns can be distinguished:
the uprising flow, leading to a flow from the cen- stationary patterns (zone IlI) and time-dependent pat-
ter to the lateral walls (perpendicular to the heater) terns (zone lll). Inside these zones, various regions
where the flow descends. This forms the primary con- can be differentiated: in zone Il we find one- or
vective pair of cells, which fills the entire container two-dimensional patterns, while in zone Ill, we find
and has a translational symmetry along the heater. oscillations, traveling waves or alternating patterns.
This basic or primary flow persists in successive  The threshold values of the control parameters are

bifurcations. different on both cells. As it can be seen kig. 2,
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Fig. 2. Stability diagram as a function of the experimental parametarsd AT. The (d, AT) space is divided into three main zones: basic

flow, stationary and time-dependent patterns. In the last two zones, five regions can be distinguished: region lla, stationary 1D pattern;

region llb, stationary two-dimensional pattern; region llla, oscillatory pattern; region lllb, traveling waves; region llic, alternatiny patter
Specific characteristics of each pattern are explained in the text.
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a change inAT, moves the thresholds but does not
change substantially the dynamics. The minima val-
ues of the threshold\T, are obtained forATj
0.75AT,. Nevertheless, in both SC and BC cells,
threshold values ofl and AT, are similar. In the
following, we will not distinguish between both cells
unless they display significant differences.

~

3.1. Stationary patterns

Beyond a critical threshold 7., a pattern with a

J. Burguete et al./Physica D 174 (2003) 56-70

heater is recorded and stacked in the time direction
and the corresponding spatio-temporal patterns are an-
alyzed fig. 3, bottom).

Aluminum powder has been used for flow visual-
ization, concluding that the original basic rolls has
been broken in a cellular pattern of closed convective
cells, with a main flow from the heater to the lateral
cold walls (in thex-direction) and ascending between
two bright lines over the heater and descending on the
bright lines (in they-direction).

For smalld, the pattern is almost two-dimensional

well-defined wavevector parallel to the heater and a (2D), in the form of an hexagona| pattern oriented

wavelengthh >~ 24 appears. In this work, we focus on

with one of the wavevectors parallel to the heater. This

the analySiS of the pattern near the heater. This patternpattern appears because the temperature prof”e at the
manifest as perturbations of the basic rolls as bright hottom is nearly flat for small depths, while for higher

lines associated to the colder point of the circulation
(seeFig. 3). The intensity of a line of pixels near the

1(512s)

Fig. 3. (a) Shadowgraphy of the stationary pattern. The darker
central part along the horizontat-axis) corresponds to the heater,
that does no reflect light, magnified by thermal lenses in the
x-direction (in the vertical). (b) Spatio-temporal diagram of a
stationary pattern faf = 2.5 mm andAT7, = 20K. Time increases
downwards.

depths the profile in the-direction reach a maximum
on the heater, and minima over the lateral walls, taking
the shape of a Gaussian-like profile. The behavior of
this pattern has not been studied.

When the temperature is further increased, and
it approaches the threshold of the secondary insta-
bility, some drifting phase pulses can be observed
(Fig. 4). These pulses are very well-defined in space,
and inside them the wavenumber is smaller and
about 08ko, beingko the wavenumber of the neigh-
borhood. The group velocity (se€ig. 5 of these
drifting pulses is negative, as can be verified in
Fig. 4 where the pulse propagates in opposite di-
rection of the phase velocity. This behavior is not
related to a possible hysteresis mechanisngdotion
4, we will focus on the origin of these drifting
waves.

3.2. Time-dependent patterns

Beyond a second threshold7?, the stationary
patterns destabilize and a second mode with a wave-
length twice the stationary onk; = ko/2 and a
finite frequencywg at threshold is created. Within the
experimental resolution, the bifurcation is supercrit-
ical, and no hysteresis has been found. Depending
on the experimental parameters, various patterns are
observed.

For small depths/ < 4mm, the bright lines of
the original pattern oscillate in opposition of phase
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Fig. 4. Localized drifting waves. values

The parameter
d = 3.00mm andAT, = 20K correspond to the zone Il (station-

ary pattern) but near the secondary bifurcation. Each pair of white g ejther propagative or oscillating.

dashed lines cover one propagative pulse. The arrows indicate the

drifting direction (i.e. the group velocity).

(optical mode, region lllaifrig. 2and spatio-temporal
diagram inFig. 6a), although for higher depths >
4mm, a left or right traveling wave appears (region
llIb in Fig. 2, spatio-temporal diagram iRig. 6b).
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The transition between these regions is smooth, and
a coexistence of both patterns can be observed for
intermediate depths/(~ 4 mm, Fig. €c).

The oscillatory pattern is not very stable. In fact,
its spatio-temporal diagrams are plenty of defects, and
the local frequency and wave number of the pattern
fluctuates more than 10%.

Ford > 4 mm, the oscillation disappears, and only
a traveling wave with a wavelength twice the basic
one and the same frequency of the oscillating pattern
remains (se&ig. 6b). This pattern is very stable, and
small perturbations do not affect it. A strong pertur-
bation (the surface was tapped with an stick) switch
the observed pattern to the symmetric case: from left
to right traveling wave (seE€ig. 7). A time-averaged
profile on the reference frame of the traveling wave
is plotted inFig. 8 This profile breaks theg < —y
symmetry.

For d intermediate, the observed pattern is very
complex, and there is no clear borderline between
zones llla and lllb. In the transitional depth, domains
in the y-axis can be distinguished, where the pattern

These two patterns have three basic modes in
Fourier space. The basic stationary pattern, with
wavenumber and frequency, ) = (kg, 0), and two
traveling waves+kp/2, wg). Nonlinear combination
of these three modes can also appear.

Depending on the relative amplitude of each one of
these modes, we will find different behaviors. When

k0/2 kO
T T
! I
0.36 ! I
__________ W’r _______.:._____

0.27 : | 1 Wy
d? I :
Wi o018 ! !
14 ! I
! I
0.09 : I
| |

00 0.31 0.62 0.94‘1 125 1.56 1.87 l 219 250
k (d)

Fig. 5. Dispersion relatiom (ky). Two different cases are presented: traveling waves (TW) near the @aiht) = (wo, ko/2) where the
group velocity isvg >~ 0 and the stationary patte, k,) = (0, ko) where thevy < 0.
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Fig. 6. Spatio-temporal diagrams of the observed patterns: (a) oscillatory pattern correspondliag3té mm andAT, = 25K (region
Illa). (b) Traveling waves corresponding tb= 4.5mm andAT, = 15K (region llIb). (c) Intermediate pattern observed between regions
Illa and b @ = 4.00mm andAT = 20K). (d) Alternating pattern corresponding b= 4.5mm andAT, = 25K (region llic). The
horizontal direction corresponds to theaxis and time increases downwards.

the amplitudes of the stationary modéd] is bigger This pattern is so stable that even very strong pertur-
than the amplitudes of the leftA() and right @AR) bations disappear after a transient time. Nevertheless,
traveling modes an oscillatory pattern is observed. the amplitude of the active modes evolve in space and
Typically, As >~ 6A| r for the space—time plot shown time.

in Fig. 6a. In the case of the traveling waves, only one

of the propagating modes has a non-zero amplitude 3.3. Characteristics of the modes

(Fig. 9.

If AT is further increased, a new standing pattern  Demodulation techniques allow to determine the
with a pulzation of the basic structure with a peribd  characteristics of the observed patterns: the wave-
(region lllc in Fig. 2 and spatio-temporal diagram in  |engths, frequencies, phase and group velocities and
Fig. 6d) arises. Pairs of contiguous bright lines appear the amplitudes when possible have been obtained as
and disappear alternatively, giving rise tox pattern explained in Ref[8].
with a frequencywg = 27/ T. In Fig. 10we present the adimensional wavenum-

There are no sudden changes on the frequency andbers (characteristical scalg) of the modes in the
on the involved wavenumbers while the threshold is various observed patterns. For each pattern, we only
crossed. They changes smoothly without noticing that present the wavenumber of the corresponding station-
a new patterns exists. In fact, there is not a new in- ary mode. As can be seen in this figure, the wave num-
stability. The only difference with the previous states ber remains between 1.75 and 2, and there is not a
llla and lllb, is in the relative amplitude of the basic clear trend in the dependence on the temperature dif-
modes described beford, r ~ As at the boundary  ference. There is no difference between the two cells
of zone llic, andA_ r > As when we are far from  (SC and BC) and the effect of changing’, andATj,
the threshold. is not noticeable.
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increases with the control parametef,. In this cell

an increase ofAT, means thaboth horizontal and
vertical gradients increase. Note that the lateral wall
temperature is not controlled. For simplicity, we have
plotted the frequency vs. the reduced parameter
(AT, — ATId))/ATI(d), where AT'(d) is the
threshold value of the secondary instability.

On the long cell, the horizontal and vertical gradi-
ents can be varied independently. The frequency de-
pends strongly on both parameters. On the bottom part
of Fig. 11, we present the influence of the horizon-
tal (left) and vertical (right) temperature gradients on
the frequency. Note that in this case we have not plot-
ted the reduced parameter, because the threshold value
depends on three parameters, and then, for a giyen
there are various pai@\T,, AT,) that determine the
threshold (se€ig. 2).

When we increase the horizontal gradient, the fre-
quency increases linearly, as it happens in the short
cell. This fact suggest that the secondary instability
Fig. 7. Stability of a traveling wave: a right traveling wave in depends strongly on the basic flow, because the last
region lllib is dgstabilized 'by means of a strong perturbation on one is accelerated by the bigger lateral gradient, and
the surface. This perturbation propagates and changes the wave to L . .

a left traveling wave. Time increases downwards. then the characteristic circulation times decrease. On
the other hand, an increase of the vertical gradient re-

On the contrary, the frequencies (characteristic time: duces the frequency of oscillation. We cannot provide
d?/v) depend strongly on the values of the param- an explanation to this fact.
eters in the experimental cells (s€e. 11). In the We have determined the group veloaity= d«w/0k
short cell Fig. 11, top), for a givend the frequency  using the techniques described in Réf.(seeFig. 5).

L ld—bl i
22 Y

20 N

light intensity (a.u.)
®

16
direction of
propagation
14 | — | | L
0 50 100 150 200

y (a.u.)

Fig. 8. Parity breaking symmetry. Intensity profile of the travelling wave averaged in the reference frame of the phase velocity. This plot
covers five wave lengths of the spatio-temporal diagram showkignéb.
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Fig. 11. Frequency of the pattern vs. depth in zone lIl. Top: short cell; bottom: long cell.
The phase velocity for each modg = w/k has To ascertain what kind of secondary bifurcation

been obtained from Fourier space. Two regimes can takes place, the value of the amplitude of the mode
be clearly distinguished. For a stationary pattern, near as a function of the distance to threshold must be de-

the secondary threshold, the perturbation (Seg 4) termined. Nevertheless, because of the nonlinear cou-
propagates in opposite direction to the phase velocity. pling among the various modes, a classical demodu-
In this case we have a negative velocity groug £ lation is not sufficient.

—31)4,).

For the travelling wave, the conclusion is very dif- 3.4. Temperature behavior
ferent. The group velocity is null, although the phase
velocity is not zero. This implies that a small perturba-  The time-dependent temperature field behavior in
tion produced at a given location does not propagate, zone Il has been studied. In all three regions (a, b and
a fact that has been verified experimentally. c) appreciable temperature oscillations are obtained.
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Fig. 12. Temperatures (left) and power spectra (right) for the cases (top to bottom) oscillatory (region llla), traveling waves (region Ilib)
and alternated (region llic).

As shown inFig. 12 typical oscillation amplitudes typically three of four times bigger than those in the
range from 0.1 to 1K, depending on the regime. For y-direction (along the heater). Comparison between
both alternating and traveling waves zones these os-the temperature measurements, the deflected beam os-
cillations have a very well-defined frequency. cillation and the spatio-temporal diagrams allows to
On the other hand, in region llla (oscillatory) the conclude that the bright lines in the patterns corre-
thermal oscillations are irregular but with a predomi- spond to the cold regions of the flow.
nant period which can be easily spotted using Fourier ~ The physical mechanism underlying the secondary
transforms, the biggest temperature oscillations ap- instability has been investigated through the system
pearing in this late case. Different harmonics and response to a sudden increasef; , in the big
subharmonics of the pattern frequency arise in the cell. The starting point is a stationary pattern for
dynamics, producing the temporal signal plotted in d = 5mm. Suddenly, as fast as it is allowed by
the upper part oFig. 12 the experimental setup, the temperature difference
Measuring the laser beam deflection, the oscilla- of the heater is increased in 5K. Then, the control
tions of the temperature gradients along the two hori- parametersAT, and AT, are increased faster than
zontal spatial directionsc(andy) have been recorded. the evolution of the thermal gradients inside the flow.
The oscillation of the deflected beam is in phase with Under these circumstances, the frequency increases
the temperature field, and confirm that the thermal sharply, but it decreases asymptotically to the equi-
gradients in the bulk of the fluid oscillate. Moreover, librium value (sed~ig. 13 bottom). This behavior is
the gradients in the-direction (across the heater) are due to the relaxation of the thermal gradients across
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Fig. 13. Effect of a sharp increase of the heater temperature.
The initial state was a one-dimensional stationary pattern and the
final pattern corresponds to traveling waves. Top: deflection of a
laser beam in the- (upper line) andy- (lower line) direction

as a function of time. Bottom: instantaneous frequency vs. time
(d =5mm andAT, = 15K.)
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the fluid layer, associated with the slow decaying of
the laser beam deflection shown in the topgaf. 13
(the fast oscillations with" =~ 30's are neglected).

Once the temperature step is applied, the local
temperature gradient near the heater increases very
quickly, while the gradient near the surface and the
walls remains unchanged. After a transient time,
these gradients decay, decreasing the local gradient
near the heater and increasing the gradients near the
lateral walls. As the data plotted Fig. 13have been
obtained closex 2mm) to the heater, the observed
gradient decay corresponds to the decreasing gra-
dients near the heater. Note that bigger oscillation
amplitudes mean bigger local gradients.

We think that this oscillation is due to the desta-
bilization of the thermal boundary layer growing at
the bottom plate near the heater. For a fluid of 5cSt,
the thermal boundary layer has 0.5 mm width. When
the gradient across this layer is big enough to become
unstable vs. convective motions, an oscillation would
appear, as a way to relax the local temperature gra-
dient. This mechanism has been studied in a similar
experimental systerf#0] and the control possibilities
are discussed if1].

One can ask about the role of the end walls in the
dynamics. The aspect ratio in tlyedirection is large
enough to assume that these walls do not affect the
dynamics. Typicallyl, = I,/d > 50 for the short
cell andl’y > 120 for the long cell. Nevertheless, we
have performed a series of experiments to see the ef-
fect of the thermal boundary condition on these walls.
In Fig. 14we present the effect of a normal boundary
condition (center), and of an end wall warmer (left)

Fig. 14. Effect of the end wall thermal condition. Spatio-temporal diagrams of the dynamics when the wall is (a) colder, (b) at the same

(in average) temperature, and (c) warmer than the fluid layer. The end wall is placed on the left, and time increases downwards.
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and colder (right) than the fluid. From these figures we
can see that thermal gradients along ghexis modify
the stability of active modes. This affects the alternat-
ing (llic) and oscillating (Illa) patterns. This effect is
important only a few wavelengths away from the end
wall, where the thermal gradients are noticeable.
This has nothing to do with the origin of the trav-
eling waves for highd. The selection of the sense
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This model can reproduce behaviors similar to the
one plotted inFig. 4, but just as transient. A phase
modulation of the stationary pattern, coming, for ex-
ample, from a local inhomogeneity in the temperature
gradients, gives rise té,¢ > 0. Thus, even for neg-
ative values of the real part ef the amplitude of the
new modeA grows if the phase modulation is strong
enough. A renormalization in the parameter can be

of propagation seems unrelated to gradients along introduced,e,(¢) = € + £10,¢, that can be locally

the y-direction: a strong perturbation at the surface
changes the pattern from right to left traveling wave
(seeFig. 7).

4. Discussion
4.1. Drifting phase pulses

As it has been shown in the previous section, the
dynamics of this experimental system is very rich. Let
us first consider the transition to traveling waves, as it
involves two modes only, i.e. the transition from the
stationary pattern to the travelling wave. As plotted
in Fig. 8 we have a parity breaking symmetry bifur-

positive. The new mode can grow in an isolated spa-
tial region that propagates inside an stationary pattern.
This could explain the drift of phase pulses observed
in the fluid below the threshold of a parity breaking
symmetry bifurcation. This kind of behavior has been
observed in other experiments, as for example in the
Rayleigh—Taylor instabilit§24—28] where large drift-

ing pulses has been observed.

Nevertheless, these drifting islands are isolated do-
mains of the propagating mode, with the appropriate
wavenumbekgp/2 and frequencywg. Measuring with
demodulation techniques the hydrodynamics of the
pattern presented iRig. 4, we obtain that the mini-
mum wavenumber in the phase pulse is abo8td)
far fromkg/2, and the observed frequency is too small

cation. The new mode has a wave length (resp. wave (g|ated to the frequenayp of the TW when the thresh-

number) that is twice (resp. one half) the stationary
one. A model for this experiment must take into ac-
count these facts.

As introduced inSection 1 in 1990 Coullet and
looss[29] made a first classification of the various

old has been crossed.
4.2. Secondary instability

Recently, Gil[31,32]has introduced an extension to

kinds of secondary bifurcations that can appear OVer ihage theories. There a model involving three modes

an stationary cellular pattern. In 1991, Goldstein et al.

[30] presented an extension of this model to describe
the behavior of patterns with broken space—time sym-

metry in hydrodynamics and interfacial phenomena.

Considering the ratio between the wavenumbers of
the stationary and time-dependent patterns, the model
that could describe this experiment at the threshold of

the secondary instability couples the amplitude of the
new modeA and the phaseé through:

A = (€ +E10:9) A + £20A — c1|AIPA,
dp = 0 (JA1D) + c2(A8, A — Ad, A) + dxxh,

where the constants, ¢z, £1 andé» and the parameter
€ are complex.

is proposed, which dynamics reproduces qualitatively
previous experimental results. To verify if this exper-
iment can be described by this model, a qualitative
comparison is necessary between the simulations and
the experimental data.

Let us consider what happens in the region llla. To
the experimental precision, the frequency is finite at
threshold and the amplitude is zero. When the optical
mode is near the threshold, and the amplitudes are
small, it can be described by the destabilization of the
phase of the stationary pattern:

¢ = kox + AR COS(3kox — wot)
+ AL COS(— 3kox — wot),
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where¢ is the phase of the original cellular pattern,
ko is the wave number of the basic state, apds the
frequency of the pattern, finite at threshold. Finadly,
(AR) is the amplitude of the phase wave propagating
to the left (right) along the-axis.

Assuming that the basic state iS(x,1)
Asexpli(¢(x))] we can ask how the Fourier space of
such a pattern will look like. A Taylor expansion of
the term expp] gives:

explig] = expikox)[(1 4+ ARAL + ARAL + h.o.t)
x M(0,0) +i(Ar + SARAL + ARARAL
+h.0.t)M(3ko, wo) + (AL + A7 AR
+ ALARAL + h.0.t)M (—3ko, wo)

+ (ARAL + h.0.t.)M (0, 2wp)
+ (JAR|? + h.0.t) M (ko, 0)+h.o.t.+c.c],

whereM (k;, w;) = explitk;x — w;t)] as usual.

Because of the nonlinearities, we are not able to
obtain the values ofAgr and A_ using classical de-
modulation techniques. For example, thg(x, r) of
a traveling wave could be obtained from the mode
M (ko/2, wo). But here we obtaimg + (1/2) AZAL +
-... and the estimated error on the value A% is
about 10%. A precise calculation of the amplitudes is
not possible, and even the determination of the law
AR Vs. € is not possible because of the nonlinearities.

A comparison with the models proposed in Refs.
[29,30,32] is very difficult, because the amplitudes
cannot be easily determined. Nevertheless, a qualita-
tive comparison can be performed. For example, the
demodulation ofig. 4reveals that the drifting pulses
correspond, in fact, to amplitude holes of the station-
ary pattern. Note that the minimum wavenumber of
the drifting wave is Bkg, and the frequency is very
low. This pattern could be related to the drifting Bloch
walls predicted by Gil[32] Further work is on the
way to obtain quantitatively the amplitudes of the ba-
sic modes.

5. Conclusions

We have presented a new experimental system
where the destabilization of an stationary cellular
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pattern has been observed. After a secondary bifurca-
tion, various time-dependent patterns are created with
a wavelength twice the basic one: traveling waves,
oscillations (optical mode), and an alternating (stand-
ing) state have been observed. Thermal measurements
reveal that the physical mechanism of the secondary
instability is the destabilization of the thermal bound-
ary layer on the bottom plate.

The characteristics of the involved modes have
been determined, revealing that the frequency de-
pends strongly on the control parameters. The stability
of the patterns is very different; the oscillations are
easily destabilized, whereas the traveling waves and
the alternating pattern are very stable. These patterns
can be described by means of three different modes
plus nonlinear combinations of them. Because of the
nonlinearities, a quantitative determination of the am-
plitudes of these modes vs. the control parameters has
not been possible.

We have compared the experimental results to var-
ious theoretical models, and some similarities have
been found. Nevertheless, the experimental error is too
high to allow a quantitative comparison. Further work
is on the way to reduce this error.
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