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*Corresponding author (carlos@fisica.unav.es)

PACS numbers: 47.20.Dr, 47.20.Bp, 47.54.þr, 47.27.Te, 44.25.þf, 47.20.Ma

Abstract

The stability of a liquid layer with an undeformable interface open to the atmo-
sphere, subjected to a horizontal temperature gradient, is theoretically analysed.
Buoyancy and surface tension forces give rise to a basic flow for any temperature dif-
ference applied on the system. Depending on the liquid depth, this basic flow is desta-
bilised either by an oscillatory instability, giving rise to the so-called hydrothermal
waves, or by a stationary instability leading to corotating rolls. Oscillatory perturba-
tions are driven by the basic flow and therefore one must distinguish between convec-
tive and absolute thresholds. The instability mechanisms as well as the di¤erent re-
gimes observed in experiments are discussed. The calculations are performed for a
fluid used in recent experiments, namely silicone oil of 0.65 cSt ðPr ¼ 10Þ. In partic-
ular, it is shown that two branches of absolute instability exist, which may be related
to the two types of hydrothermal waves observed experimentally.

1. Introduction

Convection constitutes one of the most distinguished physical phenomena to probe
new ideas about dynamical systems. It has been particularly useful to study pattern
formation, wavenumber selection mechanisms, the dynamics of defects, etc. [1]. Con-
vection in simple liquids leads usually to steady motions, which organise themselves
into cellular patterns, as observed by Bénard [2] more than a century ago. The pri-
mary formation mechanism of these patterns lies in the fact that temperature pertur-
bations along the free surface cause surface tension variations which set the liquid
interface into motion. Because of the liquid viscosity, the moving interface gives rise
to shear stresses which drive a bulk flow. This flow is usually called thermocapillary



convection or Marangoni convection and can arise in liquid–gas or liquid–liquid in-
terfaces under a temperature gradient. For temperature gradients normal to the layer,
stationary Bénard cells are displayed, but under lateral heating, thermocapillarity
may also induce wave motions. This phenomenon can be relevant in many processes
of technological interest, for example in floating zone crystal growth, thin-film coat-
ing, thermocapillary migration of small droplets or bubbles, electron beam vaporisa-
tion and laser welding.

In laterally heated systems, the instability mechanism is quite complex. A basic flow
settles down in the fluid as soon as lateral heating is applied, and the resulting tem-
perature profile is non-linear. This flow may be destabilised by the so-called hydro-
thermal waves after a critical temperature gradient is reached. Smith and Davis [3]
discussed this stability problem by considering thermocapillary flows only. Further-
more, Smith [4, 5] showed the existence of two di¤erent mechanisms of instability
depending on the Prandtl number Pr. At low Pr, the energy necessary to sustain dis-
turbances comes from the horizontal applied temperature field and hydrothermal
waves propagate in a direction perpendicular to the horizontal temperature gradient.
At high Pr, the energy is extracted from the vertical temperature field by vertical con-
vection and it gives rise to hydrothermal waves propagating parallel to the tempera-
ture gradient. At intermediate Pr, the mechanism is a combination of the previous
e¤ects and leads to waves forming an angle with the streamwise direction.

But thermocapillary convection is usually mixed with buoyancy e¤ects. Laure and
Roux [6], Ben Hadid and Roux [7] considered thermocapillary and buoyancy e¤ects
in liquids with a small Prandtl number ðPr < 1Þ. Later on, Gershuni et al. [8] found
steady rolls in the case of conducting surfaces for Pr > 1. Parmentier et al. [9] and
Mercier and Normand [10] performed calculations by taking into account buoyancy
e¤ects and thermal transfer properties at the interface, and confirmed theoretically
the existence of oblique hydrothermal waves for intermediate Pr.

On the experimental side, Schwabe et al. [11] observed oscillatory motions in half
zones. Villers and Platten [12] reported oscillatory motions in experiments and nu-
merical simulations in a shallow layer of acetone ðPr ¼ 4:2Þ in a rectangular con-
tainer submitted to a horizontal temperature gradient along the larger extension. As
the heating increased they also found a transition to a multicellular flow, composed
by corotating rolls, the intensity of which decreases as one moves away from the hot
wall. Similar results were obtained by Ezersky et al. [13] and de Saedeleer et al. [14].
The first observations of hydrothermal waves were reported by Daviaud and Vince
[15] who used a shallow layer of silicone oil of 0.65 cSt ðPr ¼ 10Þ in a narrow rectan-
gular channel heated horizontally across the shorter side. These observations were
completed by Muckolobwiez et al. [16] in an annular geometry. Moreover, Riley
and Neitzel [17] confirmed regimes of hydrothermal waves, steady multicellular
flow, and oscillatory multicellular flows in silicone oil of 1 cSt ðPr ¼ 13:9Þ in a wide
rectangular container. These results were interpreted some years later by Priede and
Gerbeth [18] in terms of absolute and convective instability.

More recently Pelacho et al. [19] and Burguete et al. [20] reported new measurements
on hydrothermal waves in rectangular containers (see Figure 1). As quoted in [20],
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important discrepancies regarding either the convective threshold or the critical
wavenumber still remain. Moreover, Schwabe et al. [11], Burguete et al. [20], Garnier
[21], Garnier et al. [22, 23] find two wave regimes, one for very thin layers (typically
h < 1:4 mm) and another for thicker layers. Finally, Shetsova et al. [24] investigated
numerically a finite two-dimensional cavity heated from the side, and analysed the
interplay between the steady cell created near the hot wall and the hydrothermal
waves.

The aim of this article is to complete the linear stability analysis of a basic flow for a
liquid with an intermediate Prandtl number, Pr ¼ 10, by varying the liquid depth, as
generally considered in experiments, and to discuss the nature of the instability lead-
ing to hydrothermal waves or stationary rolls. The paper is organised as follows. In
Section 2 are established the governing equations and boundary conditions. A linear
stability analysis is performed in Section 3. The main results of the stability analysis
and comparison with experiments are reported in Section 4; final conclusions are
drawn in Section 5.

2. Governing equations and boundary conditions

We consider a horizontal liquid layer of thickness h and infinite horizontal extent
under a horizontal temperature gradient. As usual, we introduce thermocapillary
e¤ects through the temperature-dependent surface tension

sðTÞ ¼ sðToÞ þ
qs

qT
ðT & ToÞ: ð1Þ

The system is heated with a constant temperature gradient b imposed along the hor-
izontal direction, which produces a conducting temperature profile given by

T ¼ T& þ bx; ð2Þ

where T& is the temperature of the cold side. The properties of the liquid are: density
r, kinematic viscosity n, coe‰cient of volume expansion a, thermal conductivity l,
and thermal di¤usivity k; acceleration of gravity, pressure and velocity are denoted
as g; p, and u ¼ ðu; v;wÞ, respectively. As scales of length, time, velocity, pressure,
and temperature we take h; h2=k; k=h; rnk=h2, and bh, respectively. The dimension-
less mass, momentum and energy balance equations are

Tcold

h

x
y

z

Thot

Figure 1 Scheme of a lateral heating set-up used in experiments.
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‘ ! u ¼ 0; ð3aÞ

Pr&1½qtuþ ðu ! ‘Þu( ¼ &‘pþ RaT ẑzþ ‘2u; ð3bÞ

qtT þ u ! ‘T ¼ ‘2T ; ð3cÞ

in which the Oberbeck–Boussinesq approximation has been assumed and ẑz stands
for the unit vector in the z-direction. The dimensionless boundary conditions are

) rigid conducting bottom wall ðz ¼ 0Þ

u ¼ 0 T ¼ T& þ x; ð4Þ

) free surface ðz ¼ 1Þ

w ¼ 0; ð5aÞ

qzuh ¼ &Ma‘hT ; ð5bÞ

qzT ¼ &BiðT & TlðxÞÞ; ð5cÞ

where TlðxÞ denotes the reference temperature in the air far from the interface, uh
the horizontal velocity, ‘h the horizontal gradient. The following nondimensional
numbers have also been introduced:

) the Rayleigh number Ra ¼ agh4b
nk (buoyancy e¤ects),

) the Marangoni number Ma ¼ &ðds=dTÞh2b
rnk (thermocapillary e¤ects),

) the Prandtl number Pr ¼ n
k (ratio of viscous over thermal di¤usive time scales), and

) the Biot number Bi ¼ hd
l , where h stands for the thermal exchange coe‰cient

across the free interface and l is the thermal conductivity of the liquid.

The ratio between the Rayleigh Ra and Marangoni Ma numbers is the dynamic
Bond number

Bo ¼ Ra

Ma
¼ garh2

jqs=qT j
; ð6Þ

which depends on the liquid depth for a given liquid.

3. Linear stability analysis

3.1. The basic state

When a horizontal temperature gradient is applied, the liquid develops a basic flow
parallel to the flat interface [3]. Usually, the basic flow is a monocellular flow that
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goes upwards at the hot sidewall and downwards at the cold sidewall (see Figure 1).
In the present theoretical analysis, the liquid layer is assumed to be of infinite hori-
zontal extent, but the horizontal temperature gradient remains finite. Under these
assumptions the reference state is characterised by a velocity field of the form
u ¼ ðu0ðzÞ; 0; 0Þ and the temperature distribution given by T & T& ¼ xþ t0ðzÞ.

After introducing these expressions in Eqs. (3)–(5) and applying the return condition,
that is, imposing that the mass flow across any vertical section must vanish,

ð1

0
u0 dz ¼ 0; ð7Þ

one arrives after integration at the following expressions for the horizontal velocity
and temperature profiles [10]:

u0 ¼ BoMað8z3 & 15z2 þ 6zÞ=48&Mað3z2 & 2zÞ=4;

t0 ¼ BoMazð8z4 & 25z3 þ 20z2 & 3BiyÞ=960&Mazð3z3 & 4z2 þ BiyÞ=48;
ð8Þ

with Biy ¼ Bi=ð1þ BiÞ. These profiles are composed of two terms, one due to buoy-
ancy and another to thermocapillary e¤ects. A scheme of these profiles is drawn in
Figure 2.

Let us remark that this idealised basic flow should di¤er from the return flow in any
experiment in which sidewalls will change these profiles [24]. Nevertheless, experi-
mental flow far from the sidewalls should not di¤er substantially from that idealised
flow in su‰ciently wide systems.

3.2. Perturbation equations

The next step consists in performing a linear stability analysis of the basic flow
against infinitesimal perturbations of velocity u ¼ ðu0ðzÞ þ u 0; v 0;w 0Þ, temperature
T ¼ xþ t0ðzÞ þ y 0 and pressure p ¼ p0 þ p 0 that must obey

u(z)

z

τo(z)

z

Figure 2 Scheme of the velocity and temperature profiles of the basic flow.
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‘ ! u ¼ 0; ð9aÞ

Pr&1½qtuþ u0qxuþ wqzu0x̂x( ¼ &‘pþ BoMayẑzþ ‘2u; ð9bÞ

qy

qt
þ u0qxyþ wqztþ u ¼ ‘2y; ð9cÞ

in which the primes have been deleted for clarity and x̂x denotes the unit vector in the
x-direction. The boundary conditions for these perturbations are

) at z ¼ 0 (rigid conducting bottom)

u ¼ 0 y ¼ 0; ð10Þ

) at z ¼ 1

qzuh &Ma‘hy ¼ qzyþ Biy ¼ w ¼ 0: ð11Þ

As usual, the disturbed fields are expanded in normal modes, that is,

ðu; y; pÞ ¼ ½UðzÞ;YðzÞ;PðzÞ( exp iðk ! x& otÞ; ð12Þ

where o denotes the complex time growth rate, kx the wavenumber in the streamwise
direction and ky the wavenumber in the spanwise direction. Eliminating the pressure
within the balance equations, the equations for the amplitude of the perturbations
U ;W ;Y read as

D2U ¼ LU þ
k2
y

k2
Pr&1WDu0 þ i

kx
k2

ðD3W & LDW Þ; ð13aÞ

D4W ¼ ðLþ k2ÞD2W & Lk2W þ BoMak2Y& ikxPr
&1WD2u0; ð13bÞ

D2Y ¼ ðk2 þ iðoþ kxu0ÞÞYþU þWDt0; ð13cÞ

where D ¼ d
dz , and L ¼ k2 þ iP&1

r ðoþ kxu0ÞÞ. The corresponding relevant boundary
conditions are

) at z ¼ 0, U ¼ W ¼ DW ¼ 0, and Y ¼ 0,
) at z ¼ 1, W ¼ DYþ BiY ¼ DU þ ikxMaY ¼ D2W þMak2Y ¼ 0.

3.3. Method of solution

The linear analysis leads to an eigenvalue problem in the form

AX ¼ oBX ; ð14Þ
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wherein the complex growth rate o is the eigenvalue and X the eigenvector. The set
of equations (14) is solved with a pseudospectral method, the tau-Chebyshev method
[25], in which the unknowns X are expanded in terms of Chebyshev polynomials
TnðzÞ:

XðzÞQ
XN

k¼0

akTkðzÞ: ð15Þ

Finally, one obtains a dispersion relation of the form oðk;Ma;BoÞ. Before discussing
the results, let us briefly introduce the notions of convective and absolute instabilities.

3.4. Convective/absolute instability

This linear stability analysis is more involved than in the case of a fluid layer subject
to a vertical temperature gradient, because any perturbation which becomes unstable
is dragged by the basic flow while still growing. If at a fixed location in the labora-
tory frame, the perturbation decays to zero in the long term, while growing exponen-
tially in some moving frame, the flow is said to be convectively unstable. In the pres-
ence of convective instability, infinitesimal disturbances may leave a system of finite
length before reaching an observable value. When a perturbation grows at any point
in space, it is called absolutely unstable. Absolute instability can be treated by consid-
ering perturbations in the form of wavepackets driven by the flow, that is, by assum-
ing complex wavenumbers. Consequently, besides the usual time growth, the spatial
growth must also be considered. A general discussion on this topic can be found in
the review papers by Briggs [26], Bers [27], and Huerre and Monkewitz [28].

Finding the absolute instability threshold relies basically on a criterion defining the
direction of propagation. This direction may be correctly determined by the sign of
the real part of the group velocity [18]. Consequently, the wavenumber k0 corre-
sponding to a vanishing group velocity

qo

qk
ðk0Þ ¼ 0 ð16Þ

has to be tracked. If a complex frequency o0 ¼ oðk0Þ has a positive growth rate, that
is, the imaginary part o0; i b 0, the flow becomes absolutely unstable. The value k0
corresponding to a saddle point of the dispersion relation oðkÞ, is defined by the
two conditions

qor

qkr
¼ qoi

qkr
¼ 0: ð17Þ

These two conditions are often di‰cult to evaluate, but they can be rewritten
in terms of the marginal curves by means of the following trick. The frequency o
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depends on the wavenumber k, and the Marangoni number can be considered as
a parameter, so that o ¼ oðk;MaÞ. An additional restriction results from the neu-
tral stability condition oiðk;MaÞ ¼ 0, which defines implicitly the critical Maran-
goni number Ma ¼ Maðkr; kiÞ. Partial di¤erentiation with respect to kr gives

qoi

qkr
þ

qoi

qMa
qMa
qkr

¼ 0. The neutral stability curve qoi

qMa > 0 and the condition for the saddle

point qoi

qkr
¼ 0 imply that qMa

qkr
¼ 0, and that Ma should be a local extremum. In a

representation of Ma as a function of or the conditions (17) are equivalent to a
cusp (pinching) point. We use this property to determine the absolute instability
threshold.

3.5. Stationary longitudinal rolls

At this point, some remarks are in form concerning stationary solutions. The stan-
dard linear theory predicts stable stationary solutions only when unrealistic (very
high Bi) heat transfer coe‰cients are considered [10]. In these theoretical works, the
layer is assumed to be of infinite horizontal extension and therefore only intrinsic
perturbations are considered. However, numerical simulations [6] and experiments
[11–14] show that a pattern of corotating stationary rolls transverse to the basic
flow may appear in the liquid. This apparent contradiction is resolved taking into ac-
count that the boundary layer on the hot sidewall constitutes a finite perturbation
that, depending on the sign of the attenuation rate of the perturbation, may spatially
fade, that is, remain localised, or become amplified spreading throughout the layer.
The basic flow is in the x-direction, and therefore only the imaginary part of kx has to
be considered in the linear equations and boundary conditions. Therefore, the limit
of these two situations is given by the conditions orðk;MaÞ ¼ 0, and oiðk;MaÞ ¼ 0
with kxi ¼ 0.

4. Results and comparison with experiments

In Figures 3 and 4 are represented the main results of the linear stability analysis. We
have also compared our results with the experimental data obtained by Pelacho et al.
[19] and Burguete et al. [20] for 0.65 cSt silicone oil ðPr ¼ 10Þ. All our calculations
are performed for this fluid, by assuming Bi ¼ 1. In Figure 3a the critical Marangoni
number as a function of Bo is presented. Thresholds for the absolute, convective and
stationary instability are given by the solid thick, dashed-dotted and dotted lines, re-
spectively. The curves for the convective and stationary instabilities are similar to
those reported by Priede and Gerbeth [18] for Pr ¼ 13:9. The curve for the absolute
instability presents two branches that could be related with the two wave regimes re-
ported by Burguete et al. [20] in narrow rectangular enclosures, and by Garnier and
Chi¤audel [22] in annular containers. From Figure 3, it becomes apparent that for
Boa 0:3 convective and absolute thresholds are close to each other and corotating
rolls should not appear. For Bob 0:3 the threshold values for the convective and ab-
solute instability diverge as Bo is increased. Moreover the stationary solution pre-
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cedes the absolute instability in this regime. Measurements in [20] were performed in
containers with 1 cm, 2 cm, and 3 cm width.

As expected, experimental results in the widest cell (3 cm) are the closest to the theo-
retical thresholds. Results by Pelacho et al. [19] in a wide container (8 cm) are repre-
sented by circles in Figures 3 and 4. In Figure 3a the upper circle corresponds to the
critical Marangoni number calculated with the temperature di¤erence applied upon
the layer, while the lower circle stands for Ma obtained from the temperature dif-
ference measured on the surface in the central part of the layer. We notice that our
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Figure 3 Critical Marangoni numbers (a) and transversal wave-numbers (b) as functions of
the dynamic Bond number Bo. Experimental data for: Lx ¼ 10 mm, s, Lx ¼ 20 mm, z,
Lx ¼ 30 mm, k [20]. The circles a indicate the experimental values in [19]. Solid thick lines:
absolute branches. Dot-dashed line: stationary threshold. Dotted line: convective instability.
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Figure 4 Angle of propagation (a) and frequency (b) of the transverse waves as functions of
the dynamic Bond number Bo. Experimental data for: Lx ¼ 10 mm, s, Lx ¼ 20 mm, z,
Lx ¼ 30 mm, k [20]. The circles a indicate the experimental values in [19]. Solid thick lines:
absolute branches. Solid thin line: convective instability.
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theoretical results agree qualitatively with the experimental values, which are never-
theless always greater than the theoretical ones, owing to the thermal boundary layer
on the sidewalls not taken into account in an idealised model.

But the most interesting result concerns the spanwise wavenumber ky in Figure 3b.
As reported by Burguete et al. [20], a discrepancy of a factor of two between the
measured values of ky and the theoretical values predicted from the convective insta-
bility is apparent. However, the absolute instability curve is closer to the experimen-
tal values than the convective one. Here again two absolute branches are observed.
In each branch, ky decreases when Bo is increased, but it jumps from a branch to
the other. This suggests again that these branches correspond to two di¤erent wave
regimes. To the best of our knowledge, this is the first time that the occurrence of
such regimes is discussed.

In Figure 4 are gathered the calculated values for the angle of propagation (with re-
spect to the direction of the basic flow) and the frequency of the waves. It is seen that
absolute branches behave di¤erently with Bo: the angle is almost constant when the
surface tension is dominant, and decreases when buoyancy becomes important. A
reasonable agreement between theory and experiments is also achieved for these two
quantities.

5. Conclusions and discussion

Thermo-convective instability of a liquid layer under a horizontal temperature gradi-
ent has been theoretically studied. It is confirmed that travelling hydrothermal waves
and stationary corotating rolls are possible solutions of this problem. Our analysis
has shown that the two regimes of travelling waves reported in experiments by
Burguete et al. [20] and Garnier and Chi¤audel [22] may be associated with two
branches of the absolute instability. It is also argued that the discrepancy between
theory and experiments regarding the spanwise wavevector reported by Burguete
et al. [20] may be explained by admitting that these data correspond to an absolute
instability, instead of a convective instability, as assumed in previous analyses [10].
The nature of the results obtained in the present work clearly indicate that the prob-
lem of lateral heating convection constitutes an interesting prototype to study propa-
gation and interaction of waves in simple liquids.
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Marangoni convection in a cylindrical container, Phys. Rev. E, 47 (1992), 1126–1131;
Spatiotemporal structure of hydrothermal waves in Marangoni convection, Phys. Rev.
E, 48 (1992), 4414–4422.

[14] De Saedeleer, C., Garcimartı́n, A., Chavepeyer, G., Platten, J.K., Lebon, G., The insta-
bility of a liquid layer heated from the side when the upper surface is open to air, Phys.
Fluids, 8 (1996), 670–676.

[15] Daviaud, F., Vince, J.M., Travelling waves in a fluid layer subjected to a horizontal tem-
perature gradient, Phys. Rev. E, 48 (1993), 4432–4436.

[16] Mukolobwiez, N., Chi¤audel, A., Daviaud, F., Supercritical Eckhaus instability for
surface-tension-driven hydrothermal waves, Phys. Rev. Lett., 80 (1998), 4661–4664.

[17] Riley, R.J., Neitzel, G.P., Instability of thermocapillary-buoyancy convection in shallow
layers. Part 1. Characterization of steady and oscillatory instabilities, J. Fluid Mech., 359
(1998), 143–164.

[18] Priede, J., Gerbeth, G., Convective, absolute, and global instabilities of thermocapillary-
buoyancy convection in extended layers, Phys. Rev. E, 56 (1997), 4187–4199.

[19] Pelacho, M.A., Burguete, J., Temperature oscillations of hydrothermal waves in
thermocapillary-buoyancy convection, Phys. Rev. E, 59 (1999), 835–840; Pelacho, M.A.,
Garcimartı́n, A., Burguete, J., Local Marangoni number at the onset of hydrothermal
waves, Phys. Rev. E, 62 (2000), 477–483; Pelacho, M.A., Ondas hidrotermales en sistemas
confinados, Ph.D. Thesis, Universidad de Navarra, 2000.

[20] Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., Chi¤audel, A., Buoyant-
thermocapillary instabilities in an extended liquid layer subjected to a horizontal temper-
ature gradient, Phys. Fluids, 13 (2001), 2773–2787.

Waves and rolls in laterally heated convection 387

J. Non-Equilib. Thermodyn. ! 2004 !Vol. 29 !No. 4
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