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Transverse instabilities in chemical Turing patterns of stripes
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We present a theoretical and experimental study of the sideband instabilities in Turing patterns of stripes. We
compare numerical computations of the Brusselator model with experiments in a chlorine dioxide–iodine–
malonic acid~CDIMA ! reaction in a thin gel layer reactor in contact with a continuously refreshed reservoir of
reagents. Spontaneously evolving Turing structures in both systems typically exhibit many defects that break
the symmetry of the pattern. Therefore, the study of sideband instabilities requires a method of forcing perfect,
spatially periodic Turing patterns with the desired wave number. This is easily achieved in numerical simula-
tions. In experiments, the photosensitivity of the CDIMA reaction permits control and modulation of Turing
structures by periodic spatial illumination with a wave number outside the stability region. When a too big
wave number is imposed on the pattern, theEckhaus instabilitymay arise, while for too small wave numbers
an instability sets in formingzigzags. By means of the amplitude equation formalism we show that, close to the
hexagon-stripe transitions, these sideband instabilities may be preceded by an amplitude instability that grows
transient spots locally before reconnecting with stripes. This prediction is tested in both the reaction-diffusion
model and the experiment.

DOI: 10.1103/PhysRevE.68.056206 PACS number~s!: 82.40.Ck, 82.40.Bj, 05.45.2a
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I. INTRODUCTION

Half a century ago, Turing@1# developed a theory of mor
phogenesis which has had a profound impact on theore
developments in pattern formation. Turing showed that s
tionary concentration patterns may spontaneously develo
an open system containing two reacting substances prov
one of them diffuses much faster than the other. Nowad
the Turing mechanism is still considered a prototype for
formation of coherent patterns in nonequilibrium system
Despite considerable efforts to verify Turing’s proposal e
perimentally and to find stationary spatial patterns in a r
chemical system, it took almost 40 years before the first
perimental evidence of convection-free Turing patterns w
reported. The disparity in diffusion coefficients assumed
the Turing mechanism was hard to achieve because s
molecules in aqueous solution have diffusion coefficie
that do not differ substantially from each other.

Castetset al., working with an open, continuously fed un
stirred reactor~CFUR! observed spatial pattern formatio
arising from a homogeneous steady state in the chlor
iodide–malonic acid~CIMA ! reaction@2#. Since then, Turing
patterns have been extensively studied in the CIMA reac
and in its variant, the chlorine dioxide–iodine–malonic ac
~CDIMA ! reaction@3#. In these experiments, sufficient di
ferences in the mobilities were achieved by using a mac
molecular indicator that partially immobilizes the ‘‘critical
species by reversible complexations. Depending on the c
trol parameters~concentration of reactants and diffusion c
efficients!, the dynamics of this reaction exhibits seve
kinds of steady spatially periodic patterns close to on
hexagons, stripes, and ‘‘rhombs’’@4#. ~Usually the so-called
black eyes arise as secondary modes far from threshold@4#.!

*Electronic address: carlos@fisica.unav.es
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Turing-like concentration patterns have also been
served during the irreversible polymerization of acrylami
in an oxygen atmosphere in the presence of methylene
sulfide @5#. But the main drawbacks of this system are th
once the polymerization is over, the pattern cannot
changed by further external perturbation, and that the driv
instability mechanism is still under discussion@6–8#. In a
recent theoretical work@9#, it was suggested that a certa
class of electrochemical systems might exhibit Turing-ty
structures without suffering from the restriction on the d
ferent rates of the transport processes. This therefore o
promising perspectives in the study of further Turing-li
structures.

The stability of patterns against spatial modulations i
key issue, because long-wave instabilities are pattern se
tion mechanisms in systems with translation symmetry.
the case of a pattern of rolls, the Eckhaus or the zig
instability may appear when the homogeneous translatio
invariance is spontaneously broken. Spatial modulations
patterns have been much studied in convective fluids@10,11#,
but, to our knowledge, they have scarcely been discusse
chemistry. On the theoretical side, the three instabilities
striped patterns~cross roll, Eckhaus, and zigzag! were well
reproduced within the chemical Schnackenberg model@12#.
Experimentally, illumination and electric fields have be
used to modify Turing-like patterns obtained during po
merization in the acrylamide-methylene blue-sulfide–oxyg
reaction, and the same system has been exposed to spa
periodic light perturbation@6#. Recently, Mun˜uzuri et al. @13#
have revealed the sensitivity of the CDIMA reaction to v
ible light and proposed a simple model for its photosensi
ity. This study opened the possibility of controlling Turin
patterns by illumination.

Our main aim in the present work is to discuss the mec
nism of modulational instabilities in chemical systems,
comparing numerical simulations of the Brusselator mo
©2003 The American Physical Society06-1
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with experiments in a CFUR reactor with the CDIMA rea
tion. In Sec. II we summarize the stability limits obtaine
previously for the different patterns in the model. In Sec.
the experimental setup is introduced. Both the model and
experiments display hexagons and stripes as stationary
tions, but we focus our attention on patterns of stripes. T
stability of stripes, in terms ofamplitude equations@14#, is
discussed in Sec. IV. Close to the hexagon-stripe transit
unstable hexagons may alter the modulational destabiliz
mechanisms of stripes. In Sec. V, we analyze the Eckh
instability, and in Sec. VI the zigzag instability in these sy
tems is discussed. The paper ends with conclusions a
discussion of the results in Sec. VII.

II. STATIONARY PATTERNS IN THE BRUSSELATOR
MODEL

We have chosen the Brusselator model because it per
analytical calculations in qualitative agreement with expe
ments @15#. It consists of two coupled reaction-diffusio
equations:

] tX5A2~B11!X1X2Y1¹2X,

] tY5BX2X2Y1D¹2Y, ~1!

whereX andY stand for the concentrations of activator a
substrate, respectively,D is the diffusion ratio of the two
species, andA and B are constant parameters, one of the
~B! being selected as thecontrol parameter. For h[A1/D
,(A11A221)/A, the homogeneous steady solutio
(Xs ,Ys)5(A,B/A) becomes unstable against stationary p
turbations, leading to a Turing pattern. The threshold va
for the Turing instability isBc5(11Ah)2, with a critical
wave numberkc5AAh. From now on, it is convenient to
deal with the rescaled control parameterm5(B2Bc)/Bc ,
known as supercriticality.

Results on the spatial stability of hexagonal Turing p
terns in this model have been extensively reported in pr
ous work@16,17#. Special attention has been paid to the tra
sition between hexagons and stripes. The main results
summarized in Fig. 1. Hexagons are stable inside the sha
regions. More specifically, hexagons with a total phase s
ming top, denoted asHp hexagons, are stabilized at thres
old ~bottom of Fig. 1!. These coexist with stripes form
,mH . Stripes are the sole stable solution within the a
with oblique lines. Thereafter, hexagons with a zero to
phase (H0 , or reentrant hexagons@18#! coexist with stripes.
For m.mS only H0 hexagons remain stable. These boun
aries were obtained by using the amplitude equation form
ism, which is valid only when sufficiently close to thresho
Another interesting result previously described@16,17# is
that the average wave number in simulations increases w
m increases, a relevant fact in the wave number selec
process.

To check the validity of these stability regions, we pe
form numerical integrations of the Brusselator model w
fixed valuesA54.5 andAh51.59. A simple but efficient
odd-even hopscotch method@12# on a mesh of 1283128
05620
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points with periodic boundary conditions is used. T
concentrationX is represented in a gray scale varying fro
black ~minimum! to white ~maximum! in Fig. 1. In the same
figure we also gather the patterns resulting from integrat
and their corresponding Fourier transforms for several val
of m.

We begin with a random initial mesh and let the mod
evolve until a stationary state is reached. Then, the su
criticality m is increased in a small stepDm.0.02 and the
resulting pattern is recorded. Near threshold~m50.12!, an
initial random mesh evolves into a perfect pattern ofHp

hexagons. When the upper stability limit forHp hexagons is
crossed~m50.30!, these solutions are replaced by strip
with the same wave number as the hexagons. Since this w
number is too small, the stripes become wavy and their F
rier transforms exhibit a pair of off-axis satellite modes. F
ther increase inm gives rise to zigzags~m51.10!, which
display five main pairs of modes, the critical one and four
critical. These modes have the same horizontal wave num
component and they become more intense whenm is raised.
The angle between zigs and zags decreases whenm in-
creases, approaching 2p/3 rad. When the stability region o
H0 hexagons is entered~m52.00!, the off-axis modes be-
come the most intense. Finally, zigzags end up in very d
tortedH0 hexagons with a higher wave number.

In a second run this hexagonal pattern~m52! is taken as
the initial condition, butm is diminished. After the first de-
crease the pattern becomes more ordered~m50.70!, but it is
made up of slightly distorted hexagons. Its Fourier transfo
shows three peaks with different values. This pattern rema
unchanged on loweringm until, for m<0.4, the stripes be-
come stable and replace the hexagons. The remaining m
has a too long wave number, becomes unstable, and is
placed by a single mode with a different orientation and
lower wave number. For even smallerm, Hp hexagons re-
place stripes.

These simulations show that, starting from suitable init
conditions, wave number and planform selection may

FIG. 1. Stability regions for hexagons~shaded regions! and
stripes ~striped area! in the Brusselator model obtained from th
amplitude equations@Eq. ~2! ~see Ref.@17#!#. Simulations and Fou-
rier transforms for different values of the supercriticalitym and
excess wave numberqi5ki2kc are shown.
6-2
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TRANSVERSE INSTABILITIES IN CHEMICAL TURING . . . PHYSICAL REVIEW E68, 056206 ~2003!
studied. In the following sections we focus our attention
the sideband instabilities~Eckhaus and zigzag instabilities!
in patterns of stripes.

III. EXPERIMENTAL SETUP

Experiments on the CDIMA reaction have been p
formed in a thermostated CFUR~see Refs.@19#, @20#! at
460.5 °C. It consists of a continuously fed stirred tank re
tor ~CSTR! where the reagents are mixed and in contact w
a thin agarose gel layer~2% agarose, 0.3 mm thickness, 2
mm diameter!. The gel layer is separated from the feedi
tank by two membranes: a nitrocellulose membrane~Schle-
icher & Schnell, pore size 0.45 mm! and an Anapore mem
brane impregnated with 0.5% agarose gel~Whatman, pore
size 0.2mm!. In order to ensure that the arising structure
two dimensional, we select a thickness of the gel sma
than the wavelength exhibited by the system for the conc
trations selected in this experiments. The reagents were
into the CSTR by a peristaltic pump, previously calibrated
ensure the correct control in the concentration values.
input concentration of reagents were as follows: varia
@ClO2#50.07 and50.09 mM, and fixed@ I2#50.45 mM,
@H2SO4#510 mM, and@malonic acid#51.2 mM. We added
polyvinyl alcohol~PVA! at @PVA#510 g/l, as an indicator of
the activator concentration and to increase the ratio betw
the diffusion coefficients of activator and inhibitor. In th
way, parts with high activator concentration exhibit garn
coloration, while zones in which the inhibitor is domina
show light yellow color. For@ClO2#50.07 mM, spontaneou
stable stripes are formed with a wavelengthlc50.54
60.02 mm, while for the second value,@ClO2#50.09 mM,
the steady pattern of stripes displayslc50.4860.02 mm.

The photosensitivity of the CDIMA reaction@13# is used
to impose initial patterns on the system@21# by means of
illumination from the side with a 150 W halogen lamp. B
fore reaching the reactive gel, the light of the lamp is filter
through a slide with a static pattern of parallel black a
transparent bands. Varying the width of these bands, diffe
wavelengths may be forced in the pattern. An example
spontaneous and initially forced patterns of stripes is sho
in Fig. 2. The periodically perturbed pattern@Fig. 2~b!# has
the same wave number as the spontaneous pattern@Fig. 2~a!#
and remains stationary in time.

Standard protocol for the experiments always begins
pumping reagents. After 4 h, stationary stripes cover
whole media. Then the pattern is deleted by homogene

FIG. 2. Patterns of stripes in experiments for the same con
tration values.~a! Spontaneous pattern.~b! Spatially forced pattern.
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light intensity ~150 W! applied for 20 min, after which we
shone the desired perturbation through the slide for 10 m
Afterward, the slide is removed (t50) and the unstable pat
tern begins to evolve.

The experimental control parameter is the concentra
of chlorine dioxide@ClO2#. We select two values which give
stable patterns of stripes. In one case the stripes are clo
the stable range of hexagons and in the second case w
main close to the border of stability of hexagonal Turi
structures. For different imposed wave numbers, the pat
is unstable and, once the transparency is removed, it star
evolve into a more stable situation.

IV. AMPLITUDE EQUATIONS

A weakly nonlinear analysis around the stationary ref
ence state gives the so-calledamplitude equationswhich for
the three modes that form hexagons take the following fo

t0] tA15mA11]x1

2 A11vĀ2Ā32uA1u2A1

2h~ uA2u21uA3u2!A1 , ~2!

where the subscripts in the derivatives stand for]xi
5n̂i•¹,

and n̂i denote unit vectors in the direction of the three he
agonal modes. Companion equations forA2 andA3 are sim-
ply obtained by subscript permutations.

Beyond a threshold value hexagons are replaced
stripes. Without loss of generality we assume that stri
select the moden̂15(1,0), and Eq.~2! must be replaced by
the Newell-Whitehead-Segel~NWS! equation@14#

] tAr5mAr1S ]x2
i

2kc
]y

2D 2

Ar2uAr u2Ar , ~3!

in which the spatial term accounts now for the different sc
ing in thex andy directions@14#.

A. Sideband instabilities in striped patterns

The last equation has a stationary solutionAr

5Am2q2eiqx (m.q2). Perturbations around this solutio
take the formAr5(Am2q21r )eiqx1f(x,y,t). A linear stabil-
ity analysis gives at lowest order the well-knownphase
equation@14#

] tf5D i]x
2f1D']y

2f ~4!

with D i5(m23q2)/(m2q2) andD'5q/kc . Therefore, for
q2.qE

25m/3 the Eckhaus instabilityarises, while forq,0
modulations perpendicular to the stripe axis can grow, p
ducing azigzag instability. Although these limits fail to de-
scribe sideband instabilities far from threshold appropriate
we shall keep these expressions as a reference in the fol
ing discussions.

The scenario can be different near the hexagon-st
transition. When hexagons are slightly unstable, a lower
in the amplitude of stripes should lead, either globally
locally, to a transverse amplitude instability. Although sma

n-
6-3



s

, l

m
ns
de

ar
c

lt
a

a
tic
n

m
de
tic

.

ta
in

e
a

in
r

he

tu-
mu-
ts
e
re

s un-

ila-
he

il-
or
ss-
-
es

ss-
a

ith

ith
in

m-
e is

h at

PEÑA et al. PHYSICAL REVIEW E 68, 056206 ~2003!
the quadratic resonant term in Eq.~2! may induce hexagon
in places where the phase gradient increases.

To discuss amplitude stabilization of transverse modes
us consider the stripe solution in Eq.~2!, A15Ar5AeiqAx,
A25A350, whereqA5kA2kc . Bands with uAu25m2qA

2

are stationary solutions of Eq.~2!, provided h.1. They
could be unstable not only through phase modes, as assu
in Eq. ~4!, but also for transversal amplitude perturbatio
The quadratic term should favor resonant triads of mo
satisfying the conditionskWA1kWB1kWC50W (qW A1qW B1qW C

50W ). For simplicity, we shall consider only the particul
case of squeezed hexagonal perturbations that obey the
ditions qAx52(1/2)qBx52(1/2)qCx , qBy52qCy . ~The
general case of sheared hexagons is much more difficu
deal with analytically.! Therefore, we assume that perturb
tions in the formA15A5(A1a)eiqAx, uA2u25uA3u25bA2

5beiqB(n̂B•rW) act on the system. Heren̂B indicates the unit
vector along a transverse modeB. After linearizing we obtain
two uncoupled equations:

] ta5~m2qA
2 !a23A2a, ~5a!

] tb5~m2qB
2 !b2hA2a1vAb. ~5b!

The first equation does not depend onb. As vA!huAu2
~slight subcriticality! Eq. ~5b! can be written in the form

] tb5m2qB
22h~m1qA

2 !, ~6!

so, as the right-hand side becomes positive, transverse
plitude modes may destabilize a pattern of stripes. No
that qB

2>(1/4)qA
2, so that stationary stripes can become u

stable whenever

qA
2>

h21

h21/4
m. ~7!

Whether stripes will suffer a short-wave-number or an a
plitude instability leading to transient distorted hexagons
pends on the details of the reactive system. For each par
lar system, the stability threshold in Eq.~7! has to be
compared with the corresponding sideband stability limit

V. ECKHAUS INSTABILITY

Detailed theoretical and numerical analysis of this ins
bility under the NWS equation framework can be found
Ref. @22#. In general, this instability is difficult to observ
experimentally owing to the appearance of other second
instabilities, the limitation of experimental techniques to
duce initial patterns, and the unavoidable effects of late
boundaries. However, this instability has been reported
rather different physical systems@11#.

To describe the Eckhaus instability appropriately in t
framework of the NWS equation~3!, one must replace the
simple linear phase Eq.~4! by an equation in the form@14#

] tf5D i]x
2f2D4]x

4f1g]x@~]xf!2#. ~8!
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In Ref. @22# it was proved that the coefficientsD4 andg are
negative, so that the modulational instability does not sa
rate and the phase description breaks down. Numerical si
lations of NWS equation~3! show that the phase gradien
~which give the local wave number! become steeper at som
places and the amplitudeA is depressed at locations whe
phase gradients grow. In the case of pure stripes,A could
decrease to zero at these places and the phase become
defined, leading to the so-calledphase slips@22#. In two-
dimensional systems, this results in nucleation or annih
tion of a pair of stripes through dislocations, likely due to t
excitation of transverse modes@23#.

Comparison of the stability threshold in Eq.~7! with the
Eckhaus valueqE

25m/3 gives the condition 1<h<11/8.
Whenh lies in this interval the transverse amplitude instab
ity will appear before the Eckhaus instability takes place. F
the parameter values taken in the simulations of the Bru
elator model, however, we obtainh52.9 and hence a trans
verse mode can grow only locally, but not globally, at plac
whereA is sufficiently small.

A. Numerical simulations of the Eckhaus instability

To confirm that such a situation can occur in the Bru
elator, we performed numerical computations starting from
pattern of perfect parallel stripes as initial condition, but w
their wave number modified by a positive amountq (k5kc
1q). This is achieved by changing the spatial stepDx in the
direction perpendicular to rolls. Three results for stripes w
q initially outside the Eckhaus stable region are gathered
Fig. 3. In the first stages, a modulational instability that co
presses stripes at some places of the computation lattic
discernable. The amplitude and the wave number diminis

FIG. 3. Numerical simulations of the Brusselator for~a!
m50.09,q50.26; ~b! m50.15,q50.32; ~c! m50.35,q50.42.
6-4
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TRANSVERSE INSTABILITIES IN CHEMICAL TURING . . . PHYSICAL REVIEW E68, 056206 ~2003!
these locations until some transverse mode grows up loc
In the sequences of Figs. 3~a! and 3~c! the value ofm is close
to the hexagon-stripe transition, so that distorted hexag
are locally made out, but after tilting the stripes and induc
a wave number adjustment they disappear.~Eventually some
isolated spots remain trapped inside stripes.! Notice that the
mechanism is similar for eitherHp or H0 hexagons. Form
far from the bistability region@Fig. 3~b!# instead, the usua
phase slip leads to a pair of dislocations, which climb to
sidewalls@24#.

B. Experimental Eckhaus instability

Concentrations used in the experiments are close
(@ClO2#50.07 mM) and far from (@ClO2#50.09 mM) the
hexagon-stripe transition value. The evolution for the fi
concentration is shown in Fig. 4~a!. We force stripes with an
unstable wavelengthl50.41 mm,lc50.54 mm. During
the first stages, the parallel bands break quickly~in just 15
min! into spots. They form transient, quite distorted stretch
hexagons. After 60 min, these unstable spots disappea
most completely, the stripes are reoriented@Fig. 4~c!#, and
their wave number again reaches the stable band.

We repeat the procedure for the second concentration
sen (@ClO2#50.09 mM). The evolution of the impose
stripes is shown in Fig. 4~b!. Initially, the pattern displays
few defects and inhomogeneities at some places. The bi
defect gives rise to a couple of dislocations propagat
through the pattern in opposite directions, as one can
from the central snapshot in Fig. 4~b!, taken after 60 min. In
the same figure the formation of a deformed hexagonal
rangement of transient spots is noticeable, which finally d
appears. After 140 min@to the left in Fig. 4~b!#, the pattern
exhibits stripes with some dislocations.

VI. THE ZIGZAG INSTABILITY

For too small wave numbers the translational invarian
of stripes is broken by the zigzag instability@11#. Stripes

FIG. 4. Experimental Eckhaus instability in CDIMA reaction fo
two concentrations of chlorine dioxide.~a! @ClO2#50.07 mM: t
50, 15, and 60 min.~b! @ClO2#50.09 mM: t50, 60, and 140 min.
Both sequences show the temporal evolution~from left to right! of
stripes with an initial wave number larger thanlc .
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become wavy and domains of tilted stripes in two prefer
directions arise in the pattern. This tilting increases the w
number of stripes locally@14#.

In the framework of the NWS equation~3!, this instability
occurs for negative off-critical (q,0) wave numbers. At the
lowest order, the linear evolution of zigzags is well describ
by Eq. ~4!, but higher order derivatives and nonlinear term
must be added to saturate this instability. By symmetry ar
ments the following phase equation is deduced@14#:

] tf5F q

kc
1

3

2kc
~]yf!2G]y

2f2
1

4kc
]y

4f. ~9!

After applying ]y to this equation, takingc5]yf and res-
caling time, one arrives at the well-knownCahn-Hilliard
equationdescribing the dynamics of phase separation in c
servative systems@25#, which is written in the form

] tc5]y
2 dF

dc
, F@c#5E q

c2

2
1

c4

8
1

1

2
~]yc!2dy,

~10!

in which F is the Cahn-Hilliard free energy.~The conserved
quantity in our case is the total phaseF5*0

`c dy.) This
expression admits two kinds of solutions: periodic wav
always unstable@26#, and kinks connecting the statesc5
6A2qy. A solution with a given periodicity evolves towar
another with longer wavelength. Isolated kinks are stab
but an array of kinks undergoes coarsening by an annih
tion process and without characteristic length scale. Thus,
average size of the domain enclosed between kinks incre
regularly in time. The interaction between two kinks is e
ponentially decaying, and so weak that tiny external inter
tions can lock these otherwise unstable configurations@27#.

Busse and Auer@28# considered the stability ofundulating
rolls resulting from a zigzag instability in the NWS ampl
tude framework. Undulating rolls are unstable against lon
tudinal modulations forqE

2.m/3 ~Eckhaus limit! and against
transverse modes forq2,m/7, so that no stable band fo
undulating rolls exists. In numerical computations, howev
undulating rolls are obtained~see Fig. 1!. These might be
stabilized through some pinning effect due to the finite co
putation size. As suggested in Ref.@27# the pattern selects
few quasiresonant modes, again likely owing to the finite-
ness of the computation grid or to wave packet effects.

A. Numerical simulations of the zigzag instability

As discussed in Sec. II a pattern of stripes undergoe
zigzag instability when a gradual increase inm is applied
~Fig. 1!. This means that the stability bound for zigza
moves away from the lineq50 predicted by the phase equ
tion ~4!. For patterns with negative excess wave numberq,
the zigzag instability leads to a fast waving of stripes, wh
ends inreconnectionsbetween stripes. This amplitude inst
bility progresses differently depending on the value ofm, as
shown in Fig. 5. For low values ofm, Hp hexagons grow
globally from stripes, while for high values ofm, H0 spots
form locally at given places inside the pattern. These tr
6-5
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sient spots contribute to rearrange the wavy stripes wh
end up in straighter rolls with many point defects and with
wave number inside the stable band. At intermediate va
of m, for which only stripes are stable, undulating rolls r
connect at some places leading to a kind of oblique gr
boundary. These features are also in agreement with e
experiments in Ref.@29#.

B. Experimental zigzag patterns

The experimental sequence in Fig. 6~a! has been obtained
by printing an initial pattern of stripes withl50.62 mm
.lc50.54 mm. Snapshots in the upper row correspond
@ClO2#50.07 mM ~close to the region of stability of hexa
gons!. The first snapshot in Fig. 6~a! shows the pattern afte
15 min. Here, hexagonal arrays of spots at the bottom an
a stripe to the right can be made out, and several def
distinguished. After 195 min, the fine initial bands becom
rougher and slightly unfolded at some spots. In other pla
strong undulations are distinguished. The process contin
with ruptures and reconnections between the stripes, in s
a way that in the right pattern in Fig. 6 there is a sta
mixture of zigzag patches with undulations, reconnectio
and spots in a messy pattern. After 610 min the pattern is
very disordered, but the wave number has increased, a
reaching the critical valuelc50.5460.02 mm. Although
this pattern differs substantially from the simulations in Fig
5~a! and 5~c!, the nucleation of spots seems crucial in rea
justing the wave number.

Pictures in Figs. 6~b! show the evolution for@ClO2#
50.09 mM ~far from the hexagon-stripe transition! and the
same wavelength as before. The initial stripes become w

FIG. 5. Temporal evolution of the Brusselator with initial strip
unstable against the zigzag instability for~a! m50.10,q520.12;
~b! m50.15,q520.13; ~c! m50.65,q520.08.
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almost immediately. Undulations give rise to zigs and za
apparent at the center picture in Fig. 6~b!, after 40 min. Later
on ~at t5180 min), the pattern on the right in Fig. 6~b! is
finally established. Notice that during this evolution hex
gons did not play any role.

VII. CONCLUSIONS

In this paper, we have investigated the sideband insta
ties of Turing patterns of stripes in the Brusselator model a
in the CDIMA reaction. Beginning with the amplitude equ
tions for the main active modes in the pattern, we discus
under what conditions a long wavelength instability can
precluded by a transversal amplitude instability. Sufficien
close to the hexagon-stripe transition, this instability can g
rise to distorted hexagons that evolve into a striped pat
with a stable wave number. The influence of the unsta
hexagons should be much less far from the hexagon-st
border.

In the Brusselator model, we studied numerically the s
bility regions of stripes, which differ substantially from th
curves predicted within the amplitude equation framewo
Experimentally, it has been confirmed that illumination p
mits the control of Turing patterns in the CDIMA reactio
By forcing an initial pattern with a wavelength different from
the critical one, we observed an evolution that is similar
the dynamics reported in numerical simulations. The exp
mental control parameter is the concentration of chlorine
oxide @ClO2#. We considered two values of@ClO2#, one
close (@ClO2#50.07 mM) and another far from the hexago
stripe transition (@ClO2#50.09 mM).

For too small wave numbers close to the stability rang
of hexagons, transient spotlike defects grow locally amo
stripes in numerical simulations and in experiments. The
nal pattern consists of stripes with a stable wave number.
from the hexagon-stripe transition, the Eckhaus instabi
leads to the creation of defect pairs which subsequently
nihilate each other, yielding a stable striped pattern with

FIG. 6. Experimental zigzag instability in CDIMA reaction fo
two cases.~a! @ClO2#50.07 mM: t50, 195, and 610 min.~b!
@ClO2#50.09 mM: t50, 40, and 180 min. Both sequences sho
the temporal evolution of stripes with an initial wave numb
smaller thanlc .
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slightly modified wave vector.
When initial stripes are too wide they display undulatio

and zigzags. Undulating stripes are found to be stable
full range of slightly off-optimal wave numbers. If the im
pressed wavelength is increased, transient undulations
rise to domains of zigs and zags. Finally, if the initial wav
length is still larger, strong zigzags are reconnected at s
places where amplitude defects are formed. Above but c
to the stability region for hexagons, spots arise among
stripes. Far from the hexagon-stripe transition, however,
zigzag instability is not influenced by unstable hexagons,
disclinationlike defects and grain boundaries are observe

We notice that, although the Brusselator model does
reflect the particular details of the CDIMA reaction, resu
hy

r,

-

ce
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of the modulational instabilities in simulations of this mod
and in experiments with the CFUR chemical reactor are
good qualitative agreement.
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