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We analytically establish and numerically show that anomalous frequency synchronization occurs in a pair
of asymmetrically coupled chaotic space extended oscillators. The transition to anomalous behaviors is cru-
cially dependent on asymmetries in the coupling configuration, while the presence of phase defects has the
effect of enhancing the anomaly in frequency synchronization with respect to the case of merely time chaotic
oscillators.
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In recent years, synchronization of complex systems have
generated great interest in the scientific communityf1g, as
well as in the literature oriented to lay audiencesf2g. A rel-
evant and counterintuitive result is that an increase in cou-
pling strength between two complex systems does not nec-
essarily induce a better degree of synchronization. An
example is the anomalous behavior observed in the fre-
quency synchronization between a limit cycle and a time
chaotic oscillatorf3,4g, where increasing the coupling leads
initially to an increase of the frequency difference.

In this paper we analytically establish and numerically
show that:sid anomalous frequency synchronizationsAFSd is
a generic phenomenon occurring also for space extended sys-
tems,sii d the transition to anomalous behaviors is crucially
dependent on asymmetries in the coupling configuration, and
siii d the presence of phase defects in spatially extended cha-
otic oscillators has the role of enhancing the anomaly in
frequency synchronization with respect to the case of merely
time chaotic oscillators.

Our starting point is a pair of asymmetrically coupled
complex Ginzburg-Landau equationssCGLEd

Ȧ1,2= A1,2+ s1 + iad]xxA1,2− s1 + ib1,2duA1,2u2A1,2

+
c

2
s1 7 udsA2,1− A1,2d. s1d

HereA1,2sx,td=r1,2sx,tdeif1,2sx,td are two one-dimensional
complex fieldsfof amplitudesr1,2sx,td and phasesf1,2sx,tdg,
the dots denote temporal derivatives,]xx stays for the second
derivative with respect to the space variable 0øxøL, L is
the system extension,a andb1,2 are suitable real parameters,
c represents the coupling strength, and −1øuø1 is a param-
eter accounting for asymmetries in the coupling. CGLE has
been extensively investigated in the context of space-time
chaos, since it describes the universal dynamical features of
an extended system close to a Hopf bifurcationf5g. A de-
tailed account of CGLE dynamics and synchronization phe-

nomena can be found in Ref.f6g. In particular, Eq.s1d sup-
ports two main turbulent regimes, namely phase turbulence
sPTd and amplitude turbulencesATd or defect turbulencef7g.
PT is a regime where the chaotic behavior of the field is
essentially dominated by the dynamics offsx,td, while the
amplitude changes smoothly, and it is always bounded away
from zero. At variance, in AT the fluctuations ofrsx,td be-
come dominant over the phase dynamics, leading to large
amplitude oscillations that can occasionally cause the occur-
rence of a space-time defect in the point wherer is locally
vanishing. In Ref.f6g we have numerically shown that when
coupling a PT and a AT regime, one can have regular fre-
quency synchronizationsFSd or AFS, depending upon the
value of the asymmetry parameter. In this paper, we will
concentrate on the case in which both CGLE are initiallysfor
c=0d set in a regime of phase turbulencesPTd, i.e., we fix the
parameters in Eq.s1d to be a=2, b1=−0.75, andb2=−0.9.
This will indeed allow us to perform a detailed analytical
study of the synchronization process, and to rigorously de-
scribe the main dynamical and statistical features character-
izing AFS. Here, the condition to be fulfilled for
1:1 frequency synchronization is the vanishing of the mean
frequency mismatchDV;V1−V2=0, where the mean
frequency of each field is given by V1,2
= limt→`skf1,2sx,tdlxd / t sklx denoting spatial averaged.

Figure 1 reportsDV in the parameter spacesc,ud and
indicates that the transition to a frequency locked state
sDV=0d can occur in a regularsDV is a monotonically de-
creasing function ofcd or in an anomalous waysDV in-
creases initially withcd, depending upon the level of asym-
metry in the coupling configuration. The arrow in Fig. 1
indicates the critical valueucr<−0.09 and marks the numeri-
cally found transition point between the two frequency syn-
chronization behaviors.

Since both fields are initially set in the PT regime, we can
use the tools of asymptotic analysis in order to reduce the
description to a pair of coupled Kuramoto-SivashinskysKSd
equationsf8g. The KS model is nothing but an ordinary dif-
ferential Ginzburg-LandausGLd model plus spatial terms
that are “small” perturbations. In the following we will
evaluate such small perturbations and show that their prob-
ability distribution functionsPDFd is very well approximated*Electronic address: jbragard@fisica.unav.es
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by a Gaussian distribution, whose mean and standard devia-
tion depend on the parametersa and b. This allows one to
perform a second reduction leading to a pair of ordinary
differential GL equations with suitable additive noise terms,
and compare the prediction from this latter model with the
results of the full CGLE, thus gathering a better understand-
ing of the mechanisms behind AFS in spatially extended sys-
tems.

Let us start with a single CGLE equation; the coupling
will be added later on. The equation is

Ȧ = A + s1 + iad]xxA − s1 + ibduAu2A. s2d

In the PT regime, the dynamics of the complex field
Asx,td can be reduced to the dynamics of the real phase field
fsx,td, being the amplitude fieldrsx,td slaved to the dynam-
ics of the phase. The family of equations that describe the
dynamics of the phase equations are called the Kuramoto-
Sivashinsky equationsf9g. Such equations have been found
to properly describe chemical reactionsse.g., Belousov-
Zhabotinsky reactiond as well as flame propagation in the
case of mild combustion. The equation for the phase dynam-
ics of the single CGLE has been derived by Sakaguchif10g
and reads as

ḟ = t1fxx + t2fx
2 + t3fxxxx+ t4fxfxxx+ t5fxx

2 + t6fx
2fxx,

s3d

where t1=1+ab, t2=b−a, t3=−a2s1+b2d /2, t4=−2as1
+b2d, t5=−as1+b2d, and t6=−2s1+b2d. Equations3d is ob-
tained by doing an asymptotic expansion of Eq.s2d in pow-
ers of]x, the smallness parameter being the degree of spatial
modulation of the phase.

By using the Adams-Bashforth integration scheme, both
Eq. s2d and Eq.s3d have been simulated with the same grid
spacingdx=0.25, with time stepdt=10−2, and with periodic
boundary conditions. As initial condition for Eq.s3d, we se-
lected a Gaussian noise with zero mean and standard devia-
tion s=10−4. In Eq. s3d, after some transient, the phasef is
drifting linearly with timeskflx<st+b, wheres is the slope
of the linear drift evaluated by performing a linear fitd. The
validity of the KS model is then checked by comparing the
average frequency obtained from the full CGLEfEq. s2dg

and the frequency estimate given by the KS modelv=−b
+s. An excellent agreement has been obtained for the fre-
quencies calculated with the two modelssKS and full CGLEd
in the whole PT regimes−0.9,b,−0.7d.

In fact, as we are interested in a first-order perturbation
theory, we can limit ourselves to the first three terms in the
right-hand side of Eq.s3d, and still we have verified that the
agreement between the average frequencies calculated from
the full CGLE and the three-terms KS equation is very good
in the whole PT range.

The advantage of the three-terms reduction of Eq.s3d is
that it is now straightforward to perform a spatial average of
such reduced equation, that leads to

kḟlx = t2kfx
2lx. s4d

Equations4d is a very simple relationship for the correc-
tion to the frequencyswe recall thatv=−b+kḟlxd. In Fig.
2sad, the time evolution of the termkfx

2l sfrom now on re-
ferred to as T2d is displayed, as it is taken from the simula-
tion of the full CGLE. The time evolution of T2 is clearly
chaotic and its probability distribution functionsPDFd can be
conveniently fitted by a Gaussianfas shown in Fig. 2sbdg.
Furthermore, the time correlation function for T2 is reported
in Fig. 2scd. There, by assuming an exponential decay, we
obtain an estimate for the correlation time oft=51.2.

Such statistical properties make it possible to further re-
duce our analysis to a pair of time-dependent coupled oscil-
lators sGL equationsd subjected to a colored Gaussian noise
with proper mean, fluctuation, and correlation featuresffor
b1=−0.75 sb2=−0.9d we have that the mean of the PDF is
m1=2.92310−3 sm2=1.14310−2d, the standard deviation is
s1=5.46310−4 ss2=1.7310−3d, and the correlation time is
t1=51.2 st2=15.3dg. Notice that asb is increasedsin abso-
lute valued, the system becomes more and more chaotic, thus
the correction to the frequency is largersas indicated by a
largermd, the fluctuations are highersas indicated by a larger
sd, and the correlation time of the signal decayssas con-
firmed by a lower value oftd.

Taking back into account the coupling term, using proper
noise terms and assuming small parameter mismatches, the
reduced GL modelf3,11g for the phasesf1std ,f2std of the
chaotic oscillators becomes

ḟ1 = − b1 − c1fb1scosw − 1d − sinwg + h1,

ḟ2 = − b2 − c2fb2scosw − 1d + sinwg + h2, s5d

wherew=f2−f1 represents the phase difference between the
two oscillators,c1=cs1−ud /2, c2=cs1+ud /2, andh1,h2 are
the two colored Gaussian noise terms specified above. Equa-
tions s5d are a set of stochastic differential equationssSDEd,
where the noise termsh1,h2 have been surrogated from the
full CGLE with the corresponding parametersa, b, and c
=0 suncoupledd. The numerical integration of the set of Eqs.
s5d is straightforwardf12,13g and allows us to compare the
full CGLE to its SDE counterpart.

Before proceeding with numerical integration, some ana-
lytical studies of Eqs.s5d can be performed, following what

FIG. 1. Frequency mismatchuDVu vs the parameter spacesc,ud
for Eq. s1d. All parameters are specified in the text. The arrow
pointing atucr<−0.09 discriminates between regularsucr,uø1d
and anomalouss−1øu,ucrd frequency synchronization.

BRAGARD et al. PHYSICAL REVIEW E 71, 025201sRd s2005d

RAPID COMMUNICATIONS

025201-2



was done in Ref.f4g. Namely, by neglecting the noise terms
and subtracting Eqs.s5d, one is able to write an equation for
ḟ in a closed form. Then frequency synchronization is stud-
ied by calculating the frequency detuning,sDVd−1

=1/2pe0
2pdw / ẇ, yielding

uDVu = ÎB−
2 + cB−fuB+ − B−g + c2, s6d

where B+ sB−d stays for b1+b2 sb1−b2d. The interest of
expressions6d is that one can analytically estimate the tran-
sition point between FS and AFS. Indeed, the slope of the
detuning at zero coupling indicates regularsif negatived or
anomaloussif positived frequency synchronization. It is
straightforward to calculate the value ofu for the transition
between FS and AFS

ucr =
B−

B+
=

b1 − b2

b1 + b2
. s7d

For the particular case treated heresb1=−0.75 andb2
=−0.9d, we haveucr=−1/11<−0.09, in perfect agreement
with what is found numerically for the full CGLE model and
reported in Fig. 1. That means that forucr,uø1, we have
regular FS. Conversely, in the range −1øu,ucr, we have
AFS. Notice that Eq.s7d is not at all applicable to the case
reported by us in Fig. 4sbd of Ref. f6g, since the fundamental
assumption at the basis of whole theoretical derivation from
Eq. s2d to Eqs.s5d sthe fact that the amplitude field is almost
constant and bounded away from zerod loses validity insofar
as one of the two coupled fields is there in the amplitude
turbulent regime, with phase defects characterizing also its
uncoupledsc=0d evolution.

Finally, we compare the numerical integration of the SDE
s5d and of the full CGLEs1d. In Fig. 3 we report the frequen-
ciesV1,V2 versus the coupling strengthc for two asymmet-
ric coupling configurations. Namely, Fig. 3sad fFig. 3sbdg re-

fers to the case of regular FS atu=0.88 sof AFS at u
=−0.88d. The agreement between the SDEs5d and the full
CGLE s1d is very good at low coupling stregths. However,
for larger values ofc, we observe an increasing difference
between the two cases, which is especially pronounced in the
case of AFS. In particular, the full CGLE shows an enhance-
ment of the anomaly with respect to the SDEs5d.

In order to identify the reasons for such a difference, we
point out that the derivation of the reduced SDE model is
rigorous only in the absence of coupling. While one can
reasonably expect that the validity of such reduction would
hold also for small values ofc, at larger coupling strengths
intrinsic spatial effects become dominant in the dynamics of
the coupled fields. In particular, even though initially the two
fields are set in PT regimes, an intermediate coupling induces
the presence of a finite number of phase defectsfpoints

FIG. 2. sad Time evolution of
kfxsx,td2lx from Eq. s2d with a
=2 andb=−0.75. For a better sta-
tistics, nine different random ini-
tial conditions have been consid-
ered, and the integration lasts until
t=106. sbd The probability distri-
bution function of the data shown
in sad sdotted lined and its fit by a
Gaussian PDFssolid lined. scd The
time correlation function of the
signal shown insad.

FIG. 3. Mean frequenciesV1,2 calculated for the full CGLEs1d
ssolid lined and the effective SDEs5d model sdashed lined. sad
u=0.88 sregular FSd. sbd u=−0.88sAFSd sb1=−0.75,b2=−0.9d.
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where locally and instantaneously the amplitudersx,td van-
ishesg, as it appears from Fig. 4. Phase defects are objects
inherent to the spatially extended nature of the system and
cannot be retrieved in a SDE model. Notice that the small
parameter mismatchsub1−b2u=0.15d guarantees the validity
of the phase descriptions5d and hence the appearance of
phase defects in the spatially extended systems1d cannot be
related with the phenomenon of amplitude death occurring
between two coupled limit cycle oscillatorsf14g. Indeed, in
the above derivation, one has to implicitly assume the dy-
namical regime of the CGLE to be in phase turbulence.
Therefore, the appearance of defects induce a breaking up of
the validity of the reduced models5d.

Phase defects are entirely responsible for the frequency
mismatch observed in Fig. 3. CallingV1

ef f sV1d the mean
frequency of system 1 as calculated with reference to the
SDE modelsthe full CGLE modeld, in Fig. 5 we show that
for u=−0.88 sAFSd, the 1:1 correlation between the fre-
quency mismatchDV1

e=V1
eff−V1 and the number of defects

appearing in system 1 is indeed remarkable, indicating that a
simple correction of the frequency proportional to the defect
numbers is enough to produce an excellent agreement be-
tween the SDE and the full CGLE models for the whole
range ofc.

In summary, the comparison between two time-dependent
oscillators and spatially extended oscillators cannot be con-
ducted without taking high care of phase defects. These last
objects are inherent to space extended systems and must be
taken into account if we want to study synchronization. In
particular, AFS is further enhanced by phase defects, while in
the case of regular FS, the presence of defects shifts down
the threshold for synchronization, allowing for an easier fre-
quency locking.
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FIG. 4. Total number of defectsN generated in Eq.s1d in the
systemsad A1 and sbd A2 vs the parameter spacesc,ud. Other pa-
rameters area=2, b1=−0.75,b2=−0.9. The defects at timet have
been considered at those pointsxi, where thersxi ,td is smaller than
2.5310−2 and that are, furthermore, local minima for the function
rsx,td.

FIG. 5. Number of defects in system 1ssolid line—left ordinated
and frequency mismatchDV1

e sdashed line—right ordinate, see text
for definitiond vs c for u=−0.88sAFSd.
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