

Available online at www.sciencedirect.com

Journal of Pure and Applied Algebra 202 (2005) 11-21

JOURNAL OF PURE AND APPLIED ALGEBRA

www.elsevier.com/locate/jpaa

The Pontryagin duality of sequential limits of topological Abelian groups $\stackrel{\text{topological}}{\sim}$

S. Ardanza-Trevijano*, M.J. Chasco

Dept. de Física y Matemática Aplicada, Universidad de Navarra, E-31080 Pamplona, Spain

Received 28 June 2004; received in revised form 5 February 2005 Available online 7 April 2005 Communicated by E.M. Friedlander

Abstract

We prove that direct and inverse limits of sequences of reflexive Abelian groups that are metrizable or k_{ω} -spaces, but not necessarily locally compact, are reflexive and dual of each other provided some extra conditions are satisfied by the sequences. © 2005 Elsevier B.V. All rights reserved.

MSC: 22A05; 22D35; 18A30

1. Preliminaries

Let **TAG** be the category whose objects are topological Abelian groups and whose morphisms are continuous homomorphisms. Given two objects *G* and *H* in **TAG** we denote by **TAG**(*G*, *H*) the group of morphisms from *G* to *H*. Consider the multiplicative group $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ with the Euclidean topology. For any object *G* in **TAG**, the set of morphisms **TAG**(*G*, \mathbb{T}) with the compact open topology is a Hausdorff Abelian group named the character group of *G* and denoted by G^{\wedge} .

For $f \in \mathbf{TAG}(G, H)$, the adjoint homomorphism $f^{\wedge} \in \mathbf{TAG}(H^{\wedge}, G^{\wedge})$ is defined by $f^{\wedge}(\chi) = \chi \circ f$ for $\chi \in H^{\wedge}$. Thus $(-)^{\wedge}$ is a contravariant functor from **TAG** to **TAG** (or a covariant functor from **TAG** to **TAG**^{op}). There is a natural transformation η from the identity

th The authors acknowledge the financial aid given by Gobierno de Navarra and MCYT, BFM2003-05878.

^{*} Corresponding author.

E-mail addresses: sardanza@unav.es (S. Ardanza-Trevijano), mjchasco@unav.es (M.J. Chasco).

^{0022-4049/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2005.02.006

functor in **TAG** to the covariant functor $(-)^{\wedge \wedge}$. This can be described by $\eta_G: G \to G^{\wedge \wedge}$ where $[\eta_G(x)](\chi) = \chi(x)$ for any $x \in G$ and $\chi \in G^{\wedge}$.

A group G is said to be *reflexive* if η_G is a topological isomorphism. The celebrated Pontryagin–Van Kampen Theorem states that for LCA (the category of locally compact Abelian groups), η is a natural isomorphism, i.e. locally compact Abelian groups are reflexive. The first well-known extension of this Theorem to products and direct sums of reflexive groups was obtained by Kaplan in 1948 [11]. He proved in a subsequent paper the reflexivity of sequential limits (direct and inverse) of LCA groups. There have been many studies concerning Pontryagin duality from different perspectives since that time. An excellent survey with almost all representative references about the topic is [8].

Our aim is to extend the results of [12] where Kaplan studied the reflexivity of direct and inverse limits of reduced sequences of **LCA** groups. He obtained the following four isomorphisms:

(i)
$$(\varinjlim G_n)^{\wedge} \cong \varinjlim G_n^{\wedge}$$
, (ii) $(\varinjlim G_n)^{\wedge} \cong \varinjlim G_n^{\wedge}$,
(iii) $(\varinjlim G_n)^{\wedge \wedge} \cong \varinjlim G_n$, (iv) $(\varinjlim G_n)^{\wedge \wedge} \cong \varinjlim G_n$.

We study suitable conditions on sequences of Abelian groups (non-necessarily in LCA) that ensure the validity of the isomorphisms above. In particular we will obtain the reflexivity of direct or inverse limits for certain families of sequences.

Reflexive topological Abelian groups are Hausdorff. By this reason it is convenient to work in **HTAG**, the category of Hausdorff topological Abelian groups.

Given a directed set \mathscr{A} , we can consider it as a category where the objects are the elements $\alpha \in \mathscr{A}$ and the set of morphisms $\mathscr{A}(\alpha, \beta)$ consists of only one element if $\alpha \leq \beta$ and is empty otherwise. A *direct system* in **HTAG** is a covariant functor D from a directed set \mathscr{A} to **HTAG**. We use the notation $\{G_{\alpha}, f_{\alpha}^{\beta}, \mathscr{A}\}$ for a direct system, where $G_{\alpha} = D(\alpha)$ are the groups and $f_{\alpha}^{\beta} = D(\mathscr{A}(\alpha, \beta))$ the linking maps.

A direct limit or inductive limit for a direct system $\{G_{\alpha}, f_{\alpha}^{\beta}, \mathscr{A}\}$ in **HTAG** is a pair $(\lim_{\alpha \to \alpha} G_{\alpha}, \{p_{\alpha}\}_{\alpha \in \mathscr{A}})$, where $\lim_{\alpha \to \alpha} G_{\alpha}$ is an object in **HTAG** and the p_{α} 's are morphisms in **HTAG** $(G_{\alpha}, \lim_{\alpha \to \alpha} G_{\alpha})$ such that $p_{\alpha} = p_{\beta} \circ f_{\alpha}^{\beta}$ for $\alpha \leq \beta$, satisfying the following universal property:

Given an object G' in **HTAG** and morphisms p'_{α} in **HTAG** (G_{α}, G') for all $\alpha \in \mathscr{A}$ such that $p'_{\alpha} = p'_{\beta} \circ f^{\beta}_{\alpha}$ whenever $\alpha \leq \beta$, there is a unique morphism p in **HTAG** $(\lim_{\longrightarrow} G_{\alpha}, G')$ such that $p'_{\alpha} = p \circ p_{\alpha}$.

The standard construction of the inductive limit in HTAG is the following

$$\lim_{\longrightarrow} G_{\alpha} \cong \left(\bigoplus G_{\alpha} \right) \Big/ \bar{H},$$

where $\bigoplus G_{\alpha}$ has the final group topology with respect to the inclusions $i_{\alpha} : G_{\alpha} \to \bigoplus G_{\alpha}$ and \overline{H} is the closure of the subgroup *H* generated by $\{i_{\beta} \circ f_{\alpha}^{\beta}(g_{\alpha}) - i_{\alpha}(g_{\alpha}) : \alpha \leq \beta; g_{\alpha} \in G_{\alpha}\}$.

Dually, an inverse system in **HTAG** is a contravariant functor *I* from \mathscr{A} to **HTAG** (or equivalently a covariant functor from \mathscr{A} to **HTAG**^{op}, the opposite category). We will denote

13

a generic inverse system by $\{G_{\alpha}, g_{\beta}^{\alpha}, \mathscr{A}\}$ and an *inverse limit* or *projective limit* by a pair (lim $G_{\alpha}, \{\pi_{\alpha}\}_{\alpha \in \mathscr{A}}$), where π_{α} : lim $G_{\alpha} \to G_{\alpha}$.

Given an inverse system $\{G_{\alpha}, g_{\beta}^{\alpha}, \mathscr{A}\}$ in **HTAG**, its inverse limit can be constructed as a subgroup *L* of the product $\prod G_{\alpha}$ given by

$$L := \left\{ (g_{\alpha})_{\alpha \in \mathscr{A}} \in \prod G_{\alpha} : g_{\beta}^{\alpha}(g_{\beta}) = g_{\alpha} \right\}.$$

We will call a direct system (resp. inverse system) of topological groups *reduced* if the linking maps f_{α}^{β} are injective (resp. if the linking maps g_{β}^{α} are onto), and *strict* if the linking maps are embeddings (resp. quotient maps).

We will call *direct sequence* (resp. *inverse sequence*) to any direct system (resp. inverse system) with index set $\mathscr{A} = \mathbb{N}$. In the case of direct sequences the final topology with respect to the inclusions in $\bigoplus G_n$, used in the description of direct limit, coincides with the box topology and with the *asterisk topology* introduced by Kaplan although these topologies do not coincide in general (see [4,11]). The asterisk topology is the appropriate topology for the direct sum in Pontryagin duality. This is the reason to restrict part of the study of duality for direct and inverse limits to the case of sequences.

2. Adjoint functors and Pontryagin duality

We show in this section that certain duality results about limits can be obtained directly from category theory. We use the fact that the contravariant functor $(-)^{\wedge}$ has a left adjoint in a subcategory of **HTAG** that we proceed to define.

Denote by \mathbf{HTAG}_{η} the full subcategory of \mathbf{HTAG} of all Hausdorff Abelian topological groups G for which $\{\eta_G, \eta_{G^{\wedge}}, \eta_{G^{\wedge \wedge}}, \ldots\}$ are continuous homomorphisms. For each pair G and H of objects in \mathbf{HTAG}_{η} and morphism $f: G \to H^{\wedge}$, there is a unique morphism $f': H \to G^{\wedge}$ such that $f = (f')^{\wedge} \circ \eta_G$. In fact, for $h \in H$ and $g \in G$, f'(h)(g) = f(g)(h)and the map $F: \mathbf{HTAG}_{\eta}(G, H^{\wedge}) \to \mathbf{HTAG}_{\eta}(H, G^{\wedge})$ which maps f to f' is continuous. Hence, the functor $(-)^{\wedge}: \mathbf{HTAG}_{\eta}^{\mathrm{op}} \to \mathbf{HTAG}_{\eta}$ is adjoint to $(-)^{\wedge}: \mathbf{HTAG}_{\eta} \to \mathbf{HTAG}_{\eta}^{\mathrm{op}}$. In particular, the contravariant functor $(-)^{\wedge}: \mathbf{HTAG}_{\eta} \to \mathbf{HTAG}_{\eta}$ transforms direct into inverse limits whenever they exist [10, p. 307].

We are going to consider two full subcategories of \mathbf{HTAG}_{η} related by the $(-)^{\wedge}$ functor: the category **M** whose objects are metrizable and the category \mathbf{K}_{ω} whose objects are k_{ω} -spaces.

Recall that a Hausdorff topological space *X* is a *k-space* if any subset *O* of *X* is open whenever $O \cap K$ is open in *K* for any *K* compact. The space *X* is *hemicompact* if $X = \bigcup_{n \in \mathbb{N}} K_n$, where $(K_n)_{n \in \mathbb{N}}$ is a sequence of compact subsets and every compact subset of *X* is contained in one of the K_n 's. In the literature hemicompact *k*-spaces are also called k_{ω} -spaces; they were introduced as a generalization of countable CW-complexes (see [9]). Another way to introduce a k_{ω} -space is to say that there exists an increasing sequence of compact Hausdorff subsets K_n covering *X*, with $K_n \subset K_{n+1}$, and such that *X* has the weak topology with respect to the groups K_n , that is, *F* is closed in *X* if and only if $F \cap K_n$ is closed in K_n for each *n*. It is well known that if an object G of **HTAG** is a k-space, then η_G is continuous (see [13]). Metrizable and k_{ω} -spaces are obviously k-spaces. Since the character group of a metrizable topological Abelian group is a k_{ω} -space (see [1] or [6]) and the character group of a hemicompact group is again metrizable, we obtain that the categories **M** and **K**_{\omega} are full subcategories of **HTAG**_n which are duals of each other.

Proposition 2.1. The category \mathbf{K}_{ω} has sequential direct limits. Dually, the category \mathbf{M} has sequential inverse limits.

Proof. We only need to prove that $\bigoplus G_n$, with the final group topology, is a k_{ω} -space, since the image by a quotient mapping of a k_{ω} -space onto a Hausdorff space is a k_{ω} -space.

Since the G_n 's are k_{ω} -spaces there exists an increasing sequence of compact Hausdorff subsets $(K_n^j)_{j \in \mathbb{N}}$ containing e_{G_n} covering each G_n such that F is closed in G_n if and only if $F \cap K_n^j$ is closed in K_n^j , for each j. The sequence

$$(C_N)_{N \in \mathbb{N}} = (i_1(K_1^N) + i_2(K_2^N) + \dots + i_N(K_N^N))_N$$

is increasing and covers $\bigoplus G_n$. Take now $B \subset \bigoplus G_n$ such that $B \cap C_N$ is closed in C_N for all $N \in \mathbb{N}$. We need to show that *B* is closed in $\bigoplus G_n$. Since $\bigoplus G_n$ has been endowed with the final topology with respect to the inclusions $i_n : G_n \to \bigoplus G_n$, it is enough to prove that $i_n^{-1}(B)$ is closed in G_n for all $n \in \mathbb{N}$, which occurs if and only if $i_n^{-1}(B) \cap K_n^N$ is closed in K_n^N for all $N \in \mathbb{N}$. Fix *n* and *N* natural numbers. If $n \ge N$ then $i_n(K_n^N) \subset i_n(K_n^n) \subset C_n$; otherwise $i_n(K_n^N) \subset C_N$. It now follows that $B \cap i_n(K_n^N)$ is closed in $i_n(K_n^N)$, and therefore $i_n^{-1}(B) \cap K_n^N = i_n^{-1}(B \cap i_n(K_n^N))$ is closed in K_n^N as we wanted to show.

Since a subgroup of a countable product of metrizable groups is metrizable, we obtain that the inverse limit of a sequence of metrizable groups is also metrizable. \Box

Corollary 2.2. Let $\lim_{\longrightarrow} G_n$ be a limit of Abelian topological groups which are also k_{ω} -spaces then

$$\left(\lim_{\longrightarrow} G_n\right)^{\wedge} \cong \lim_{\longleftarrow} G_n^{\wedge}.$$

Proof. This isomorphism is a direct consequence of the previously commented fact that $(-)^{\wedge}$ has a left adjoint and the existence of the required direct and inverse limits. \Box

We have obtained the first of the isomorphisms announced in the introduction. The other three cannot be achieved just by categorical arguments and require specific machinery.

3. Reflexivity of the inverse limit

This section is devoted show how the reflexivity of the inverse limit of sequences in **M** follows from the nice properties that $\lim G_{\alpha}$ has as a subgroup of the product $\prod G_{\alpha}$.

Let G be an object of **HTAG**. A subgroup H of G is called *dually embedded* if every character of H extends to a character of G, i.e. $i^{\wedge} : G^{\wedge} \to H^{\wedge}$ is onto. A subgroup H of

G is called *dually closed* in *G* if for every $x \in G \setminus H$ there exists a character $\gamma \in G^{\wedge}$ with $\chi(H) = e_{\mathbb{T}}$ and $\chi(x) \neq e_{\mathbb{T}}$. It is easy to check that a dually closed subgroup H is a closed subgroup of G such that $\eta_{G/H}$ is injective.

Proposition 3.1. Let $\{G_{\alpha}, g_{\beta}^{\alpha}; \mathcal{A}\}$ be an inverse system of Hausdorff Abelian groups and lim G_{α} its inverse limit, then:

- 1. If the inverse system is reduced, $\lim G_{\alpha}$ is dually embedded in $\prod_{\alpha \in \mathcal{A}} G_{\alpha}$.
- 2. If all $\eta_{G_{\alpha}}$ are injective, $\lim G_{\alpha}$ is dually closed in $\prod_{\alpha \in \mathcal{A}} G_{\alpha}$.

Proof. Denote $\mathbb{T}_+ = \{z \in \mathbb{T} : \operatorname{Re} z > 0\}$ and let $\varphi : \lim G_{\alpha} \to \mathbb{T}$ be a continuous homomorphism. We are going to extend φ to $G = \prod_{\alpha \in \mathscr{A}} G_{\alpha}$.

Since φ is continuous $\varphi^{-1}(\mathbb{T}_+)$ is a neighborhood of the neutral element $e_{\lim \varphi_{\alpha}}$ and contains an element $\lim_{\leftarrow} G_{\alpha} \cap U$, where $U = U_{\alpha_1} \times \cdots \times U_{\alpha_k} \times \prod_{\alpha \neq \alpha_i} G_{\alpha}, U_{\alpha_i}$ is a neighborhood of the identity in G_{α_i} and $\alpha_k > \alpha_i$ for $i \neq k$. Denote $U_1 = U_{\alpha_1} \times \cdots \times U_{\alpha_k}$, $G_1 =$ $G_{\alpha_1} \times \cdots \times G_{\alpha_k}, \ G_2 = \prod_{\substack{\alpha \neq \alpha_i \\ i=1 \\ k}} G_{\alpha}$ and let $\pi_1 : G \to G_1$ the natural projection. Notice that $\varphi(\lim G_{\alpha} \cap G_2)$ is the trivial subgroup since $\varphi(\lim G_{\alpha} \cap G_2) \subset \varphi(\lim G_{\alpha} \cap U) \subset \mathbb{T}_+$. Hence we can define $\varphi_1 : \pi_1(\lim G_{\alpha}) \to \mathbb{T}$ as $\varphi_1(\pi_1((x_{\alpha})_{x \in \mathscr{A}})) = \varphi((x_{\alpha})_{x \in \mathscr{A}})$.

The morphism φ_1 is well defined: if $\pi_1((x_{\alpha})_{x\in\mathscr{A}}) = \pi_1((x'_{\alpha})_{x\in\mathscr{A}})$ then $(x_{\alpha})_{x\in\mathscr{A}} - (x'_{\alpha})_{x\in\mathscr{A}} \in \lim_{x\in\mathscr{A}} G_{\alpha} \cap G_2$. Now $\varphi((x_{\alpha})_{x\in\mathscr{A}} - (x'_{\alpha})_{x\in\mathscr{A}}) = e_{G_{\alpha}}$, hence $\varphi((x_{\alpha})_{x\in\mathscr{A}}) = \varphi((x'_{\alpha})_{x\in\mathscr{A}})$.

Let us prove now that φ_1 is continuous: Since $\varphi^{-1}(\mathbb{T}_+) \supset \lim G_{\alpha} \cap U$, we have that $\varphi_1^{-1}(\mathbb{T}_+) \supset \pi_1(\lim G_{\alpha} \cap U) = \pi_1(\lim G_{\alpha}) \cap U_1 \text{ and } \pi_1(\lim G_{\alpha}) \cap U_1 \text{ is a neighborhood}$ of the neutral element in $\pi_1(\lim G_{\alpha})$.

Since the g_{β}^{α} 's are surjective we can write:

$$\pi_1\left(\lim_{\longleftarrow} G_{\alpha}\right) = \{(g_{\alpha_k}^{\alpha_1}(x_{\alpha_k}),\ldots,g_{\alpha_k}^{\alpha_{k-1}}(x_{\alpha_k}),x_{\alpha_k}): x_{\alpha_k} \in G_{\alpha_k}\}.$$

This allows us to define another homomorphism $\varphi_{\alpha_k}: G_{\alpha_k} \to \mathbb{T}$ such that $\varphi_{\alpha_k}(x_{\alpha_k}) =$ $\varphi_1(g_{\alpha_k}^{\alpha_1}(x_{\alpha_k}),\ldots,g_{\alpha_k}^{\alpha_{k-1}}(x_{\alpha_k}),x_{\alpha_k})$. In fact, we can obtain φ_{α_k} as the composition $\varphi_1 \circ i$, where $i : G_{\alpha_k} \to \pi_1(\lim_{\alpha \to \infty} G_{\alpha})$, is the continuous homomorphism defined by $i(x_{\alpha_k}) =$ $(g_{\alpha_k}^{\alpha_1}(x_{\alpha_k}), \dots, g_{\alpha_k}^{\alpha_{k-1}}(x_{\alpha_k}), x_{\alpha_k}).$ Hence φ_{α_k} is a continuous homomorphism. If we take $\tilde{\varphi} = \varphi_{\alpha_k} \circ \pi_{\alpha_k}$ we have a continuous

homomorphism that extends φ . If $(x_{\alpha})_{\alpha \in \mathscr{A}} \in \lim G_{\alpha}$ then $g_{\beta}^{\alpha}(x_{\beta}) = x_{\alpha}$ for each $\beta \ge \alpha$.

Now it follows that $\widetilde{\varphi}((x_{\alpha})_{\alpha \in \mathscr{A}}) = \varphi_{\alpha_k}(x_{\alpha_k}) \in G_{\alpha_k}$ and $\varphi_{\alpha_k}(x_{\alpha_k}) = \varphi_1(g_{\alpha_k}^{\alpha_1}(x_{\alpha_k}), \ldots, g_{\alpha_k})$ $g_{\alpha_k}^{\alpha_{k-1}}(x_{\alpha_k}), x_{\alpha_k}) = \varphi_1(\pi_1((x_{\alpha})_{\alpha \in \mathscr{A}})) = \varphi((x_{\alpha})_{\alpha \in \mathscr{A}}).$ This proves the first part. The second part is Lemma 5.28 in [1]. \Box

Theorem 3.2. Let $\{G_n, g_m^n, n \leq m\}$ a reduced inverse sequence of metrizable, reflexive, topological groups. Then $\lim G_n$ is a metrizable, reflexive topological group.

Proof. We are under the hypothesis of Proposition 3.1, hence $\lim_{\leftarrow} G_n$ is dually closed and dually embedded in $\prod G_n$.

Each G_n is metrizable and reflexive, hence we have that $\prod G_n$ is metrizable and reflexive (see [11]). Every dually closed and dually embedded subgroup of a metrizable reflexive group is reflexive [7], hence lim G_n is reflexive. \Box

4. Limits and local quasi-convexity

In this section we introduce the category \mathbf{HTAG}_{lqc} of locally quasi-convex Hausdorff Abelian groups. Inverse limits of sequences of reflexive groups in this new category coincide with the ones in **HTAG**. We will prove that, under certain restrictions on the linking maps, the direct limit (in **HTAG**_{lqc}) of sequences of reflexive k_{ω} -objects exists and is reflexive.

For a Hausdorff topological group *G* the *polar* of a subset $A \subset G$ is the set $A^{\triangleright} = \{\chi \in G^{\wedge} : \chi(A) \subset \mathbb{T}_+\}$ where $\mathbb{T}_+ = \{z \in \mathbb{T} : \operatorname{Re} z > 0\}$. The *inverse* polar of a set $B \subset G^{\wedge}$ is the set $B^{\triangleleft} = \{x \in G : \chi(x) \in \mathbb{T}_+, \forall \chi \in B\}$.

A subset *A* of a topological group is said to be *quasi-convex* if $A^{\triangleright \triangleleft} = A$ i.e. if for every $x \in G \setminus A$ there exists $\chi \in G^{\wedge}$ such that $\chi(A) \in \mathbb{T}_+$ but $\chi(x) \notin \mathbb{T}_+$.

A topological Abelian group is *locally quasi-convex* if it has a basis of neighborhoods of the neutral element formed by quasi-convex sets. In particular, the character group G^{\wedge} of any topological group G is always locally quasi-convex, hence reflexive groups are locally quasi-convex.

Every Hausdorff Abelian topological group, can be obtained as a quotient of a locally quasi-convex group [1, p. 61]. This implies that local quasi-convexity is not preserved in general by quotients and as a consequence, the direct limit of locally quasi-convex groups in **HTAG** is not always locally quasi-convex. The problem can be avoided if we restrict to the category $HTAG_{lqc}$, of locally quasi-convex Hausdorff Abelian groups.

For any topological Hausdorff Abelian group (G, τ) with $\{U_i\}$ as neighborhood basis at e_G , we define the *associated locally quasi-convex topology*, τ_{lqc} , on G taking $\{U_i^{\rhd \triangleleft}\}$ as neighborhood basis of e_G . It is the finest topology contained in τ , such that (G, τ_{lqc}) is a (non-necessarily Hausdorff) locally quasi-convex group [5]. The correspondence $G \mapsto (G, \tau_{lqc})/\overline{\{e_G\}}$ defines a functor \mathscr{LQC} : **HTAG** \rightarrow **HTAG**_{lqc}.

Remark. The group (G, τ_{lqc}) is Hausdorff if and only if η_G is injective [1, p. 35]. For such a group $\mathscr{LQC}(G) = (G, \tau_{lqc})$.

Let $\{(G_n)_{n \in \mathbb{N}}, f_n^m\}$ be a direct sequence of locally quasi-convex Abelian topological groups. We will see that for this kind of sequences, we can construct a direct limit in the category **HTAG**_{lqc}. For this purpose we need an auxiliary result.

Lemma 4.1. Given a reduced inverse system $\{G_n, g_m^n; \mathbb{N}\}$ of Hausdorff topological groups, the polar of $\bigoplus_{\leftarrow} G_n$ is the subgroup of $\bigoplus_{\leftarrow} G_n^{\wedge}$ generated by $\{i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n) : n \leq m, \varphi_n \in G_n^{\wedge}\}$. We will denote this subgroup by $\langle i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n) \rangle$. **Proof.** Let us first show that

$$i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n) \in \left(\lim_{\longleftarrow} G_n\right)^{\triangleright}$$

If $(x_n)_{n \in \mathbb{N}} \in \lim G_n$, we have that $g_m^n(x_m) = x_n$, hence

$$(i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n))((x_n)_{n \in \mathbb{N}}) = \varphi_n(x_n) - (g_m^n)^{\wedge}(\varphi_n)(x_m)$$

= $\varphi_n(x_n) - \varphi_n(g_m^n(x_m)) = \varphi_n(x_n) - \varphi_n(x_n) = e_{\mathbb{T}},$

and we have proven one inclusion.

We are left to prove that $\langle i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n) \rangle \supset (\lim_{\leftarrow} G_n)^{\triangleright}$.

Any element $(\varphi_n)_{n \in \mathbb{N}} \in (\lim G_n)^{\triangleright}$ can be represented as a finite sum

$$(\varphi_n)_{n\in\mathbb{N}}=i_{n_1}(\varphi_{n_1})+\cdots+i_{n_k}(\varphi_{n_k}).$$

Consider now an arbitrary element $x_{n_k} \in G_{n_k}$ and let $(x_n)_{n \in \mathbb{N}}$ an element of the inverse limit with n_k coordinate x_{n_k} . We know that $g_m^n(x_m) = x_n$, $n \leq m$ and since $(\varphi_n)_{n \in \mathbb{N}}$ is in the polar of lim G_n , we have

$$(\varphi_n)_{n\in\mathbb{N}}((x_n)_{n\in\mathbb{N}})=e_{\mathbb{T}}.$$

We can use both facts together to obtain:

$$\begin{aligned} (\varphi_n)_{n \in \mathbb{N}} ((x_n)_{n \in \mathbb{N}}) &= \varphi_{n_1} (x_{n_1}) + \dots + \varphi_{n_k} (x_{n_k}) \\ &= (\varphi_{n_1} g_{n_k}^{n_1} + \dots + \varphi_{n_{k-1}} g_{n_k}^{n_{k-1}} + \varphi_{n_k}) (x_{n_k}) \\ &= ((g_{n_k}^{n_1})^{\wedge} (\varphi_{n_1}) + \dots + (g_{n_k}^{n_{k-1}})^{\wedge} (\varphi_{n_{k-1}}) + \varphi_{n_k}) (x_{n_k}) \\ &= e_{\mathbb{T}} \end{aligned}$$

and hence

$$((g_{n_k}^{n_1})^{\wedge}(\varphi_{n_1}) + \dots + (g_{n_k}^{n_{k-1}})^{\wedge}(\varphi_{n_{k-1}}) + \varphi_{n_k}) = e_{G_{n_k}^{\wedge}}$$

We can now subtract this term from the expression of $(\varphi_n)_{n \in \mathbb{N}}$ which is enough to obtain our result. More concretely,

$$\begin{aligned} (\varphi_n)_{n \in \mathbb{N}} &= i_{n_1}(\varphi_{n_1}) + \dots + i_{n_k}(\varphi_{n_k}) \\ &= i_{n_1}(\varphi_{n_1}) + \dots + i_{n_k}(\varphi_{n_k}) \\ &\quad - i_{n_k}((g_{n_k}^{n_1})^{^{\wedge}}(\varphi_{n_1}) + \dots + (g_{n_k}^{n_{k-1}})^{^{\wedge}}(\varphi_{n_{k-1}}) + \varphi_{n_k}) \\ &= i_{n_1}(\varphi_{n_1}) - i_{n_k}(g_{n_k}^{n_1})^{^{^{\wedge}}}(\varphi_{n_1}) \\ &\quad + \dots + i_{n_{k-1}}(\varphi_{n_{k-1}}) - i_{n_k}(g_{n_k}^{n_{k-1}})^{^{^{^{\wedge}}}}(\varphi_{n_{k-1}}) + i_{n_k}(\varphi_{n_k}) - i_{n_k}(\varphi_{n_k}), \end{aligned}$$

from which we conclude $(\lim_{\leftarrow} G_n)^{\triangleright} \subset \langle i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n) \rangle$. \Box

Recall that for a direct sequence $\{(G_n)_{n \in \mathbb{N}}, f_n^m : G_n \to G_m, n \leq m\}$ the limit in **HTAG** is $(\bigoplus G_n)/\overline{H}$ where *H* is the subgroup of $\bigoplus_{n \in \mathbb{N}} G_n$ generated by $\{i_m \circ f_n^m(g) - i_n(g) : g \in G_n\}$ with $i_n : G_n \to \bigoplus G_n$ the canonical inclusions.

For reflexive groups we obtain the following proposition.

Proposition 4.2. *Given a direct sequence of reflexive topological groups the direct limit in* **HTAG**_{lqc} *is*

$$\lim_{\longrightarrow} \operatorname{HTAG}_{\operatorname{lqc}} G_n \cong \left(\left(\bigoplus G_n \right) \middle/ \bar{H}, \tau_{\operatorname{lqc}} \right),$$

where τ_{lqc} is the associated locally quasi-convex topology.

Proof. The functor \mathscr{LQC} : **HTAG** \to **HTAG**_{lqc} defined on the objects by $\mathscr{LQC}(G) = (G, \tau_{lqc})/\overline{\{e_G\}}$, is a left adjoint to the inclusion **HTAG**_{lqc} \to **HTAG**. Hence it preserves direct limits, in particular, $\lim_{HTAG_{lqc}} G_n \cong \mathscr{LQC}(\lim_{HTAG} G_n)$. \Box

Remark. In order to obtain the direct limit for sequences of reflexive topological groups in the categories **HTAG** and **HTAG**_{lqc}, we have used two topologies on $(\bigoplus G_n)/\overline{H}$. In **HTAG** we have taken the quotient group topology denoted by τ . In **HTAG**_{lqc} we have considered τ_{lqc} , which is the associated locally quasi-convex topology to τ . We note here that the respective algebraic and topological duals are the same whenever the groups are k_{ω} -spaces, since $((\bigoplus G_n)/\overline{H}, \tau)^{\wedge}$ is a *k*-space with the same compact sets as $((\bigoplus G_n)/\overline{H}, \tau_{lqc})^{\wedge}$. This implies that the isomorphism obtained in Corollary 2.2 is valid when the direct limit is taken in any of the categories **HTAG** or **HTAG**_{lqc}. Note also that for a sequence $\{G_n\}_{n\in\mathbb{N}}$ of reflexive groups, $\lim_{\leftarrow \mathbf{HTAG}} G_n = \lim_{\leftarrow \mathbf{HTAG}} G_n$ since products and subgroups of locally quasi-convex groups are locally quasi-convex. Hence we will denote both limits by lim G_n .

Theorem 4.3. Let $\{G_n, g_m^n, n \leq m\}$ a reduced inverse sequence of metrizable, reflexive, topological groups. Then

$$\left(\lim_{\leftarrow} G_n\right)^{\wedge} \cong \lim_{\to \operatorname{HTAG}_{\operatorname{lqc}}} G_n^{\wedge}$$

Proof. We have from Lemma 4.1

$$\left(\lim_{\leftarrow} G_n\right)^{\rhd} = \left\{ (\varphi_n)_{n \in \mathbb{N}} \in \bigoplus G_n^{\wedge} : \sum \varphi_n(x_n) = e_{\mathbb{T}}, \text{ for all } (x_n) \in \lim_{\leftarrow} G_n \right\}$$
$$= \langle i_n(\varphi_n) - i_m(g_m^n)^{\wedge}(\varphi_n), : n \leq m, \varphi_n \in G_n^{\wedge} \rangle.$$

Considering the locally quasi-convex topology τ_{lqc} , associated to the quotient topology in $(\bigoplus G_n^{\wedge})/(\lim_{\leftarrow} G_n)^{\triangleright}$ we have an object isomorphic to $\lim_{\longrightarrow HTAG_{lqc}} G_n^{\wedge}$ in $HTAG_{lqc}$. We still need to prove that $(\lim_{\leftarrow} G_n)^{\wedge}$ is topologically isomorphic to this object.

We have proven before that $\lim_{\leftarrow} G_n$ is dually closed and embedded in $\prod G_n$. Let $i: \lim_{\leftarrow} G_n \to \prod G_n$ be the inclusion. Since $\lim_{\leftarrow} G_n$ is dually embedded, the continuous homomorphism $i^{\wedge}: (\prod G_n)^{\wedge} \to (\lim_{\leftarrow} G_n)^{\wedge}$ is onto and has $(\lim_{\leftarrow} G_n)^{\triangleright}$ as kernel.

Therefore we have a continuous isomorphism

$$\psi: \left(\left(\prod G_n \right)^{\wedge} \middle/ \left(\lim_{\leftarrow} G_n \right)^{\triangleright}, \tau_{lqc} \right) \to \left(\lim_{\leftarrow} G_n \right)^{\wedge},$$

with both $((\prod G_n)^{\wedge}/(\lim G_n)^{\triangleright}, \tau_{lac})$ and $(\lim G_n)^{\wedge}$ locally quasi-convex. We obtain from Lemma 14.8 in [3] that ψ is open and hence a topological isomorphism.

Theorem 4.4. If $\{G_n, g_m^n\}$ is a reduced inverse sequence of reflexive metrizable groups, its dual $\{G_n^{\wedge}, (g_m^n)^{\wedge}\}$ is a reduced direct sequence of reflexive k_{ω} -spaces and $\lim_{\longrightarrow} \prod_{\mathbf{HTAG}_{lac}} G_n^{\wedge}$ is reflexive.

Proof. Every reflexive metrizable group G is complete, its dual group G^{\wedge} is a k_{ω} -space and its bidual group $G^{\wedge \wedge}$ is again metrizable (see [6]).

Each g_m^n is an onto map, hence its dual $(g_m^n)^{\wedge}$ is injective and therefore $\{G_n^{\wedge}, (g_m^n)^{\wedge}\}$ is a reduced direct sequence of k_{ω} -space groups.

Now we see that $\lim_{\substack{\longrightarrow \text{ HTAG}_{lqc}}} G_n^{\wedge}$ is reflexive. Since $(\lim_{\substack{\longrightarrow \text{ HTAG}}} G_n)^{\wedge} \cong (\lim_{\substack{\longrightarrow \text{ HTAG}_{lqc}}} G_n)^{\wedge}$, from Corollary 2.2 and the reflexivity of the n's we obtain G_n 's we obtain

$$(\lim_{\longrightarrow} \operatorname{HTAG}_{\operatorname{lqc}} G_n^{\wedge})^{\wedge\wedge} = ((\lim_{\longrightarrow} \operatorname{HTAG}_{\operatorname{lqc}} G_n^{\wedge})^{\wedge})^{\wedge} \cong (\lim_{\longleftarrow} G_n^{\wedge\wedge})^{\wedge} \cong (\lim_{\longleftarrow} G_n)^{\wedge}$$

and since $\{G_n, (g_m^n)\}$ is a reduced inverse sequence of metrizable groups, Theorem 4.3 gives $(\lim_{\leftarrow} G_n)^{\wedge} \cong \lim_{\mathbf{HTAG}_{loc}} G_n^{\wedge} \text{ which completes the proof.} \quad \Box$

Theorem 4.5. If $\{G_n, f_n^m\}$ is a strict direct sequence of reflexive groups in \mathbf{K}_{ω} such that $f_n^m(G_n)$ is dually embedded in G_m for all $n \leq m$, then $\lim_{\to HTAG_{lqc}} G_n$ is reflexive.

Proof. Since $f_n^m(G_n)$ is dually embedded in G_m , we have that $(f_n^m)^{\wedge}: G_m^{\wedge} \to G_n^{\wedge}$ is Again the fact that $(\lim_{\to} G_n)^{\wedge} \cong (\lim_{\to} G_n)^{\wedge} \cong (\lim_{\to} G_n)^{\wedge}$ is a reduced inverse sequence of reflexive metrizable groups. Again the fact that $(\lim_{\to} G_n)^{\wedge} \cong (\lim_{\to} G_n)^{\wedge} \cong (\lim_{\to} G_n)^{\wedge}$ together with Corollary 2.2 yield $(\lim_{\to} G_n)^{\wedge} \cong (\lim_{\to} G_n)^{\wedge}$. Now Theorem 4.3 and the reflexivity of the G_n 's give $(\lim_{\to} G_n)^{\wedge} \cong \lim_{\to} G_n^{\wedge} \cong \lim_{\to} G_n^{\wedge} \cong \lim_{\to} G_n$.

We conclude this article with an application of Theorems 3.2 and 4.5 to nuclear groups. The class of nuclear groups contains all locally compact Abelian groups and the additive groups underlying nuclear vector spaces. Moreover, it is closed with respect to the operations of taking subgroups, Hausdorff quotients, arbitrary products and countable direct sums. The intensive study of nuclear groups developed since their introduction has produced important results (see [2] for a survey). Some of these results are related with strong reflexivity. A reflexive group *G* is *strongly reflexive* if every closed subgroup and every Hausdorff quotient group of *G* and of G^{\wedge} is reflexive. It follows that locally compact groups are strongly reflexive. This notion was defined by Brown, Higgins and Morris in [4] where they showed that countable products and sums of lines and circles are strongly reflexive. Concerning nuclear groups, Banaszczyk proved the strong reflexivity of metrizable complete nuclear groups [3, p. 153]. In particular, countable products of metrizable reflexive nuclear groups are strongly reflexive. Note that strong reflexivity is not a productive property [3, p. 155]. We obtain the following dual result for direct sums.

Corollary 4.6. Let $(G_n)_{n \in \mathbb{N}}$ a collection of strongly reflexive, k_{ω} -spaces, nuclear Abelian topological groups. Then its countable sum $\bigoplus_{n \in \mathbb{N}} G_n$ is strongly reflexive.

Proof. Note first that $H = \bigoplus G_n$, is reflexive.

Let Q be a closed arbitrary subgroup of H. For each $n \in \mathbb{N}$, $H_n = G_1 + \cdots + G_n$ is a subgroup of H. Consider $Q_n = Q \cap H_n$. We can now define bonding maps for all $n \leq m$:

$$f_n^m : H_n \to H_m,$$

$$(f_n^m)' : Q_n \to Q_m,$$

$$(f_n^m)'' : H_n/Q_n \to H_m/Q_m$$

which are all embeddings between nuclear groups. Then we obtain $Q \cong \lim_{\to HTAG_{lqc}} \{Q_n,$

 $(f_n^m)'$ and $H/Q \cong \lim_{\longrightarrow} \{H_n/Q_n, (f_n^m)''\}$, which are direct limits of strict sequences of reflexive nuclear groups that are k_{ω} -spaces. They are all subgroups of nuclear groups and hence dually embedded [3, p. 82]. We can now apply Theorem 4.5 which ensures that the limits Q and H/Q are reflexive.

Consider now $L = \prod G_n^{\wedge}$, with G_n^{\wedge} reflexive, metrizable, then *L* is reflexive. Let *P* be an arbitrary closed subgroup of *L* and $L_n = G_1^{\wedge} \times \cdots \times G_n^{\wedge}$ with $\pi_n: L \to L_n$ the canonical projection. Define $P_n = \overline{\pi_n(P)}$, a closed subgroup of L_n , and bonding maps for each $n \leq m$:

$$g_m^n : L_m \to L_n, (g_m^n)' : P_m \to P_n, (g_m^n)'' : L_m/P_m \to L_n/P_n$$

Now we have the following isomorphisms: $P \cong \lim_{\leftarrow} \{P_n, (g_m^n)'\}$ and $L/P \cong \lim_{\leftarrow} \{L_n/P_n, (g_m^n)''\}$ which are inverse limits of sequences of metrizable topological groups with onto bonding maps. Hence *P* and L/P are reflexive by Theorem 3.2. \Box

Acknowledgements

The authors would like to thank the referee for the insightful suggestions.

References

- L. Aussenhofer, Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Dissertationes Math. 384 (1999).
- [2] L. Aussenhofer, A survey on nuclear groups, Selected Lectures of the Workshop, Madrid, Spain, September 1999, Heldermann Verlag, Lemgo; Res. Expo. Math. 24 (2001) 1–30.
- [3] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Mathematics, vol. 1466, Springer, Berlin, 1991.
- [4] R. Brown, P.J. Higgins, S.A. Morris, Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties, Math. Proc. Camb. Philos. Soc. 78 (1975) 19–32.
- [5] M. Brugera, Some properties of locally quasi-convex groups, Topol. Appl. 77 (1997) 87-94.
- [6] M.J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. 70 (1998) 22-28.
- [7] M.J. Chasco, E. Martín Peinador, On strongly reflexive topological groups, Appl. General Topol. 2 (2) (2001) 219–226.
- [8] W.W. Comfort, S. Hernández, D. Remus, F.J. Trigos-Arrieta, Open questions on topological groups, Selected Lectures of the Workshop, September 1999, Madrid, Spain, Heldermann Verlag, Lemgo; Res. Expo. Math. 24 (2001) 57–76.
- [9] S.P. Franklin, B.V. Smith, A survey of k_ω-spaces, Topology Proceedings, vol. 2, Nos.1, 2, Proceedings of the Topology Conference, LA State University, 1977, 1978, pp. 111–124.
- [10] K.H. Hofmann, S.A. Morris, The structure of compact groups, De Gruyter Stud. Math. 25 (1998).
- [11] S. Kaplan, Extensions of the Pontryagin duality I: infinite products, Duke Math. J. 15 (1948) 649-658.
- [12] S. Kaplan, Extensions of the Pontryagin duality II: direct and inverse limits, Duke Math. J. 17 (1950) 419–435.
- [13] N. Noble, k-Groups and duality, Trans. Am. Math. Soc. 151 (1970) 551-561.