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Abstract

We prove that direct and inverse limits of sequences of reflexive Abelian groups that are metrizable
or k,-spaces, but not necessarily locally compact, are reflexive and dual of each other provided some
extra conditions are satisfied by the sequences.
© 2005 Elsevier B.V. All rights reserved.

MSC:22A05; 22D35; 18A30

1. Preliminaries

Let TAG be the category whose objects are topological Abelian groups and whose mor-
phisms are continuous homomorphisms. Given two objéctésdH in TAG we denote
by TAG (G, H) the group of morphisms fror® to H. Consider the multiplicative group
T ={z € C:|z] =1} with the Euclidean topology. For any obj&gin TAG, the set of mor-
phismsTAG (G, T) with the compact open topology is a Hausdorff Abelian group named
the character group @& and denoted bﬁA.

For f € TAG (G, H), the adjoint homomorphisni” € TAG(H", G") is defined by
fA () =yo fforye H . Thus(—)A is a contravariant functor fromAG to TAG (or a
covariant functor fronTAG to TAG °P). There is a natural transformatigifirom the identity
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functor in TAG to the covariant functo(—)M. This can be described by;: G — G"
where[;(x)1(y) = z(x) foranyx € G andy € G".

A group G is said to bereflexiveif . is a topological isomorphism. The celebrated
Pontryagin—Van Kampen Theorem states thatlf6A (the category of locally compact
Abelian groups)y is a natural isomorphism, i.e. locally compact Abelian groups are re-
flexive. The first well-known extension of this Theorem to products and direct sums of
reflexive groups was obtained by Kaplan in 1948&]. He proved in a subsequent paper
the reflexivity of sequential limits (direct and inverse)ldEA groups. There have been
many studies concerning Pontryagin duality from different perspectives since that time. An
excellent survey with almost all representative references about the t¢®jc is

Our aim is to extend the results 2] where Kaplan studied the reflexivity of direct
and inverse limits of reduced sequenced. GA groups. He obtained the following four
isomorphisms:

(i) (im G,)" = lim G,, (i) (im G,)" =lim G,,

(if) (tim G, =~ lim G, (iv) (lim Gy = lim G,.

We study suitable conditions on sequences of Abelian groups (non-necessh@ jn
that ensure the validity of the isomorphisms above. In particular we will obtain the reflexivity
of direct or inverse limits for certain families of sequences.

Reflexive topological Abelian groups are Hausdorff. By this reason it is convenient to
work in HTAG , the category of Hausdorff topological Abelian groups.

Given a directed se¥, we can consider it as a category where the objects are the elements
o € o/ and the set of morphismg («, f3) consists of only one elementif § and is empty
otherwise. Adirect systenin HTAG is a covariant functob from a directed sets to

HTAG . We use the notatiofG,, ff, o/} for a direct system, wher&, = D(x) are the
groups andff = D(</(a, p)) the linking maps.

A direct limit or inductive limitfor a direct system{G,, ff, o/} in HTAG is a pair
(Iii)n G, {Paluecws), Where Lm G, is an object iInHTAG and thep,'s are morphisms in

HTAG (Gy, lim G,) such thatp, = pg o ff for o< f, satisfying the following universal

property:
Given an objecG’ in HTAG and morphismg;, in HTAG (G, G') for all o« € .2 such

that p), = p;g o ff whenever: <, there is a uniqgue morphismin HTAG (lim G,, G’)

such thatp), = p o p,.
The standard construction of the inductive limitHiTAG is the following

iim G, = (@Ga)/ﬁ,

where@ G, has the final group topology with respect to the inclusignsG, — @ G,

andH is the closure of the subgrotgenerated byl'ﬂofaﬂ(gy)—ix(ga) ca< P gy € Gyl
Dually, an inverse system IHTAG is a contravariant functdrfrom .7 to HTAG (or

equivalently a covariant functor fron# to HTAG °P, the opposite category). We will denote
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a generic inverse system K¢, g%, o/} and aninverse limitor projective limitby a pair
(IiLn Gy, {To}yer), Wheremny, : IiLn Gy — Gy.

Given an inverse systefid/,, g/°§, o/} in HTAG, its inverse limit can be constructed as a
subgroupL of the produc{ | G, given by

L= {(&t)ae&/ € HG“ : gﬁ(g/f) :gl}.

We will call a direct system (resp. inverse system) of topological groegscedif the
linking mapsff are injective (resp. if the linking ma@% are onto), angtrictif the linking
maps are embeddings (resp. quotient maps).

We will call direct sequencéresp.inverse sequeng¢o any direct system (resp. inverse
system) with index setZ =N. In the case of direct sequences the final topology with respect
to the inclusions i G, used in the description of direct limit, coincides with the box
topology and with thesterisk topologyntroduced by Kaplan although these topologies do
not coincide in general (sdé,11]). The asterisk topology is the appropriate topology for
the direct sum in Pontryagin duality. This is the reason to restrict part of the study of duality
for direct and inverse limits to the case of sequences.

2. Adjoint functors and Pontryagin duality

We show in this section that certain duality results about limits can be obtained directly
from category theory. We use the fact that the contravariant fumet}fr has a left adjoint
in a subcategory dfiTAG that we proceed to define.

Denote byHTAG ; the full subcategory oiTAG of all Hausdorff Abelian topological
groupsG for which {5, n;~, 1, ...} are continuous homomorphisms. For each pair
G andH of objects inHTAG , and morphismf : G — H", thereis a unique morphism
f': H — G" suchthatf = (f")" ong. Infact, forh € H andg € G, f'(h)(g) = £ (g)(h)
and the mapF : HTAG ;(G, H") — HTAG ,(H, G") which mapsf to f” is continuous.
Hence, the functof—)" : HTAG ;° — HTAG , is adjoint to(-)" : HTAG , — HTAG".

In particular, the contravariant funct¢s)" : HTAG , — HTAG, transforms direct into
inverse limits whenever they exigit0, p. 307]

We are going to consider two full subcategorieBldAG , related by th¢—)" functor: the
categoryM whose objects are metrizable and the categQsywhose objects are,-spaces.

Recall that a Hausdorff topological spaXés ak-spaceif any subseiO of X is open
wheneverO N K is open inK for any K compact. The spack is hemicompactf X =
U, en Kn» Where(K,),cn is a sequence of compact subsets and every compact subset of
X is contained in one of th&,,’s. In the literature hemicompa&tspaces are also called
kq,-spacesthey were introduced as a generalization of countable CW-complexel®]see
Another way to introduce &¢,-space is to say that there exists an increasing sequence of
compact Hausdorff subseks, coveringX, with K,, C K,+1, and such thaX has the weak
topology with respect to the grougs,, that is,F is closed inX if and only if F N K, is
closed inK,, for eachn.
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It is well known that if an objecG of HTAG is ak-space, them; is continuous (see
[13]). Metrizable andk,-spaces are obviousk:spaces. Since the character group of a
metrizable topological Abelian group iskg-space (sefl] or [6]) and the character group
of a hemicompact group is again metrizable, we obtain that the categbraeslK , are
full subcategories dHTAG ,, which are duals of each other.

Proposition 2.1. The categorK , has sequential direct limit®ually, the categorM has
sequential inverse limits

Proof. We only need to prove th&p G, with the final group topology, is &,-space,

since the image by a quotient mapping & aspace onto a Hausdorff space igaspace.
Since theG, s arek,-spaces there exists an increasing sequence of compact Hausdorff

subsets{K,{)jeN containingeg, covering eaclG, such thaf is closed inG, if and only

if FN K, isclosed inkK;, for eachj. The sequence
(CN)nen = ((1(K1) +i2(KY) + - +in(Ky)y

is increasing and coveé§) G,,. Take nowB C P G, such thatB N Cy is closed inCy for
all N € N. We need to show th&is closed inp G,,. Sincedp G, has been endowed with
the final topology with respect to the inclusiaps G, — @ G,, itis enough to prove that
i~1(B) is closed inG, for all n € N, which occurs if and only if 7%(B) N K} is closed
in K,{V forall N € N. Fix nandN natural numbers. li > N theni,,(K,{V) Cin(K}) C Cy;
otherwise, (KN) c Cy. It now follows thatB Ni, (KN) is closed ini, (KN, and therefore
itB)YNKYN =i Y(Bni,(KY)) is closed ink ) as we wanted to show.

Since a subgroup of a countable product of metrizable groups is metrizable, we obtain
that the inverse limit of a sequence of metrizable groups is also metrizahle.

Corollary 2.2. Letlim G, be a limit of Abelian topological groups which are algg-
spaces then

AN

(lim Gn) ~lim G..

Proof. This isomorphism is a direct consequence of the previously commented fact that
(=) has a left adjoint and the existence of the required direct and inverse limits.

We have obtained the first of the isomorphisms announced in the introduction. The other
three cannot be achieved just by categorical arguments and require specific machinery.

3. Reflexivity of the inverse limit

This section is devoted show how the reflexivity of the inverse limit of sequendds in
follows from the nice properties that li§,, has as a subgroup of the prod{i§tG,,.

Let G be an object oHTAG . A subgroupH of G is calleddually embedded every
character oH extends to a character & i.e.i" : G' — H' is onto. A subgroupH of
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G is calleddually closedn G if for every x € G\H there exists a charactgre G" with
y(H) = et andy(x) # e7. Itis easy to check that a dually closed subgrélis a closed
subgroup ofG such thaty, 4 is injective.

Proposition 3.1. Let{G,, gg; </} be an inverse system of Hausdorff Abelian groups and
lim G, its inverse limitthen

1. If the inverse system is reducéith G, is dually embedded ifi[,,. ., Gs.
2. Ifall ng, are injective lim G, is dually closed if [, ., G-

Proof. DenoteTy ={z € T : Rez>0} and lete : lim G, — T be a continuous

homomorphism. We are going to extepdo G =[], ., Go.
Since ¢ is continuousp~1(T,) is a neighborhood of the neutral elemem; ¢, and

contains an element Imﬁx NU, whereU = Uy, x --- x Uy, X H s Gl, Uy is a
nelghborhood oftheldentltylﬁal andoy, > o; fori # k. Denote/1= U061 """ xek, G1=
Goy XX Gy, Go= ]'[ L G, andletr; : G — G1ithe natural prOjectlon Notice that

(/)(|Im G, N Gy) is the tr|V|aI subgroup smc¢(llm G, NGy C q)(llm G,NU) cC Ty4.
Hence we can defing; : ﬂl('@ Gy — T aS(pl(ntl((xa)ae_y/)) = q;((xa)m/)

The morphismp, is well defined: ifry ((x,),_ ) =ma1((x;) ) then(x,), , —(x)),_, €
|im Gy N Ga. Now @((xy),., — (x3),. ) =ec,, hencep((x,),_ ) = @((x),. ).

Let us prove now thap, is continuous: Since1(T,) D IiLn G, N U, we have that
o1 X(T4) D m(im G, NU) = m(lim G,) NU1andmy(lim G,) N Uy is a neighborhood
of the neutral element iny(lim G,).

Since theg;‘;’s are surjectiv(_e we can write:

nl (IiLn Ga> = (@20, - 8o (), X)X € G

This allows us to define another homomorphisg) : G, — T such thatp, (xy) =

P1(80 (X)), - -+ 8ok (X)), ). In fact, we can obtaip,, as the compositiowp; o i,
wherei : G, — mi(lim G,), is the continuous homomorph|sm defined iy, ) =
<~

(Got () -+ 8y (), Xog).
Henceyp,, is a continuous homomorphism. If we take- ¢, o, we have a continuous
homomorphism that extends If (x,),_, € lim G, thengg(xﬁ) = x, for eachff > a.
. <«

Now it follows that@((x),_,) = @y, (x) € Gy ANd @y (xy) = P1(85 (X)) - -,

gt () X)) = 1 (m1((x),_ ) = @((x5),__,). This proves the first part.
The second part is Lemma 5.28[f]. [

Theorem 3.2. Let {G,, g, n<m} a reduced inverse sequence of metrizabddlexive
topological groupsThenlim G, is a metrizablereflexive topological group
<«
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Proof. We are under the hypothesis of Proposition 3.1, hencedjns dually closed and

dually embedded ifi] G,.

EachG, is metrizable and reflexive, hence we have {f{a%, is metrizable and reflexive
(see[11]). Every dually closed and dually embedded subgroup of a metrizable reflexive
group is reflexivd7], hence([mGn is reflexive. O

4. Limits and local quasi-convexity

In this section we introduce the categdtyfAG |qc of locally quasi-convex Hausdorff
Abelian groups. Inverse limits of sequences of reflexive groups in this new category coincide
with the ones irHTAG . We will prove that, under certain restrictions on the linking maps,
the direct limit (inHTAG |4c) of sequences of reflexive,-objects exists and is reflexive.

For a Hausdorff topological group the polar of a subsetd C G is the setA™ = {y ¢
G :y(A) c T4} whereT4 ={z € T : Rez > 0}. Theinversepolar of ase8 c G is the
setBY={x € G:y(x) € T4, Vy € B}.

A subsetA of a topological group is said to lmpiasi-convexf A”< = A i.e. if for every
x € G\A there exists; € G" such that(A) € T buty(x) ¢ T.

A topological Abelian group itocally quasi-conve¥ it has a basis of neighborhoods of
the neutral element formed by quasi-convex sets. In particular, the characterrafp
any topological grous is always locally quasi-convex, hence reflexive groups are locally
guasi-convex.

Every Hausdorff Abelian topological group, can be obtained as a quotient of a locally
guasi-convex groufl, p. 61] This implies that local quasi-convexity is not preserved in
general by quotients and as a consequence, the direct limit of locally quasi-convex groups
in HTAG is not always locally quasi-convex. The problem can be avoided if we restrict to
the categonHTAG qc, Of locally quasi-convex Hausdorff Abelian groups.

For any topological Hausdorff Abelian grodg, t) with {U;} as neighborhood basis at
e, we define theassociated locally quasi-convex topologyc, on G taking {U” <} as
neighborhood basis afs. It is the finest topology contained i such that(G, tiqc) is
a (non-necessarily Hausdorff) locally quasi-convex grfi]p The correspondend@ —

(G, tiqe) /{eg} defines a functo? 26 : HTAG — HTAG iqc.

Remark. The group(G, tiqc) is Hausdorff if and only if;; is injective[1, p. 35] For such
agroupZ2%(G) = (G, tigc)-

Let {(Gn),en- f)'} be a direct sequence of locally quasi-convex Abelian topological
groups. We will see that for this kind of sequences, we can construct a direct limit in the
categoryHTAG |qc. For this purpose we need an auxiliary result.

Lemma 4.1. Given areduced inverse systé@y,, g/ ; N} of Hausdorff topological groups
the polarofim G, isthe subgroup i G2 generated bYi,, (¢,,)—in (g;}q)A (p,):n<m, @,

€ G, }. We will denote this subgroup ¥, (¢,) — im (") (¢,)).
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Proof. Let us first show that
. . naA ) >
in(@,) —im(gy,) (@) € (Iir_n G,,)

If (xp)pen € Iir_n G,, we have thag) (x,,) = x,, hence

(in (@) — im (1) (@) () nen) = @) — (1) (@) (Xm)
= (/)n(xn) - (Pn(g:ln(xm)) = (/)n(xn) - (Pn(xn) =eT,

and we have proven one inclusion.
We are left to prove thati, (¢,) — in(g")" (¢,)) D (im G,)".

Any element(¢, ),y € (lim G,)” can be represented as a finite sum

((pn)neN = inl((pnl) +eee ink ((Pnk)

Consider now an arbitrary element, € G,, and let(x,),cn an element of the inverse
limit with n; coordinatex,, . We know thatg, (x,,,) = x,,, n <m and sinc&e,,),,cn is in the
polar of lim G,,, we have

((pn)neN ((xn)nen) = €T

We can use both facts together to obtain:

((Pn)neN((xn)neN) = (pnl(x"l) +oot Py, (xnk)
= (Puy@nt 4+ Oy 18y T+ Q) ()
= (&) (@u) + -+ @™ (@) + @) Ciny)
= e‘[r

and hence
(D) @ag) -+ @™ (@ y) + 0n) = ey -

We can now subtract this term from the expressioty),.n Which is enough to obtain
our result. More concretely,

(@IneN = ing (@) + -+ in (@)
=iny (Pn,) + -+ ing (@)
— i (D) (@) - F (@D (@) F )
= iy (Pny) — ing (81D (@)
ot (P ) = i @D (@) + ing (D) — in (@)

from which we concludélim G,)" C (i,(¢,) — in(g") (¢,)). O
Recall that for a direct sequenf@s,),.cn, ' : Gn = G, n<m}thelimitin HTAG

is (B G,)/H whereH is the subgroup ofD,,cny G generated byiy, o £ () — in(g) :
g € Gyt withi, : G, - @ G, the canonical inclusions.
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For reflexive groups we obtain the following proposition.

Proposition 4.2. Given a direct sequence of reflexive topological groups the direct limit in

im  Gy= ((DGa)/ 7).

7 HTAG Iqc

wherertiqc is the associated locally quasi-convex topology

Proof. The functor? 2% : HTAG — HTAG o defined on the objects by’ 2%(G) =
(G, tige)/{ec}, is a left adjoint to the inclusioMTAG iqc — HTAG. Hence it preserves

direct limits, in particular, lim G, =Z2%(lim Gp). O
7 HTAG ¢ T HTAG

Remark. Inorder to obtain the direct limit for sequences of reflexive topological groups in
the categorieBlTAG andHTAG |qc, we have used two topologies ¢ G.)/H .InHTAG

we have taken the quotient group topology denoted.bg HTAG |qc we have considered
Tiqc, Which is the associated locally quasi-convex topology.tdVe note here that the
respective algebraic and topological duals are the same whenever the graupspaees,
since (@D G,)/H,1)" is ak-space with the same compact sets(@® G,)/H, tiqo) -

This implies that the isomorphism obtained in Corollary 2.2 is valid when the direct limit is
taken in any of the categoriésTAG or HTAG |qc. Note also that for a sequenp@,},,cn

of reflexive groups, lim G, =lim G, since products and subgroups of locally
T HTAG ¢ T HTAG

guasi-convex groups are locally quasi-convex. Hence we will denote both limits by Jim
«

Theorem 4.3. Let {G,, g, n<m} a reduced inverse sequence of metrizabddlexive
topological groupsThen

(1im G,,)A ~im G

7 HTAG Iqc
Proof. We have from Lemma 4.1

(Iir_n Gn)D _ {(q,n)neN e G, Y putun) =er, forall (x,) € lim Gn}
= (in(@) — im(g) (@), :n<m, @, € G,).

Considering the locally quasi-convex topology., associated to the quotient topology in
(@ G,)/(im G,)* we have an object isomorphic to lim G, in HTAG iqc. We still
<«

_’HTAGmIC
need to prove thalim G, is topologically isomorphic to this object.
We have proven before tha(t_lirﬁn is dually closed and embedded [ G,. Let
i:lim G, — ]G, be the inclusion. Since lind;, is dually embedded, the continuous
<« «—

homomorphismi”: ([]G,)" — (im G,)" is onto and has(im G,)> as kernel.
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Therefore we have a continuous isomorphism

v ((TTer) / (im 60)" ) = (im )

with both(([] Gn)A/(Iim Gn)", Tige) and(lir_n Gn)A locally quasi-convex. We obtain from
Lemma 14.8 ir{3] thatys is open and hence a topological isomorphisrml]

Theorem 4.4.1f {G,, g/ } is areduced inverse sequence of reflexive metrizable graaps

dual {G,ﬁ, (gf,,)A} is a reduced direct sequence of reflextygspaces andim G, is
7 HTAG lqc
reflexive

Proof. Every reflexive metrizable group is complete, its dual groug” is ak-space
and its bidual groum}M is again metrizable (s€6]).

Eachg, is an onto map, hence its dL(@[;)A is injective and therefor{aGg, (g,';l)A} isa
reduced direct sequencelgf-space groups.

Now we see thatlim G, is reflexive.

7 HTAG lqc
Since (lim G,,)A ~(lim G,,)A, from Corollary 2.2 and the reflexivity of the
T HTAG 7 HTAG ¢

G,'s we obtain

(lim G = ((im G, =(im G,") =(im G,)
7 HTAG ¢ 7 HTAG ¢ — -
andsincdG,, (g,,)} is areduced inverse sequence of metrizable groups, Theorem 4.3 gives

(lim Gn)A ~[im G,Al which completes the proof. [
— 7 HTAG ¢

Theorem 4.5.If {G,, f} is a strict direct sequence of reflexive groupip such that

fH(Gp) is dually embedded it for all n <m, thenlim G, is reflexive
T HTAG gc

Proof. Since f(G,) is dually embedded ifG,,, we have that /") :G, — G, is
onto. Therefore{Gﬁ, (f,;")A} is a reduced inverse sequence of reflexive metrizable groups.
Again the fact that(lim Gn)A ~(lim Gn)A together with Corollary 2.2 yield

T HTAG 7 HTAG g¢

(lim G,)"" ~(lim G,)". Now Theorem 4.3 and the reflexivity of thg,’s give
—>HTAG|qC —

. A . .
(im G,)" =lim G, =lim Gn. O
~ 7 HTAG lqc 7 HTAG lqc

We conclude this article with an application of Theorems 3.2 and 4.5 to nuclear groups.

The class of nuclear groups contains all locally compact Abelian groups and the additive
groups underlying nuclear vector spaces. Moreover, itis closed with respect to the operations
of taking subgroups, Hausdorff quotients, arbitrary products and countable direct sums. The
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intensive study of nuclear groups developed since their introduction has produced important
results (se¢2] for a survey). Some of these results are related with strong reflexivity. A
reflexive groupG is strongly reflexivéf every closed subgroup and every Hausdorff quotient
group of G and of G” is reflexive. It follows that locally compact groups are strongly
reflexive. This notion was defined by Brown, Higgins and Morrigliiwhere they showed

that countable products and sums of lines and circles are strongly reflexive. Concerning
nuclear groups, Banaszczyk proved the strong reflexivity of metrizable complete nuclear
groups[3, p. 153] In particular, countable products of metrizable reflexive nuclear groups
are strongly reflexive. Note that strong reflexivity is not a productive prog@rty. 155]

We obtain the following dual result for direct sums.

Corollary 4.6. Let(G,),cn @ collection of strongly reflexivé,,-spacesnuclear Abelian
topological groupsThen its countable sué, .y G is strongly reflexive

Proof. Note first thatd = € G, is reflexive.
Let Q be a closed arbitrary subgroupldf For eachh e N, H, =G1+---+ G, isa
subgroup oH. ConsiderQ,, = 0 N H,. We can now define bonding maps forakim:

fr:an — Hy,
("' Qn = O,
(frlln)//: H,/Q, — Hy/QOm,

which are all embeddings between nuclear groups. Then we obtaiftim {0,
"7 HTAG ¢
(fm}and H/Q ~lim {H,/Qn, (™"}, which are direct limits of strict sequences
_’HTA<3|qc

of reflexive nuclear groups that akg-spaces. They are all subgroups of nuclear groups
and hence dually embeddf p. 82] We can now apply Theorem 4.5 which ensures that
the limitsQ and H/ Q are reflexive.

Consider now. =[] G, with G, reflexive, metrizable, theh s reflexive. LetP be an
arbitrary closed subgroup &fandL, = G; x --- x G, with m,: L — L, the canonical
projection. DefineP, =, (P), a closed subgroup d@f,, and bonding maps for eaah< m:

g;,:l:Lm — Ly,
(g;’;)/: Py — Py,
(g;’;)”: Ly/Pn — L,/ Py.

Now we have the following isomorphismg:= lim {P,, (g")'}andL/P = lim {L,/ Py,
<« <«

(g)"} which are inverse limits of sequences of metrizable topological groups with onto
bonding maps. Hende@and L/ P are reflexive by Theorem 3.2.[J
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