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Frequency entrainment of nonautonomous chaotic oscillators
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We give evidence of frequency entrainment of dominant peaks in the chaotic spectra of two coupled chaotic
nonautonomous oscillators. At variance with the autonomous case, the phenomenon is here characterized by
the vanishing of a previously positive Lyapunov exponent in the spectrum, which takes place for a broad range
of the coupling strength parameter. Such a state is studied also for the case of chaotic oscillators with ill-
defined phases due to the absence of a unique center of rotation. Different phase synchronization indicators are
used to circumvent this difficulty.
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Synchronization of coupled chaotic systems has attra
an increasing interest in recent years@1#, insofar as severa
natural observations@2,3# and controlled laboratory exper
ments@4# have pointed out its ubiquitousness and releva
in nonlinear science.

In particular, phase synchronization~PS! of chaotic oscil-
lators refers to a process whereby a weak coupling makes
phases of the interacting systems evolve in step with e
other, even when the corresponding amplitudes are only
bly correlated@5#. More precisely,m:n PS corresponds to
situation where the lifts of the two phases to the real linec1
andc2 satisfy uc22(m/n)c1u,C, with C being a positive
constant, thus indicating that the coupled oscillators evo
with a m:n bounded phase difference.

PS is closely related to the presence of two distinct s
sustained oscillators whose original different rhythms are
justed by the coupling. This fact made that such studies w
so far mostly limited to the autonomous case, where PS
shown to occur in correspondence to the setting of a cont
tive direction for the phase difference, which occurs whe
zero Lyapunov exponent in the spectrum takes a nega
value as the coupling strength is increased@5#.

In this paper we show that a completely different scena
emerges for chaotic nonautonomous oscillators. Here,
zero Lyapunov exponents are insensitive to the coupling,
a frequency entrainment of dominant peaks in the cha
spectra occurs in correspondence to a previously pos
Lyapunov exponent that vanishes over a broad range of
coupling strength parameter. This indicates that the rhy
adjustment process here takes place also in the absence
contractive direction for the phases.

To demonstrate the phenomenon, we will refer to a pai
forced Van der Pol oscillators@6# @ ẍ1,22Aẋ1,2(12x1,2

2 )
1Bx1,2

3 5C sin(v1,2t)# in a bidirectional symmetrical cou
pling configuration. The equations of motion read

ẋ1,25y1,2,

ẏ1,25A1,2y1,2~12x1,2
2 !2Bx1,2

3 1C sin~v1,2z!1e~x2,12x1,2!,

ż51, ~1!
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where the subscripts 1 and 2 refer to oscillator 1 and
respectively, dots denote temporal derivatives,A150.6,A2
50.2,B51,C52,v150.6, and v250.65, are parameter
chosen in order to produce a chaotic dynamics for both
coupled oscillators. In the following we will mainly concen
trate on the influence of the coupling parametere on the
dynamics, while the influence of the other parameters will
presented elsewhere. All numerical integrations are p
formed by means of a fourth-order Runge-Kutta algorith
with integration time stepdt5531023.

In the uncoupled case and for the selected values of
rameters, the two oscillators exhibit a chaotic motion dev
oping onto an attractor which does not display a unique c
ter of rotation @see Fig. 1~a!#. At weak coupling, the two
distinct forcing frequenciesv1 and v2 prevent frequency
and phase synchronization, insofar as both oscillators
show a strong component of these frequencies in their F
rier spectra. Intermediate couplings@e51 in Fig. 1~b!# pro-
duce a slightly distorted attractor in phase space, which h
ever does not significantly changes the qualitative feature

FIG. 1. (y1 ,x1) projection of the attractor of Eqs.~1! for ~a!
e50 ~uncoupled case!, ~b! e51 ~intermediate coupling!, and ~c!
e52.7 ~strong coupling!. Other parameters specified in the text.
©2004 The American Physical Society08-1
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the original chaotic motion. Finally, a stronger couplin
@e52.7 in Fig. 1~c!# has the effect of destroying the chaot
attractor and transforming it into a quasiperiodic one. T
coupling induces a suppression of chaos@7# and is associated
with the signalsx1(t) and x2(t) being in antiphase. This
situation stems from the fact that both system have differ
forcing frequencies and therefore synchronization in phas
not possible.

As a first task, we make use of the standard analysis t
for the evaluation of Lyapunov exponents in Eqs.~1! @8#. The
results are reported in Fig. 2~a!, where the vertical dashe
lines are used as a guide for a better visualization of
different regimes. Ate50, the spectrum is composed of tw
positive, two negative, and one zero exponents. This la
one corresponds to the equationż51 ~and therefore is insen
sitive to the coupling!, accounting for the invariance of Eq
~1! with respect to time translations.

As e increases, one of the originally positive expone
decreases to a slightly negative value in the range 0.3,e
,0.56. For 0.56,e,1.61, this exponent becomes zero, a
eventually takes a negative value fore.1.61. Finally, for
e.2.4 no positive Lyapunov exponents are present in
spectrum, indicating that chaos has been suppressed
the signalsx1(t) and x2(t) are sitting on a quasiperiodi
attractor.

Another insight into the synchronization process can
gathered by comparing Fig. 2~a! with the evolution of the
linear cross-correlation coefficient~or Pearson’s coefficient!
between the two temporal seriesx1(t) andx2(t), given by

r5^~x12^x1&!~x22^x2&!&

~A^~x12^x1&!2&A^~x22^x2&!2&
,

and reported in Fig. 2~b!. One clearly sees that for 0.56,e
,1.61, r takes a nearly constant negative value that diff
from zero but is not close to21, thus indicating that some
sort of synchronized motion is established, which, howev
is far from complete synchronization. In the following w
will show that in this range phase synchronization tak
place. In the quasiperiodic regime~e.2.4!, the value of the

FIG. 2. ~a! Lyapunov exponents of Eqs.~1! vs e, ~b! linear cross
correlation~Pearson’s coefficient! betweenx1 andx2 vs e.
01620
e

nt
is

ls

e

er

s

e
nd

e

s

r,

s

correlation coefficient tends to21, which means that we
have complete synchronization in antiphase.

The use of linear correlation is subject to caution whe
ever one deals with chaotic signals. An alternative way
study the synchronization properties of the coupled sys
is to measure the average mutual informationI between the
two systems@9#. In the present case, the two bivariate sign
are s1(t)5$x1(t),y1(t)% and s2,t5s2(t1t)5$x2(t1t),y2(t
1t)%, wheret is a delay time~positive or negative!, andI is
defined by

I ~t!5 (
s1 ,s2,t

P12~s1 ,s2,t!log2F P12~s1 ,s2,t!

P1~s1!P2~s2!G , ~2!

where P12 is the joint probability for measurings1(t) and
s2(t1t) andP1 andP2 are the individual probability densi
ties for the measurement ofs1 ands2, respectively.

Calculations have been performed with ‘‘bins’’ of 15315
cells in order to construct the histograms ofs1 ands2, while
the joint histogram was composed of a four-dimensional
ray of 154 cells. The results are sketched in Fig. 3 as a fu
tion of the two-dimensional parameter space~t,e!. Two pla-
teaus can be distinguished while varyinge, the first one
occurring foreP@0.3,1.6# and the second one fore.2.4. This
latter one corresponds to a higher value ofI, corroborating
the fact that synchronization is an increasing function ofe.
The structure obtained by varyingt ~at fixede! indicates that
there are certain preferred delay times for which the mut
information is maximum. The behavior fore51.7 is presum-
ably a resonantlike behavior.

In the following we will concentrate our attention on th
intermediate coupling regime 0.56,e,1.61 and show that it
corresponds to a PS state. In particular, we will show t
here PS is set in absence of a contracting direction for
phases, at variance with what happens for autonomous
otic coupled oscillators. Indeed, as it is seen in Fig. 2~a!, in
this regime the Lyapunov spectrum is composed of one p
tive, two negative, and two zero exponents. The two vani
ing exponents correspond to the time translation invaria
~a property which is insensitive to the coupling!, and to a
coupling induced common phase, respectively.

A practical difficulty in our analysis is that in the range
couplings 0.56,e,1.61 ~from now on referred to as the P

FIG. 3. Average mutual information of the signalss1(t)
and s2(t1t) as a function of the time delayt and the coupling
strengthe.
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range!, the instantaneous phases of the two oscillators are
easy to calculate, since each oscillator has not a unique
ter of rotation@see Fig. 1~b!#. A first hint is given by inspec-
tion of the power spectra ofx1 andx2. Figure 4 reports the
power spectra ofx1 ~black! and x2 ~gray! for e50 @un-
coupled case,~a!#, e51 @in the middle of the PS range,~b!#,
ande51.7 @at the border of the PS range,~c!#. In all cases,
the Fourier spectra are broad band, consistent with the
otic dynamics, and they contain two distinct peaks in cor
spondence with the two external forcing frequenciesv1
50.6 andv150.65. In addition, the uncoupled spectra@Fig.
4~a!# show the presence of two other peaks that are harm
ics of the forcing frequencies. As we enter the PS range,
peaks corresponding to the forcing frequencies do not o
lap, but a higher peak aroundv52.1 is set common in both
spectra, where frequency entrainment is obtained@Fig. 4~b!#.
The frequency location of this synchronization peak
creases approximately linearly withe. Finally, for e51.7,
Fig. 4~c! shows two ‘‘synchronization’’ peaks atv51.6 and
v52.6. For largere values, the chaotic attractor becom
structurally unstable. In the region 1.61,e,2.4, we have
observed a rather rich dynamical behavior where chaotic
gions are interrupted by periodic and quasiperiodic windo
As we were primarily interested in the PS and CS regim
we did not investigate further this parameter range and le
it for further studies.

The emergence of a synchronization peak suggests the
of a band-pass filter to properly isolate a filtered sig
around the second frequency peak in the Fourier spectr
which the standard analytic continuation technique@11# can
be applied for the evaluation of the instantaneous phase
emphasize that a unique definition of the phase in a com
system is not available so far, and that a phase would b
any case related to some ‘‘band’’ in the frequency doma
As a consequence, it is often unavoidable to use some b
pass filtering procedure to extract the phase dynamics
band. Relevant examples where such a procedure has
implemented include brain measurements~like electroen-
cephalograms, magnetoencephalograms, and chaotic las
rays @3#!, where a phase analysis would have not been p
sible without filtering. In the present case, this is rath
clearly motivated from the well-expressed bands in

FIG. 4. Power spectrum~in arbitrary units! of the signalsx1

~black! andx2 ~gray! vs the frequencyv for ~a! e50, ~b! e51, and
~c! e51.7.
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power spectra. By using Matlab@10#, at eache value a pass-
band Butterworth filter ~order58, maximum band-pass
loss57 dB, minimum band-stop attenuation540 dB! has
been constructed centered around the second frequency
in the Fourier spectrum, and the instantaneous phasesf1 and
f2 of the two filtered signals have been evaluated.

Figure 5 reports a long snapshot of the temporal evolut
of the maximum instantaneous phase difference between
two fields

Dw~ t !5f1~ t !2f2~ t ! ~3!

for e values outside~e50.4! and inside~e51! the range for
which the second Lyapunov exponent vanishes.

Looking at Fig. 5~a!, one easily realizes thatDw diffuses
in an almost random fashion toward infinity ate50.4. At
variance, fore51, Dw behaves alternating long epochs
almost constant value, interrupted by 2p jumps ~or phase
slips!, with no apparent trend. The probability distributio
function ~PDF! given in Fig. 5~b! confirms that fore51 the
phase difference between the two oscillators is shar
peaked aroundp. The complete synchronization obtained f
larger coupling value~e.2.4! corresponds to antiphase an
the PDF is then single peaked aroundp.

An alternative way of measuring instantaneous phase
chaotic oscillators has been recently proposed@12#, based on
the frequency locking properties of forced periodic Poinc´
oscillators. The method consists in forcing a set ofN periodic
oscillators by means of a common driving signalxf , whose
frequency and instantaneous phase are unknown. The ev
tion of the phases of the forced oscillators is ruled byċ i
5V i1Kxfsin(ci) i 51, . . . ,N, whereV i are the natural fre-
quencies of the oscillators, andK is a coupling constant. Due
to the coupling, a subset of theN oscillators will phase lock
with the external driving, exhibiting an average frequen
that can be taken as a measure of the mean frequency oxs .
This is revealed by the emergence of a horizontal plateau@or
synchronization plateau~SP!# when plotting the average fre
quency of the forced oscillators vs their natural frequenc
V i . As a consequence, the frequency value of the SP ca
taken as a measure of the average frequency of the for

FIG. 5. ~a! Dw ~see text for definition! vs time for e50.4 ~di-
verging curve! and e51 ~bounded curve!, ~b! probability distribu-
tion function ofDw ~calculatedmod2p) for e50.4 ~gray curve! and
e51 ~black curve!.
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signal, and the instantaneous phase ofxf can be taken as th
phase of any of the oscillators belonging to a SP. We t
consider two sets~one for each system! of N5350 of such
periodic oscillators with natural frequencies distributed b
tweenV150.01 andV35053.5 with V i 112V i50.01, and
force them with both signalsx1 andx2 for K50.5 at various
coupling strengthe.

At different coupling strengths, the resulting plots repo
ing the average frequency of the forced oscillators vs th
natural frequenciesV i contain several different SP’s, corre
sponding to the dominant frequency peaks emerging in
Fourier spectra. It is therefore possible to consider the sec
SP in these plots~the second peak in the spectra outside
low frequency peaks associated to the two forcing frequ
cies!, and report the mean frequency differenceDV5^v&x1

2^v&x2
, where^v&x1

(^v&x2
) is the value of this SP when

the periodic oscillators are forced with the signalx1 andx2,
respectively.

The results are presented in Fig. 6, where one note
frequency synchronization regime (DV50) for coupling
strengthse inside the range for which a Lyapunov expone
in the spectrum@see Fig. 2~a!# maintain a value close to zero
This independent check for phase locking allows us to
clude the possibility that the band-pass filtering techniq
introduced artifacts due to possible side effects.

A still open question concerns the basic dynami
mechanism relating the appearance of phase locking and
properties of the Lyapunov spectrum. In the case of coup
chaotic autonomous oscillators, phase synchronization
curs when a zero Lyapunov exponent becomes negative@5#,
indicating the emergence of a contractive direction for
phase difference. In such a PS regime, however, the p
m
n
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difference variable itself is bounded in time, but it does e
perience nonnegligible residual fluctuations, thus its dyna
cal behavior is far from being a contractive relaxation towa
a constant value@5#. An alternative approach consists in link
ing the emergence of phase locking to the behavior of
unstable periodic orbits embedded within the chaotic attr
tor @13#. In the present case, we have chosen the option
analyzing the system almost essentially in terms of
changes in the Lyapunov exponent spectrum. We have
served partial frequency entrainment of dominant peaks
chaotic spectra also in the absence of a negative Lyapu
exponent in the phase difference direction. An open ch
lenge for future work remains to satisfactorily link the fe
tures of phase entrainment with the dynamical proper
emerging from the measurements of Lyapunov exponent
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FIG. 6. Average frequency mismatchDV ~see text for defini-
tion! vs e.
v.
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D.J. Mar, Phys. Rev. E64, 056234~2001!.

@6# B. van der Pol, Philos. Mag.3, 64 ~1927!.
@7# Y. Kuznetsov, P. Landa, A. Ol’khovoi, and S. Perminov, So

Phys. Dokl.30, 221 ~1985!.
@8# H. Gould and J. Tobochnik,An Introduction to Computer

Simulation Methods~Addison-Wesley, Reading, 1996!.
@9# H. D. I. Abarbanel, Analysis of Observed Chaotic Dat

~Springer, New York, 1995!.
@10# MATLAB , see http://www.mathworks.com
@11# D. Gabor, J. IEEE London93, 429 ~1946!.
@12# M.G. Rosenblum, A.S. Pikovsky, J. Kurths, G.V. Osipov, I.

Kiss, and J.L. Hudson, Phys. Rev. Lett.89, 264102~2002!;
G.V. Osipovet al., ibid. 91, 024101~2003!.

@13# M.A. Zaks et al., Phys. Rev. Lett.82, 4228 ~1999!; M. Beck
and K. Josic´, Chaos13, 247 ~2003!.
8-4


