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We study the stability properties of anticipating synchronization in an open chain of unidirectionally coupled
identical chaotic oscillators. Despite being absolutely stable, the synchronization manifold is unstable to propa-
gating perturbations. We analyze and characterize such instabilities drawing a qualitative and quantitative
comparison with the convective instabilities typical of spatially extended systems.
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Synchronization of coupled chaotic systems has been the
object of intensive studies over the past years[1]. Basically
all relevant questions have been investigated and clarified in
the context of low-dimensional systems, including the subtle
issues connected to the stability of the synchronization mani-
fold that may depend on the transversal Lyapunov exponent
[2] or the Lyapunov function[3].

Much less is known about synchronization properties of
high-dimensional or, more specifically, extended systems. In
this latter context, evidences of synchronization phenomena
have been given in large populations of coupled chaotic units
and neural networks[4], globally or locally coupled map
lattices[5], and in space-extended systems[6].

Among the few general features that have been estab-
lished, one finds that linear stability analysis may even fail
altogether to predict the stability property of the synchronous
state[7].

In this paper we focus our interest on the recently discov-
ered anticipating synchronization[8] in chains of unidirec-
tionally coupled oscillators. Here, the(short) time delayt in
the mutual coupling makes the trajectories to converge to-
wards an absolutely stable anticipating synchronization
manifold (ASM) wherein the state of the response system
anticipates that of the driver by the same amount of timet.
Since absolute stability remains as such independent of the
chain length, one is tempted to conclude that arbitrarily long
anticipation times may be generated. The weirdness of the
seeming lack of causality together with the potential appli-
cation of this phenomenon in real-time forecasting has sug-
gested us to investigate more in detail the stability of the
synchronized regime. As a result we find that the ASM ab-
solute stability is accompanied by a convective instability
which undermine the stability of the synchronous regime in
long chains.

In order to address such a problem, let us consider an
open chain ofN unidirectionally coupled identical Rössler
oscillators[9], given by

ṙ i = fsr id + «s1 − d1idfr i−1 − r ist − tdg, s1d

where the dots denote temporal derivatives,r i ;sxi ,yi ,zid is
the vector field of theith driven oscillatorsi =1, . . . ,Nd, « is

the coupling strength,t is the delay time in the coupling
factor, di j is the Kroneckerd function, andfsr d is a vector
field,

fsr d = f− y − z,x + ay,b + zsx − cdg, s2d

responsible for generating the locally chaotic dynamics. In
the following, we seta=0.15,b=0.2,c=10,N=100 and we
study the evolution of systems1d upon varyingt and «,
starting from a set of random initial conditionsr is0d cov-
ering all the intervalf0,−tg for each oscillator. All re-
ported simulations have been performed by implementing
a fourth order Runge-Kutta integration scheme with free
boundary conditions.

In order to carry on the linear stability analysis, it is con-
venient to pass from thehr istdj to the fr 1std ,Dr i ;hr i−1std
−r ist−tdjg representation(with i .1). In fact, the synchro-
nized state is characterized byDr i =0. Linearization of the
equations forr 1 accounts simply for the Lyapunov exponents
of the single Rössler oscillator. The dynamics of an infini-
tesimal perturbationri =sui ,vi ,wid of the differencesDr i is
instead described by

u̇i = − vi − wi + «s1 − d1idui−1 − «uist − td,

v̇i = ui + azi + «s1 − d1idvi−1 − «vist − td, s3d

ẇi = sxi − cdwi + ziui + «s1 − d1idwi−1 − «wist − td.

The growth rates ofrisi ù2d define the so calledtransversal
Lyapunov exponents, insofar as they give information on the
evolution of perturbations transversally to the ASM(repre-
sented by the fixed pointDr =0), and the negativity of the
maximum of such exponents is a necessary condition for
absolute stability of such a manifold. It is important to notice
that while the dynamical law forr2 is self-contained, the
evolution of all other perturbations can be determined only
as a cascade process. A necessary condition for the synchro-
nized regime to be stable is that the growth rate

l' = lim
T→`

1

T
ln

ir2sTdi
ir2s0di

of r2 is negative. Since the Lyapunov exponentl' is a self-
averaging quantity, it is sufficient to evolve a single ran-
domly chosen initial conditionfr1st=0d and the sethr2std ,
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−tø tø0jg for a time T long enough. In Fig. 1, we have
plotted the values ofl' vs the coupling strength, for differ-
ent choices oft, for T=1000 andadopting as normi ·i the
maximum of the absolute values of the three components
of r. Consistently with what observed in Ref.f8g, l' is
negative for a suitable parameter range, indicating that the
ASM is there absolutely stable. Notice that for all choices
of t, l' at zero coupling is positive and equal to the
maximum Lyapunov exponent of the single Rössler sys-
tem,l0=0.0826sfor the chosen parameter valuesd. For the
relatively small t values considered in Fig. 1, one can
verify that l' approximately scales asl'<s1/tdLs«td.
The scaling 1/t is what is well known to occur in delayed
systems in the limit of very long delay times. It is there-
fore remarkable here to observe the very same scaling
properties at already small values oft. As for the depen-
dence on«t, this would imply a maximal stability for«
.1/t. However, from Fig. 2 of the first of Refs.f8g, one
clearly sees that stability is completely lost fort*0.8,
thus implying that such a scaling property holds only fort
values small enough.

On the basis of the results reported in Fig. 1, one is
tempted to conclude that arbitrarily long anticipation times
can be obtained by just coupling a sufficiently large number
N of oscillators. Since theith oscillator anticipates its driver
by a time t, its dynamics is expected to collapse onto a
manifold whereinr istd=r 1ft+si −1dtg. In fact, this would be
possible only if absolute stability were a sufficient condition
for the settings of such a manifold. Figure 2 indeed shows
that this is not the case. System(1) is evolved from random
initial condition for N=100,t=0.1, and«=4.1 (from the
solid curve in Fig. 1, one can clearly see that the correspond-
ing l' is negative) up to the time at which the ASM is
reached. At this point a zero averaged-correlated Gaussian
noise Djstd of small amplitudeD=0.005 is added to the
variabley1. The deviations from the ASM are thereby moni-
tored by evaluatingdxi = ux1std−xist−si −1dtdu. From Fig. 2 it
is clear that the trajectory abandons the absolutely stable
ASM manifold dxi =0 as a result of the applied perturbation
although the deviations in the fifth oscillator are still quite
small. In fact, it is crucial to add that the asymptotic(in time)

size of the deviations tend to grow exponentially withi.
In order to clarify the whole process, we prefer to inves-

tigate the response of the system to ad-like perturbation.
More precisely, we have let the system(1) evolve from ran-
dom initial condition att=0 (with t=0.1 and«=4.1) until it
reaches(within numerical accuracy) the ASM. Then, evolu-
tion is restarted after perturbingx1 by a small amounth,
while all other variables are left unchanged. Convergence
back to the ASM is studied by monitoring the single step
anticipation error si

2=kfxist−td−xi−1stdg2l, where angular
brackets denote an average over an ensemble of independent
choices of the initial conditions.

In the limit of small perturbations, instead of following
two separate trajectories, it is sufficient to let a perturbation
evolve in tangent space: in this limitsi

2=kui
2l. The curves

corresponding to different oscillators that are plotted in Fig.
3 clearly indicate that the deviation from the ASM initially
grows but eventually converges to 0 thus confirming its ab-
solute stability. On the other hand, oscillators labeled by
larger i values are characterized by higher peaks. Figure 3
also demonstrates that the behavior of the system is basically
insensitive on whether calculations are performed in the nor-
mal or in the tangent space.

This phenomenon is very much reminiscent of convective
instabilities in spatially extended systems where a localized

FIG. 1. Transversal Lyapunov exponentl' (see text for defini-
tion) computed from system(3) vs the coupling strength« for t
=0.12 (dot-dashed line), t=0.1 (solid line), and t=0.08 (dashed
line). The three curves start froml0.0.0826, corresponding to the
maximum(positive) Lyapunov exponent for the Rössler oscillator.

FIG. 2. Temporal evolution ofdx5 for t=0.1 and«=4.1. The
trajectory starts from random initial conditions and is subjected to a
zero averaged-correlated Gaussian noise perturbationDjstd sD
=0.005d added to the variabley1.

FIG. 3. Time evolution of the ensemble averaged differences
si

2=kui
2l for i =25,50,75, and 99(the corresponding numbers are

on the top of each curve). Data is obtained from an ensemble aver-
age of 10 000 perturbations, fort=0.1, «=4.1, andh=5310−3.
The solid(dotted) lines refer to phase(tangent) space.
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perturbation dies if observed where it has been generated
while it appears to grow in suitably moving frames. The
analogy relies on the interpretation of the integeri labeling
the oscillators as a space variable, but an exact mapping with
convective phenomena is hindered by the additional presence
of the “delayed” interactions which make the problem con-
ceptually more complex.

One can, nevertheless, test whether the evolution of an
initially localized perturbation follows the same scaling be-
havior as in spatially extended systems. In the context of
one-dimensional lattices, the convective Lyapunov exponent
is defined as[10]

Lsvd = lim
t→`

1

t
ln

udsi = vt,tdu
uds0,0du

, s4d

wheredsi ,td denotes the perturbation amplitude in sitei at
time t and is initially localized in a finite region around the
origin. This is equivalent to stating that

dsi,td . exp„Lsvdt… = expSLsvd
v

iD s5d

for both ui u and t are large enough.
From a numerical point of view,Lsvd can be accurately

estimated by comparing the perturbation amplitude at two
different space-time positionsP1;si1,t1d, P2;si2,t2d,

Lsvd =
v

i2 − i1
ln

udsi2,t2du
udsi1,t1du

, s6d

wherev= i1/ t1= i2/ t2. In fact, provided that bothP1 and P2
are far enough from the origin, multiplicative finite-size cor-
rections affectd in the same way and thus disappear when
the ratio is taken in Eq.s6d.

The results reported in Fig. 4 confirm that the behavior of
perturbations in the context of Rössler oscillators with de-
layed coupling is analogous to that of convectively unstable
systems. Indeed, the three curves obtained by comparing the
following pairs of oscillators,(80,60), (60,40), and (40,20)
almost overlap, thus suggesting that the convective spectrum
Lsvd is a well defined quantity in this context too. Next, the
very existence of a positive maximum ofLsvd implies that
perturbations traveling with a velocityv in between the two
zeros ofLsvd (approximately equal to 5 and 8) are indeed
amplified. Furthermore, the maximum rate, approximately
equal to 0.203, is larger than the positive Lyapunov exponent
of the single oscillatorl0, indicating that such convective
instability is even stronger than local instability. The value of
the maximum convective exponent can be independently
checked by monitoring the values of the maximasM of each
si versus their occurrence time. The best fit reported in the
inset of Fig. 4 corresponds to a growth rate of 0.202, in good
agreement with the maximum of the convective spectrum.

Since the scaling behavior sets in only abovet*2, and the
maximal convective instability corresponds to a velocityv
<6, this means that this effect originates only for chain
lengths larger than about ten oscillators.

In conclusion, we have shown that convective instability
prevents the occurrence of anticipating synchronization over
arbitrarily long times in a chain of unidirectionally coupled
identical chaotic oscillators, when even a small amount of
noise is present.

This evidence indicates that absolute stability of the syn-
chronization manifold is only a necessary condition for the
robustness of synchronization properties in coupled spatially
extended systems, and other types of space-time instabilities
have to be taken into account.

A general consequence is that necessary and sufficient
conditions for the stability of synchronization properties in
spatially extended systems strictly depend on the space-
extended nature of the dynamics and need to be assessed by
taking into account additional sources of instability, such as
convective growth of perturbations in moving frames.

A further consequence concerns the possibility of imple-
menting anticipating synchronization as a strategy for real-
time forecasting of future states of a given dynamics. Such a
possibility needs to be reconsidered by a careful investiga-
tion of the space-time instabilities that might be suffered by
the synchronized dynamics when noisy perturbations are
taken into account.

The authors are indebted to H. U. Voss and J. Kurths for
many fruitful discussions. Work was partly supported by EU
Contract No. HPRN-CT-2000-00158, and MIUR-FIRB
Project No. RBNE01CW3M-001.

FIG. 4. Convective Lyapunov exponentLsvd vs propagation
velocity v, computed by comparing the perturbation in different
pairs of oscillators according to Eq.(6). Dot-dashed, dotted, and
solid lines correspond to the pairs(80,60), (60,40), and (40,20),
respectively. The maximum value of the exponent is marked by an
arrow. Inset: maximum value ofsi vs its time of occurrence. The
exponential best fit yields an exponent 0.202, in agreement with the
maximal convective Lyapunov exponent.
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