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One-dimensional dynamics in locally heated liquid layers
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Abstract

Recent results on one-dimensional patterns in locally heated experiments are presented. A fluid layer is heated locally by
a nearly one-dimensional heater, and subjected to both horizontal and vertical temperature gradients. Depending on the fluid
depth and on the temperature difference established across the layer different convective regimes appear. When a very small
temperature gradient is applied a basic convective state appears. It consists of two big rolls parallel to the heater and filling the
convective cell. A primary instability in the homogeneous basic flow gives rise to a one-dimensional cellular stationary pattern.
For higher values of the control parameters, time-dependent patterns appear through a secondary instability. Various regimes
are analyzed: oscillations, traveling waves and alternating patterns. The hydrodynamic characteristics of these patterns are
provided. Local temperature measurements allows to describe the physical mechanisms responsible for the instabilities. The
similarities and discrepancies of the experimental data with some theoretical models are provided.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analysis of one-dimensional patterns has been
widely studied in recent years. Although these systems
are, a priori, easier to describe than the three- or even
two-dimensional case, there are a lot of questions that
remain to be answered.

In the typical scenario, an homogeneous state desta-
bilizes to a cellular one-dimensional pattern, that can
be either time-dependent or stationary. When the bi-
furcation leads to a time-dependent pattern, the dy-
namics of the large scale pattern amplitude is very well
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understood. This kind of behavior can be found in ex-
periments of lateral heating in thin fluid layers[1,2],
hot-wire convection[3], von Kármán street flows[4],
nematic liquid crystals[5], Taylor–Dean instability[7]
or turbulent spirals on Taylor–Couette flow[6].

The dynamics in these systems has been understood
with relative success using one-dimensional models.
In particular, a complex Ginzburg–Landau model is
able to reproduce a grate number of the experimental
results (see for example[8,9] and references therein).

However, when the first bifurcation leads to a sta-
tionary pattern and a secondary bifurcation produces
time-dependent patterns, the dynamics is poorly un-
derstood. There are a lot of experiments with a very
rich phenomenology for which a whole description
is not available. Experimental systems with such
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dynamics are Taylor–Couette[10], laterally heated
fluid layers (for high fluid depths)[2], directional so-
lidification [11–15], directed fingering (printer insta-
bility) [16–18], laser spectra[19], Rayleigh–Bénard
[20–23]and Rayleigh–Taylor[24–28] instabilities.

Using symmetry arguments Coullet and Iooss[29]
made a classification of the different kinds of sec-
ondary bifurcations that appear over one-dimensional
cellular patterns. In 1991, Goldstein et al. proposed
a general frame to explain the drifting domains ob-
served inside stationary patterns in experimental sys-
tems. This theory was based in the symmetry breaking
process when the secondary bifurcation takes place.

Recently, Gil[31,32]presented an extension of pre-
vious analysis in secondary instabilities that produce
time-dependent patterns with an spatial period twice
the stationary one. His theory explains some exper-
imental results observed in Rayleigh–Taylor and in
other systems, and predicts some results that have not
been observed yet.

In this paper we present experimental results on a
fluid thin layer locally heated by a nearly one-dimen-
sional heater. The basic homogeneous state, a pair
of convective rolls oriented along the heater, destabi-
lizes in a one-dimensional cellular stationary pattern.
When the control parameters are further increased, this
structure destabilizes and a new secondary instability
appears, giving rise to three different time-dependent
patterns.

Experiments where fluid layers are locally heated
has been studied in other configurations. The heating
is provided by means of resistive wires placed under
the surface[3,33] or by a laser beam[34,35]. Never-
theless, the time-dependent patterns of these systems
are produced after a primary bifurcation.

In previous works, we have shown the effect of gra-
dients of the control parameter on the dynamics of
the stationary pattern itself[36–38]. In this work we
present the results concerning the secondary bifurca-
tion and the characterization of the time-dependent
patterns.

In Section 2, we present the experimental setup, and
the results are introduced inSection 3. In Section 4,
we compare with other experiments and models, and
in Section 5we resume briefly our conclusions.

2. Experimental setup

We consider an horizontal fluid layer of depthd
(z-coordinate) in a container of lengthly (y-coordinate)
and widthlx (x-coordinate) contained in a vessel with
a rigid bottom plate and an upper surface open to the
atmosphere (seeFig. 1). A heater is located in the mid-
dle of the bottom plate atx = 0, along they-direction.
The width of this heater (1 mm) is smaller than the
fluid depth, and compared to the container width. The
bottom plate is made of two first surface mirrors, one
at each side of the heater, to allow optical techniques.
We have worked with two different containers:

• The small container (SC) isly = 25 cm long and
lx = 4 cm wide. The heater temperatureT+ is con-
trolled with a thermostabilized water circulation that
ensures a temperature stability of 0.05 K. The fluid
layer is open to the atmosphere (Tatmosph� 25◦C),
and the lateral wall temperatures are not controlled.
Two experimental parameters can be varied:d and
�Tv = T+ − Tatmosph.

• The big container (BC) isly = 45 cm long andlx =
6 cm wide. In this case the wall temperatureT− can
be controlled with a secondary water circulation.
A third parameter appears, the lateral temperature
difference�Th = T+ − T−.

In both cases (BC and SC) the aspect ratioΓy =
ly/d is large enough to assume that the system is not
affected by the lateral ends (y-direction). This point
will be verified below.

The fluid used is a 5 cSt Rhône Poulenc silicon oil
(Table 1). Although the system is open to the atmo-
sphere, the evaporation being nearly negligible does
not affect the dynamics: less than 0.05 mm each day.
The fluid depth is determined by means of a micromet-
ric screw with an accuracy of 50�m. For the depths
considered in this experiment (1–6 mm), the value of
the vertical�T for which convection threshold is tra-
versed is less than 1 K.

We characterize the flow and the dynamics by
shadowgraphy associated to image processing and by
means of temperature measurements. A He–Ne laser
beam is expanded and projected over the container
in the z-direction. This beam crosses the fluid layer,
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Fig. 1. Experimental setup. Sketch of the experimental cells: top view (top) and cross-section (bottom). The origin of coordinates is placed
at the mirror plates in the vertical directionz, and at the heater in thex-direction. A divergent expanded laser beam crosses vertically the
cell, and is projected over a screen.

reflects on the mirrors, and is projected back into a
screen. Because of the largest cell size (45 cm), it
was not practical for us to obtain a parallel beam us-
ing lenses. Instead, we have worked with an slightly
divergent light beam (about 0.06 rad). Once screen
image is recorded with a CCD camera, it is digi-
talized and processed in a computer, obtaining both
two-dimensional photographs and spatio-temporal di-
agrams. Space and time Fourier transforms and com-
plex demodulation techniques are used to extract the
spatio-temporal behavior of the patterns (see details
in [8] and references therein). We have determined
in this way the hydrodynamic characteristics of the
patterns. The divergence in the laser beam is taken
into account when determining the hydrodynamic
characteristics.

Two different techniques have been used to ob-
serve the thermal behavior of the fluid. First we mea-
sure the local temperature using a 0.5 mm diameter
K-thermocouple having a characteristic response time

Table 1
Physical properties of Rhône Poulenc silicone oil 5 cSt at 20◦C

ν (m2/s) ρ (kg/m3) α (K−1) κ (m2/s) σ (N/m) γ = −∂σ/∂T (N/mK) P

5 × 10−6 910 1.05× 10−3 6.68× 10−8 1.97× 10−2 8 × 10−5 75

of about 0.3 s when immersed in silicone oil. If the
thermocouple is placed over the surface at any point
near the center of the channel, the dynamics of the
pattern changes drastically (for example, it fixes the
secondary cell boundaries). The only non-perturbative
position for the thermocouple is to place it near the
lateral walls. We have therefore used this method to
record the thermal oscillations only near the lateral
walls.

Second, we use an optical technique to measure the
temperature gradients. A laser beam entering perpen-
dicular to the free surface and reflected at the bottom
is deflected because of the local variations of the in-
dex of refraction, which depends on the temperature
[39]. By measuring the oscillations of this laser beam,
the ratio between the gradient along the heater and the
gradient across the cell can be estimated. Moreover,
from the reflection at the free surface we notice that
traveling waves induce surface deflections which are
less than 1�m for a depth of 3 mm.
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3. Results

As described in the previous works[36–38]a small
�T between the heater and the ambient temperature
is sufficient to give rise to a convective circulation
across the convective cell. The fluid upon the heater
becomes unstable and the Marangoni effect entrains
the uprising flow, leading to a flow from the cen-
ter to the lateral walls (perpendicular to the heater)
where the flow descends. This forms the primary con-
vective pair of cells, which fills the entire container
and has a translational symmetry along the heater.
This basic or primary flow persists in successive
bifurcations.

Fig. 2. Stability diagram as a function of the experimental parametersd and�T . The(d,�T ) space is divided into three main zones: basic
flow, stationary and time-dependent patterns. In the last two zones, five regions can be distinguished: region IIa, stationary 1D pattern;
region IIb, stationary two-dimensional pattern; region IIIa, oscillatory pattern; region IIIb, traveling waves; region IIIc, alternating pattern.
Specific characteristics of each pattern are explained in the text.

Over this basic flow, successive instabilities appear
depending on�T andd. To clarify the main situations
we present the stability diagram inFig. 2for the small
cell (top) and the effect of�Th on the thresholds on
the big cell (bottom).

Depending on the values ofd and�Tv,h two kinds
of spatio-temporal patterns can be distinguished:
stationary patterns (zone II) and time-dependent pat-
terns (zone III). Inside these zones, various regions
can be differentiated: in zone II we find one- or
two-dimensional patterns, while in zone III, we find
oscillations, traveling waves or alternating patterns.

The threshold values of the control parameters are
different on both cells. As it can be seen inFig. 2,
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a change in�Th moves the thresholds but does not
change substantially the dynamics. The minima val-
ues of the threshold�Tv are obtained for�Th �
0.75�Tv. Nevertheless, in both SC and BC cells,
threshold values ofd and �Tv are similar. In the
following, we will not distinguish between both cells
unless they display significant differences.

3.1. Stationary patterns

Beyond a critical threshold�T 1
v , a pattern with a

well-defined wavevector parallel to the heater and a
wavelengthλ � 2d appears. In this work, we focus on
the analysis of the pattern near the heater. This pattern
manifest as perturbations of the basic rolls as bright
lines associated to the colder point of the circulation
(seeFig. 3). The intensity of a line of pixels near the

Fig. 3. (a) Shadowgraphy of the stationary pattern. The darker
central part along the horizontal (y-axis) corresponds to the heater,
that does no reflect light, magnified by thermal lenses in the
x-direction (in the vertical). (b) Spatio-temporal diagram of a
stationary pattern ford = 2.5 mm and�Tv = 20 K. Time increases
downwards.

heater is recorded and stacked in the time direction
and the corresponding spatio-temporal patterns are an-
alyzed (Fig. 3, bottom).

Aluminum powder has been used for flow visual-
ization, concluding that the original basic rolls has
been broken in a cellular pattern of closed convective
cells, with a main flow from the heater to the lateral
cold walls (in thex-direction) and ascending between
two bright lines over the heater and descending on the
bright lines (in they-direction).

For smalld, the pattern is almost two-dimensional
(2D), in the form of an hexagonal pattern oriented
with one of the wavevectors parallel to the heater. This
pattern appears because the temperature profile at the
bottom is nearly flat for small depths, while for higher
depths the profile in thex-direction reach a maximum
on the heater, and minima over the lateral walls, taking
the shape of a Gaussian-like profile. The behavior of
this pattern has not been studied.

When the temperature is further increased, and
it approaches the threshold of the secondary insta-
bility, some drifting phase pulses can be observed
(Fig. 4). These pulses are very well-defined in space,
and inside them the wavenumber is smaller and
about 0.8k0, beingk0 the wavenumber of the neigh-
borhood. The group velocity (seeFig. 5) of these
drifting pulses is negative, as can be verified in
Fig. 4 where the pulse propagates in opposite di-
rection of the phase velocity. This behavior is not
related to a possible hysteresis mechanism. InSection
4, we will focus on the origin of these drifting
waves.

3.2. Time-dependent patterns

Beyond a second threshold�T 2
v , the stationary

patterns destabilize and a second mode with a wave-
length twice the stationary onek1 = k0/2 and a
finite frequencyω0 at threshold is created. Within the
experimental resolution, the bifurcation is supercrit-
ical, and no hysteresis has been found. Depending
on the experimental parameters, various patterns are
observed.

For small depthsd < 4 mm, the bright lines of
the original pattern oscillate in opposition of phase
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Fig. 4. Localized drifting waves. The parameter values
d = 3.00 mm and�Tv = 20 K correspond to the zone II (station-
ary pattern) but near the secondary bifurcation. Each pair of white
dashed lines cover one propagative pulse. The arrows indicate the
drifting direction (i.e. the group velocity).

(optical mode, region IIIa inFig. 2and spatio-temporal
diagram inFig. 6a), although for higher depthsd >

4 mm, a left or right traveling wave appears (region
IIIb in Fig. 2, spatio-temporal diagram inFig. 6b).

Fig. 5. Dispersion relationω(ky). Two different cases are presented: traveling waves (TW) near the point(ω, ky) = (ω0, k0/2) where the
group velocity isvg � 0 and the stationary pattern(ω, ky) = (0, k0) where thevg < 0.

The transition between these regions is smooth, and
a coexistence of both patterns can be observed for
intermediate depths (d � 4 mm,Fig. 6c).

The oscillatory pattern is not very stable. In fact,
its spatio-temporal diagrams are plenty of defects, and
the local frequency and wave number of the pattern
fluctuates more than 10%.

For d > 4 mm, the oscillation disappears, and only
a traveling wave with a wavelength twice the basic
one and the same frequency of the oscillating pattern
remains (seeFig. 6b). This pattern is very stable, and
small perturbations do not affect it. A strong pertur-
bation (the surface was tapped with an stick) switch
the observed pattern to the symmetric case: from left
to right traveling wave (seeFig. 7). A time-averaged
profile on the reference frame of the traveling wave
is plotted inFig. 8. This profile breaks they ↔ −y
symmetry.

For d intermediate, the observed pattern is very
complex, and there is no clear borderline between
zones IIIa and IIIb. In the transitional depth, domains
in the y-axis can be distinguished, where the pattern
is either propagative or oscillating.

These two patterns have three basic modes in
Fourier space. The basic stationary pattern, with
wavenumber and frequency(k, ω) = (k0,0), and two
traveling waves(±k0/2, ω0). Nonlinear combination
of these three modes can also appear.

Depending on the relative amplitude of each one of
these modes, we will find different behaviors. When



62 J. Burguete et al. / Physica D 174 (2003) 56–70

Fig. 6. Spatio-temporal diagrams of the observed patterns: (a) oscillatory pattern corresponding tod = 3.5 mm and�Tv = 25 K (region
IIIa). (b) Traveling waves corresponding tod = 4.5 mm and�Tv = 15 K (region IIIb). (c) Intermediate pattern observed between regions
IIIa and b (d = 4.00 mm and�T = 20 K). (d) Alternating pattern corresponding tod = 4.5 mm and�Tv = 25 K (region IIIc). The
horizontal direction corresponds to they-axis and time increases downwards.

the amplitudes of the stationary mode (AS) is bigger
than the amplitudes of the left (AL) and right (AR)
traveling modes an oscillatory pattern is observed.
Typically,AS � 6AL,R for the space–time plot shown
in Fig. 6a. In the case of the traveling waves, only one
of the propagating modes has a non-zero amplitude
(Fig. 9).

If �T is further increased, a new standing pattern
with a pulzation of the basic structure with a periodT
(region IIIc in Fig. 2 and spatio-temporal diagram in
Fig. 6d) arises. Pairs of contiguous bright lines appear
and disappear alternatively, giving rise to a 2λ0 pattern
with a frequencyω0 = 2π/T .

There are no sudden changes on the frequency and
on the involved wavenumbers while the threshold is
crossed. They changes smoothly without noticing that
a new patterns exists. In fact, there is not a new in-
stability. The only difference with the previous states
IIIa and IIIb, is in the relative amplitude of the basic
modes described before.AL,R � AS at the boundary
of zone IIIc, andAL,R > AS when we are far from
the threshold.

This pattern is so stable that even very strong pertur-
bations disappear after a transient time. Nevertheless,
the amplitude of the active modes evolve in space and
time.

3.3. Characteristics of the modes

Demodulation techniques allow to determine the
characteristics of the observed patterns: the wave-
lengths, frequencies, phase and group velocities and
the amplitudes when possible have been obtained as
explained in Ref.[8].

In Fig. 10 we present the adimensional wavenum-
bers (characteristical scale:d) of the modes in the
various observed patterns. For each pattern, we only
present the wavenumber of the corresponding station-
ary mode. As can be seen in this figure, the wave num-
ber remains between 1.75 and 2, and there is not a
clear trend in the dependence on the temperature dif-
ference. There is no difference between the two cells
(SC and BC) and the effect of changing�Tv and�Th
is not noticeable.
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Fig. 7. Stability of a traveling wave: a right traveling wave in
region IIIb is destabilized by means of a strong perturbation on
the surface. This perturbation propagates and changes the wave to
a left traveling wave. Time increases downwards.

On the contrary, the frequencies (characteristic time:
d2/ν) depend strongly on the values of the param-
eters in the experimental cells (seeFig. 11). In the
short cell (Fig. 11, top), for a givend the frequency

Fig. 8. Parity breaking symmetry. Intensity profile of the travelling wave averaged in the reference frame of the phase velocity. This plot
covers five wave lengths of the spatio-temporal diagram shown inFig. 6b.

increases with the control parameter�Tv. In this cell
an increase of�Tv means thatboth horizontal and
vertical gradients increase. Note that the lateral wall
temperature is not controlled. For simplicity, we have
plotted the frequency vs. the reduced parameterε =
(�Tv − �T th

v (d))/�T th
v (d), where�T th

v (d) is the
threshold value of the secondary instability.

On the long cell, the horizontal and vertical gradi-
ents can be varied independently. The frequency de-
pends strongly on both parameters. On the bottom part
of Fig. 11, we present the influence of the horizon-
tal (left) and vertical (right) temperature gradients on
the frequency. Note that in this case we have not plot-
ted the reduced parameter, because the threshold value
depends on three parameters, and then, for a givend,
there are various pairs(�Tv,�Th) that determine the
threshold (seeFig. 2).

When we increase the horizontal gradient, the fre-
quency increases linearly, as it happens in the short
cell. This fact suggest that the secondary instability
depends strongly on the basic flow, because the last
one is accelerated by the bigger lateral gradient, and
then the characteristic circulation times decrease. On
the other hand, an increase of the vertical gradient re-
duces the frequency of oscillation. We cannot provide
an explanation to this fact.

We have determined the group velocityvg = ∂ω/∂k

using the techniques described in Ref.[8] (seeFig. 5).
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Fig. 9. Fourier spectra contour plots of the spatio-temporal diagrams presented inFig. 6. (a) Oscillatory pattern (region IIIa), relative
amplitudes:AR,L (±k0/2, ω0) � 0.05AS(k0,0). (b) Traveling waves (region IIIb). (c) Alternating pattern (region IIIc), relative amplitudes:
AR,L (±k0/2, ω0) � 0.5AS(k0,0). Spatial (resp. temporal) frequencies are in the horizontal (resp. vertical) axis.

Fig. 10. Adimensional wavelength vs. depth in zones IIa and III. Top: short cell; bottom: long cell.
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Fig. 11. Frequency of the pattern vs. depth in zone III. Top: short cell; bottom: long cell.

The phase velocity for each modevφ = ω/k has
been obtained from Fourier space. Two regimes can
be clearly distinguished. For a stationary pattern, near
the secondary threshold, the perturbation (seeFig. 4)
propagates in opposite direction to the phase velocity.
In this case we have a negative velocity group (vg �
−3vφ).

For the travelling wave, the conclusion is very dif-
ferent. The group velocity is null, although the phase
velocity is not zero. This implies that a small perturba-
tion produced at a given location does not propagate,
a fact that has been verified experimentally.

To ascertain what kind of secondary bifurcation
takes place, the value of the amplitude of the mode
as a function of the distance to threshold must be de-
termined. Nevertheless, because of the nonlinear cou-
pling among the various modes, a classical demodu-
lation is not sufficient.

3.4. Temperature behavior

The time-dependent temperature field behavior in
zone III has been studied. In all three regions (a, b and
c) appreciable temperature oscillations are obtained.
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Fig. 12. Temperatures (left) and power spectra (right) for the cases (top to bottom) oscillatory (region IIIa), traveling waves (region IIIb)
and alternated (region IIIc).

As shown inFig. 12, typical oscillation amplitudes
range from 0.1 to 1 K, depending on the regime. For
both alternating and traveling waves zones these os-
cillations have a very well-defined frequency.

On the other hand, in region IIIa (oscillatory) the
thermal oscillations are irregular but with a predomi-
nant period which can be easily spotted using Fourier
transforms, the biggest temperature oscillations ap-
pearing in this late case. Different harmonics and
subharmonics of the pattern frequency arise in the
dynamics, producing the temporal signal plotted in
the upper part ofFig. 12.

Measuring the laser beam deflection, the oscilla-
tions of the temperature gradients along the two hori-
zontal spatial directions (x andy) have been recorded.
The oscillation of the deflected beam is in phase with
the temperature field, and confirm that the thermal
gradients in the bulk of the fluid oscillate. Moreover,
the gradients in thex-direction (across the heater) are

typically three of four times bigger than those in the
y-direction (along the heater). Comparison between
the temperature measurements, the deflected beam os-
cillation and the spatio-temporal diagrams allows to
conclude that the bright lines in the patterns corre-
spond to the cold regions of the flow.

The physical mechanism underlying the secondary
instability has been investigated through the system
response to a sudden increase of�Th,v in the big
cell. The starting point is a stationary pattern for
d = 5 mm. Suddenly, as fast as it is allowed by
the experimental setup, the temperature difference
of the heater is increased in 5 K. Then, the control
parameters�Tv and �Th are increased faster than
the evolution of the thermal gradients inside the flow.
Under these circumstances, the frequency increases
sharply, but it decreases asymptotically to the equi-
librium value (seeFig. 13, bottom). This behavior is
due to the relaxation of the thermal gradients across
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Fig. 13. Effect of a sharp increase of the heater temperature.
The initial state was a one-dimensional stationary pattern and the
final pattern corresponds to traveling waves. Top: deflection of a
laser beam in thex- (upper line) andy- (lower line) direction
as a function of time. Bottom: instantaneous frequency vs. time
(d = 5 mm and�Tv = 15 K.)

Fig. 14. Effect of the end wall thermal condition. Spatio-temporal diagrams of the dynamics when the wall is (a) colder, (b) at the same
(in average) temperature, and (c) warmer than the fluid layer. The end wall is placed on the left, and time increases downwards.

the fluid layer, associated with the slow decaying of
the laser beam deflection shown in the top ofFig. 13
(the fast oscillations withT =� 30 s are neglected).

Once the temperature step is applied, the local
temperature gradient near the heater increases very
quickly, while the gradient near the surface and the
walls remains unchanged. After a transient time,
these gradients decay, decreasing the local gradient
near the heater and increasing the gradients near the
lateral walls. As the data plotted inFig. 13have been
obtained close (� 2 mm) to the heater, the observed
gradient decay corresponds to the decreasing gra-
dients near the heater. Note that bigger oscillation
amplitudes mean bigger local gradients.

We think that this oscillation is due to the desta-
bilization of the thermal boundary layer growing at
the bottom plate near the heater. For a fluid of 5 cSt,
the thermal boundary layer has 0.5 mm width. When
the gradient across this layer is big enough to become
unstable vs. convective motions, an oscillation would
appear, as a way to relax the local temperature gra-
dient. This mechanism has been studied in a similar
experimental system[40] and the control possibilities
are discussed in[41].

One can ask about the role of the end walls in the
dynamics. The aspect ratio in they-direction is large
enough to assume that these walls do not affect the
dynamics. TypicallyΓy = ly/d > 50 for the short
cell andΓy > 120 for the long cell. Nevertheless, we
have performed a series of experiments to see the ef-
fect of the thermal boundary condition on these walls.
In Fig. 14we present the effect of a normal boundary
condition (center), and of an end wall warmer (left)
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and colder (right) than the fluid. From these figures we
can see that thermal gradients along they-axis modify
the stability of active modes. This affects the alternat-
ing (IIIc) and oscillating (IIIa) patterns. This effect is
important only a few wavelengths away from the end
wall, where the thermal gradients are noticeable.

This has nothing to do with the origin of the trav-
eling waves for highd. The selection of the sense
of propagation seems unrelated to gradients along
the y-direction: a strong perturbation at the surface
changes the pattern from right to left traveling wave
(seeFig. 7).

4. Discussion

4.1. Drifting phase pulses

As it has been shown in the previous section, the
dynamics of this experimental system is very rich. Let
us first consider the transition to traveling waves, as it
involves two modes only, i.e. the transition from the
stationary pattern to the travelling wave. As plotted
in Fig. 8, we have a parity breaking symmetry bifur-
cation. The new mode has a wave length (resp. wave
number) that is twice (resp. one half) the stationary
one. A model for this experiment must take into ac-
count these facts.

As introduced inSection 1, in 1990 Coullet and
Iooss [29] made a first classification of the various
kinds of secondary bifurcations that can appear over
an stationary cellular pattern. In 1991, Goldstein et al.
[30] presented an extension of this model to describe
the behavior of patterns with broken space–time sym-
metry in hydrodynamics and interfacial phenomena.

Considering the ratio between the wavenumbers of
the stationary and time-dependent patterns, the model
that could describe this experiment at the threshold of
the secondary instability couples the amplitude of the
new modeA and the phaseφ through:

∂tA = (ε + ξ1∂xφ)A+ ξ2∂xxA− c1|A|2A,
∂tφ = ∂x(|A|2)+ c2(Ā∂xA− A∂xĀ)+ ∂xxφ,

where the constantsc1, c2, ξ1 andξ2 and the parameter
ε are complex.

This model can reproduce behaviors similar to the
one plotted inFig. 4, but just as transient. A phase
modulation of the stationary pattern, coming, for ex-
ample, from a local inhomogeneity in the temperature
gradients, gives rise to∂xφ > 0. Thus, even for neg-
ative values of the real part ofε, the amplitude of the
new modeA grows if the phase modulation is strong
enough. A renormalization in the parameter can be
introduced,εn(φ) = ε + ξ1∂xφ, that can be locally
positive. The new mode can grow in an isolated spa-
tial region that propagates inside an stationary pattern.
This could explain the drift of phase pulses observed
in the fluid below the threshold of a parity breaking
symmetry bifurcation. This kind of behavior has been
observed in other experiments, as for example in the
Rayleigh–Taylor instability[24–28], where large drift-
ing pulses has been observed.

Nevertheless, these drifting islands are isolated do-
mains of the propagating mode, with the appropriate
wavenumberk0/2 and frequencyω0. Measuring with
demodulation techniques the hydrodynamics of the
pattern presented inFig. 4, we obtain that the mini-
mum wavenumber in the phase pulse is about 0.8k0,
far fromk0/2, and the observed frequency is too small
related to the frequencyω0 of the TW when the thresh-
old has been crossed.

4.2. Secondary instability

Recently, Gil[31,32]has introduced an extension to
these theories. There a model involving three modes
is proposed, which dynamics reproduces qualitatively
previous experimental results. To verify if this exper-
iment can be described by this model, a qualitative
comparison is necessary between the simulations and
the experimental data.

Let us consider what happens in the region IIIa. To
the experimental precision, the frequency is finite at
threshold and the amplitude is zero. When the optical
mode is near the threshold, and the amplitudes are
small, it can be described by the destabilization of the
phase of the stationary pattern:

φ = k0x + AR cos(1
2k0x − ω0t)

+AL cos(−1
2k0x − ω0t),
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whereφ is the phase of the original cellular pattern,
k0 is the wave number of the basic state, andω0 is the
frequency of the pattern, finite at threshold. Finally,AL

(AR) is the amplitude of the phase wave propagating
to the left (right) along they-axis.

Assuming that the basic state isS(x, t) =
AS exp[i(φ(x))] we can ask how the Fourier space of
such a pattern will look like. A Taylor expansion of
the term exp[iφ] gives:

exp[iφ] = exp(ik0x)[(1 + ARAL + ĀRĀL + h.o.t.)

×M(0,0)+ i(AR + 1
2A

2
RAL + ARĀRĀL

+ h.o.t.)M(1
2k0, ω0)+ i(AL + 1

2A
2
LAR

+ALĀRĀL + h.o.t.)M(−1
2k0, ω0)

+ (ARĀL + h.o.t.)M(0,2ω0)

+ (|AR|2 + h.o.t.)M(k0,0)+h.o.t.+ c.c.],

whereM(ki, ωi) = exp[i(kix − ωit)] as usual.
Because of the nonlinearities, we are not able to

obtain the values ofAR andAL using classical de-
modulation techniques. For example, theAR(x, t) of
a traveling wave could be obtained from the mode
M(k0/2, ω0). But here we obtainAR + (1/2)A2

RAL +
· · · . and the estimated error on the value ofAR is
about 10%. A precise calculation of the amplitudes is
not possible, and even the determination of the law
AR vs. ε is not possible because of the nonlinearities.

A comparison with the models proposed in Refs.
[29,30,32] is very difficult, because the amplitudes
cannot be easily determined. Nevertheless, a qualita-
tive comparison can be performed. For example, the
demodulation ofFig. 4 reveals that the drifting pulses
correspond, in fact, to amplitude holes of the station-
ary pattern. Note that the minimum wavenumber of
the drifting wave is 0.8k0, and the frequency is very
low. This pattern could be related to the drifting Bloch
walls predicted by Gil[32] Further work is on the
way to obtain quantitatively the amplitudes of the ba-
sic modes.

5. Conclusions

We have presented a new experimental system
where the destabilization of an stationary cellular

pattern has been observed. After a secondary bifurca-
tion, various time-dependent patterns are created with
a wavelength twice the basic one: traveling waves,
oscillations (optical mode), and an alternating (stand-
ing) state have been observed. Thermal measurements
reveal that the physical mechanism of the secondary
instability is the destabilization of the thermal bound-
ary layer on the bottom plate.

The characteristics of the involved modes have
been determined, revealing that the frequency de-
pends strongly on the control parameters. The stability
of the patterns is very different: the oscillations are
easily destabilized, whereas the traveling waves and
the alternating pattern are very stable. These patterns
can be described by means of three different modes
plus nonlinear combinations of them. Because of the
nonlinearities, a quantitative determination of the am-
plitudes of these modes vs. the control parameters has
not been possible.

We have compared the experimental results to var-
ious theoretical models, and some similarities have
been found. Nevertheless, the experimental error is too
high to allow a quantitative comparison. Further work
is on the way to reduce this error.
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