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Abstract

We prove that direct and inverse limits of sequences of reflexive Abelian groups that are metrizable
or k�-spaces, but not necessarily locally compact, are reflexive and dual of each other provided some
extra conditions are satisfied by the sequences.
© 2005 Elsevier B.V. All rights reserved.

MSC:22A05; 22D35; 18A30

1. Preliminaries

Let TAG be the category whose objects are topological Abelian groups and whose mor-
phisms are continuous homomorphisms. Given two objectsG andH in TAG we denote
by TAG (G,H) the group of morphisms fromG to H. Consider the multiplicative group
T={z ∈ C : |z|=1}with the Euclidean topology. For any objectG in TAG , the set of mor-
phismsTAG (G,T) with the compact open topology is a Hausdorff Abelian group named
the character group ofG and denoted byG

∧
.

For f ∈ TAG (G,H), the adjoint homomorphismf
∧ ∈ TAG (H

∧
,G
∧
) is defined by

f
∧
(�) = � ◦ f for � ∈ H ∧ . Thus(−)∧ is a contravariant functor fromTAG to TAG (or a

covariant functor fromTAG toTAGop). There is a natural transformation� from the identity
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functor inTAG to the covariant functor(−)∧∧ . This can be described by�G:G → G
∧∧

where[�G(x)](�)= �(x) for anyx ∈ G and� ∈ G∧ .
A groupG is said to bereflexiveif �G is a topological isomorphism. The celebrated

Pontryagin–Van Kampen Theorem states that forLCA (the category of locally compact
Abelian groups),� is a natural isomorphism, i.e. locally compact Abelian groups are re-
flexive. The first well-known extension of this Theorem to products and direct sums of
reflexive groups was obtained by Kaplan in 1948[11]. He proved in a subsequent paper
the reflexivity of sequential limits (direct and inverse) ofLCA groups. There have been
many studies concerning Pontryagin duality from different perspectives since that time. An
excellent survey with almost all representative references about the topic is[8].

Our aim is to extend the results of[12] where Kaplan studied the reflexivity of direct
and inverse limits of reduced sequences ofLCA groups. He obtained the following four
isomorphisms:

(i) (lim−→ Gn)
∧
� lim←− G

∧
n , (ii) (lim←− Gn)

∧
� lim−→ G

∧
n ,

(iii) (lim−→ Gn)
∧∧

� lim−→ Gn, (iv) (lim←− Gn)
∧∧

� lim←− Gn.

We study suitable conditions on sequences of Abelian groups (non-necessarily inLCA )
that ensure the validity of the isomorphisms above. In particular we will obtain the reflexivity
of direct or inverse limits for certain families of sequences.

Reflexive topological Abelian groups are Hausdorff. By this reason it is convenient to
work inHTAG , the category of Hausdorff topological Abelian groups.

Given a directed setA, we can consider it as a category where the objects are the elements
� ∈A and the set of morphismsA(�,�) consists of only one element if��� and is empty
otherwise. Adirect systemin HTAG is a covariant functorD from a directed setA to

HTAG . We use the notation{G�, f
�
� ,A} for a direct system, whereG� = D(�) are the

groups andf �
� =D(A(�,�)) the linking maps.

A direct limit or inductive limit for a direct system{G�, f
�
� ,A} in HTAG is a pair

(lim−→ G�, {p�}�∈A), where lim−→ G� is an object inHTAG and thep�’s are morphisms in

HTAG (G�, lim−→ G�) such thatp� = p� ◦ f �
� for ���, satisfying the following universal

property:
Given an objectG′ in HTAG and morphismsp′� in HTAG (G�,G

′) for all � ∈A such

thatp′� = p′� ◦ f �
� whenever���, there is a unique morphismp in HTAG (lim−→ G�,G

′)
such thatp′� = p ◦ p�.

The standard construction of the inductive limit inHTAG is the following

lim−→ G��
(⊕

G�

)/
H̄ ,

where
⊕
G� has the final group topology with respect to the inclusionsi� : G� →⊕

G�

andH̄ is the closure of the subgroupHgenerated by{i�◦f �
� (g�)−i�(g�) : ���; g� ∈ G�}.

Dually, an inverse system inHTAG is a contravariant functorI from A to HTAG (or
equivalently a covariant functor fromA toHTAG op, the opposite category). We will denote
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a generic inverse system by{G�, g
�
�,A} and aninverse limitor projective limitby a pair

(lim←− G�, {��}�∈A), where�� : lim←− G�→ G�.

Given an inverse system{G�, g
�
�,A} in HTAG , its inverse limit can be constructed as a

subgroupL of the product
∏
G� given by

L :=
{
(g�)�∈A ∈

∏
G� : g�

�(g�)= g�
}

.

We will call a direct system (resp. inverse system) of topological groupsreducedif the

linking mapsf �
� are injective (resp. if the linking mapsg�

� are onto), andstrict if the linking
maps are embeddings (resp. quotient maps).

We will call direct sequence(resp.inverse sequence) to any direct system (resp. inverse
system) with index setA=N. In the case of direct sequences the final topology with respect
to the inclusions in

⊕
Gn, used in the description of direct limit, coincides with the box

topology and with theasterisk topologyintroduced by Kaplan although these topologies do
not coincide in general (see[4,11]). The asterisk topology is the appropriate topology for
the direct sum in Pontryagin duality. This is the reason to restrict part of the study of duality
for direct and inverse limits to the case of sequences.

2. Adjoint functors and Pontryagin duality

We show in this section that certain duality results about limits can be obtained directly
from category theory. We use the fact that the contravariant functor(−)∧ has a left adjoint
in a subcategory ofHTAG that we proceed to define.

Denote byHTAG � the full subcategory ofHTAG of all Hausdorff Abelian topological
groupsG for which {�G, �G∧ , �G∧∧ , . . .} are continuous homomorphisms. For each pair

G andH of objects inHTAG � and morphismf : G → H
∧

, there is a unique morphism

f ′ : H → G
∧

such thatf = (f ′)∧ ◦�G. In fact, forh ∈ H andg ∈ G, f ′(h)(g)=f (g)(h)
and the mapF : HTAG �(G,H

∧
) → HTAG �(H,G

∧
) which mapsf to f ′ is continuous.

Hence, the functor(−)∧ : HTAG op
� → HTAG � is adjoint to(−)∧ : HTAG � → HTAG op

� .

In particular, the contravariant functor(−)∧ : HTAG � → HTAG � transforms direct into
inverse limits whenever they exist[10, p. 307].

We are going to consider two full subcategories ofHTAG � related by the(−)∧ functor: the
categoryM whose objects are metrizable and the categoryK� whose objects arek�-spaces.

Recall that a Hausdorff topological spaceX is a k-spaceif any subsetO of X is open
wheneverO ∩ K is open inK for anyK compact. The spaceX is hemicompactif X =⋃
n∈NKn, where(Kn)n∈N is a sequence of compact subsets and every compact subset of

X is contained in one of theKn’s. In the literature hemicompactk-spaces are also called
k�-spaces; they were introduced as a generalization of countable CW-complexes (see[9]).
Another way to introduce ak�-space is to say that there exists an increasing sequence of
compact Hausdorff subsetsKn coveringX, withKn ⊂ Kn+1, and such thatX has the weak
topology with respect to the groupsKn, that is,F is closed inX if and only if F ∩ Kn is
closed inKn for eachn.
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It is well known that if an objectG of HTAG is ak-space, then�G is continuous (see
[13]). Metrizable andk�-spaces are obviouslyk-spaces. Since the character group of a
metrizable topological Abelian group is ak�-space (see[1] or [6]) and the character group
of a hemicompact group is again metrizable, we obtain that the categoriesM andK� are
full subcategories ofHTAG � which are duals of each other.

Proposition 2.1. The categoryK� has sequential direct limits.Dually, the categoryM has
sequential inverse limits.

Proof. We only need to prove that
⊕
Gn, with the final group topology, is ak�-space,

since the image by a quotient mapping of ak�-space onto a Hausdorff space is ak�-space.
Since theGn’s arek�-spaces there exists an increasing sequence of compact Hausdorff

subsets(Kjn )j∈N containingeGn covering eachGn such thatF is closed inGn if and only

if F ∩Kjn is closed inKjn , for eachj. The sequence

(CN)N∈N = (i1(KN1 )+ i2(KN2 )+ · · · + iN (KNN ))N
is increasing and covers

⊕
Gn. Take nowB ⊂⊕

Gn such thatB ∩CN is closed inCN for
allN ∈ N. We need to show thatB is closed in

⊕
Gn. Since

⊕
Gn has been endowed with

the final topology with respect to the inclusionsin : Gn→⊕
Gn, it is enough to prove that

i−1
n (B) is closed inGn for all n ∈ N, which occurs if and only ifi−1

n (B) ∩ KNn is closed
inKNn for allN ∈ N. Fix n andN natural numbers. Ifn�N thenin(KNn ) ⊂ in(Knn ) ⊂ Cn;
otherwisein(KNn ) ⊂ CN . It now follows thatB∩in(KNn ) is closed inin(KNn ), and therefore
i−1
n (B) ∩KNn = i−1

n (B ∩ in(KNn )) is closed inKNn as we wanted to show.
Since a subgroup of a countable product of metrizable groups is metrizable, we obtain

that the inverse limit of a sequence of metrizable groups is also metrizable.�

Corollary 2.2. Let lim−→ Gn be a limit of Abelian topological groups which are alsok�-

spaces then(
lim−→ Gn

)∧
� lim←− G

∧
n .

Proof. This isomorphism is a direct consequence of the previously commented fact that
(−)∧ has a left adjoint and the existence of the required direct and inverse limits.�

We have obtained the first of the isomorphisms announced in the introduction. The other
three cannot be achieved just by categorical arguments and require specific machinery.

3. Reflexivity of the inverse limit

This section is devoted show how the reflexivity of the inverse limit of sequences inM
follows from the nice properties that lim←− G� has as a subgroup of the product

∏
G�.

Let G be an object ofHTAG . A subgroupH of G is calleddually embeddedif every
character ofH extends to a character ofG, i.e. i

∧ : G∧ → H
∧

is onto. A subgroupH of
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G is calleddually closedin G if for every x ∈ G\H there exists a character� ∈ G∧ with
�(H)= eT and�(x) �= eT. It is easy to check that a dually closed subgroupH is a closed
subgroup ofG such that�G/H is injective.

Proposition 3.1. Let {G�, g
�
�;A} be an inverse system of Hausdorff Abelian groups and

lim←− G� its inverse limit, then:

1. If the inverse system is reduced, lim←− G� is dually embedded in
∏

�∈AG�.

2. If all �G�
are injective, lim←− G� is dually closed in

∏
�∈AG�.

Proof. DenoteT+ = {z ∈ T : Rez>0} and let� : lim←− G� → T be a continuous

homomorphism. We are going to extend� toG=∏
�∈AG�.

Since� is continuous�−1(T+) is a neighborhood of the neutral elementelim←− G�
and

contains an element lim←− G� ∩ U , whereU = U�1 × · · · × U�k ×
∏

��=�i
i=1,...,k

G�, U�i is a

neighborhood of the identity inG�i and�k > �i for i �= k. DenoteU1=U�1×· · ·×U�k , G1=
G�1×· · ·×G�k , G2=∏

��=�i
i=1,...,k

G� and let�1 : G→ G1the natural projection. Notice that

�(lim←− G� ∩G2) is the trivial subgroup since�(lim←− G� ∩G2) ⊂ �(lim←− G� ∩ U) ⊂ T+.

Hence we can define�1 : �1(lim←− G�)→ T as�1(�1((x�)�∈A))= �((x�)�∈A).

The morphism�1 is well defined: if�1((x�)�∈A)=�1((x
′
�)�∈A) then(x�)�∈A−(x′�)�∈A ∈

lim←− G� ∩G2. Now �((x�)�∈A − (x′�)�∈A)= eG� , hence�((x�)�∈A)= �((x′�)�∈A).
Let us prove now that�1 is continuous: Since�−1(T+) ⊃ lim←− G� ∩ U , we have that

�−1
1 (T+) ⊃ �1(lim←− G� ∩U)= �1(lim←− G�)∩U1 and�1(lim←− G�)∩U1 is a neighborhood

of the neutral element in�1(lim←− G�).

Since theg�
�’s are surjective we can write:

�1

(
lim←− G�

)
= {(g�1

�k (x�k ), . . . , g
�k−1
�k (x�k ), x�k ): x�k ∈ G�k }.

This allows us to define another homomorphism��k :G�k → T such that��k (x�k ) =
�1(g

�1
�k (x�k ), . . . , g

�k−1
�k (x�k ), x�k ). In fact, we can obtain��k as the composition�1 ◦ i,

where i : G�k → �1(lim←− G�), is the continuous homomorphism defined byi(x�k ) =
(g

�1
�k (x�k ), . . . , g

�k−1
�k (x�k ), x�k ).

Hence��k is a continuous homomorphism. If we take�̃=��k ◦��k we have a continuous
homomorphism that extends�. If (x�)�∈A ∈ lim←− G� theng�

�(x�)= x� for each���.

Now it follows that �̃((x�)�∈A) = ��k (x�k ) ∈ G�k and��k (x�k ) = �1(g
�1
�k (x�k ), . . . ,

g
�k−1
�k (x�k ), x�k )= �1(�1((x�)�∈A))= �((x�)�∈A). This proves the first part.

The second part is Lemma 5.28 in[1]. �

Theorem 3.2. Let {Gn, gnm, n�m} a reduced inverse sequence of metrizable, reflexive,
topological groups. Thenlim←− Gn is a metrizable, reflexive topological group.
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Proof. We are under the hypothesis of Proposition 3.1, hence lim←− Gn is dually closed and

dually embedded in
∏
Gn.

EachGn is metrizable and reflexive, hence we have that
∏
Gn is metrizable and reflexive

(see[11]). Every dually closed and dually embedded subgroup of a metrizable reflexive
group is reflexive[7], hence lim←− Gn is reflexive. �

4. Limits and local quasi-convexity

In this section we introduce the categoryHTAG lqc of locally quasi-convex Hausdorff
Abelian groups. Inverse limits of sequences of reflexive groups in this new category coincide
with the ones inHTAG . We will prove that, under certain restrictions on the linking maps,
the direct limit (inHTAG lqc) of sequences of reflexivek�-objects exists and is reflexive.

For a Hausdorff topological groupG thepolar of a subsetA ⊂ G is the setA� = {� ∈
G
∧

: �(A) ⊂ T+} whereT+ = {z ∈ T : Rez>0}. Theinversepolar of a setB ⊂ G∧ is the
setB� = {x ∈ G : �(x) ∈ T+, ∀� ∈ B}.

A subsetA of a topological group is said to bequasi-convexif A�� =A i.e. if for every
x ∈ G\A there exists� ∈ G∧ such that�(A) ∈ T+ but�(x) /∈T+.

A topological Abelian group islocally quasi-convexif it has a basis of neighborhoods of
the neutral element formed by quasi-convex sets. In particular, the character groupG

∧
of

any topological groupG is always locally quasi-convex, hence reflexive groups are locally
quasi-convex.

Every Hausdorff Abelian topological group, can be obtained as a quotient of a locally
quasi-convex group[1, p. 61]. This implies that local quasi-convexity is not preserved in
general by quotients and as a consequence, the direct limit of locally quasi-convex groups
in HTAG is not always locally quasi-convex. The problem can be avoided if we restrict to
the categoryHTAG lqc, of locally quasi-convex Hausdorff Abelian groups.

For any topological Hausdorff Abelian group(G, �) with {Ui} as neighborhood basis at
eG, we define theassociated locally quasi-convex topology, �lqc, onG taking {U��

i } as
neighborhood basis ofeG. It is the finest topology contained in�, such that(G, �lqc) is
a (non-necessarily Hausdorff) locally quasi-convex group[5]. The correspondenceG �→
(G, �lqc)/{eG} defines a functorLQC : HTAG → HTAG lqc.

Remark. The group(G, �lqc) is Hausdorff if and only if�G is injective[1, p. 35]. For such
a groupLQC(G)= (G, �lqc).

Let {(Gn)n∈N, f
m
n } be a direct sequence of locally quasi-convex Abelian topological

groups. We will see that for this kind of sequences, we can construct a direct limit in the
categoryHTAG lqc. For this purpose we need an auxiliary result.

Lemma 4.1. Givena reduced inverse system{Gn, gnm;N}ofHausdorff topological groups,
thepolaroflim←− Gn is thesubgroupof

⊕
G
∧
n generatedby{in(�n)−im(gnm)

∧
(�n): n�m,�n

∈ G∧n}.We will denote this subgroup by〈in(�n)− im(gnm)
∧
(�n)〉.
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Proof. Let us first show that

in(�n)− im(gnm)
∧
(�n) ∈

(
lim←− Gn

)�
.

If (xn)n∈N ∈ lim←− Gn, we have thatgnm(xm)= xn, hence

(in(�n)− im(gnm)
∧
(�n))((xn)n∈N)= �n(xn)− (gnm)

∧
(�n)(xm)

= �n(xn)− �n(g
n
m(xm))= �n(xn)− �n(xn)= eT,

and we have proven one inclusion.
We are left to prove that〈in(�n)− im(gnm)

∧
(�n)〉 ⊃ (lim←− Gn)

�.

Any element(�n)n∈N ∈ (lim←− Gn)
� can be represented as a finite sum

(�n)n∈N = in1(�n1
)+ · · · + ink (�nk ).

Consider now an arbitrary elementxnk ∈ Gnk and let(xn)n∈N an element of the inverse
limit with nk coordinatexnk . We know thatgnm(xm)= xn, n�m and since(�n)n∈N is in the
polar of lim←− Gn, we have

(�n)n∈N((xn)n∈N)= eT.

We can use both facts together to obtain:

(�n)n∈N((xn)n∈N)= �n1
(xn1)+ · · · + �nk (xnk )

= (�n1
gn1
nk
+ · · · + �nk−1

g
nk−1
nk + �nk )(xnk )

= ((gn1
nk
)
∧
(�n1

)+ · · · + (gnk−1
nk )

∧
(�nk−1

)+ �nk )(xnk )

= eT
and hence

((gn1
nk
)
∧
(�n1

)+ · · · + (gnk−1
nk )

∧
(�nk−1

)+ �nk )= eG∧nk .

We can now subtract this term from the expression of(�n)n∈N which is enough to obtain
our result. More concretely,

(�n)n∈N = in1(�n1
)+ · · · + ink (�nk )

= in1(�n1
)+ · · · + ink (�nk )

− ink ((gn1
nk
)
∧
(�n1

)+ · · · + (gnk−1
nk )

∧
(�nk−1

)+ �nk )

= in1(�n1
)− ink (gn1

nk
)
∧
(�n1

)

+ · · · + ink−1(�nk−1
)− ink (gnk−1

nk )
∧
(�nk−1

)+ ink (�nk )− ink (�nk ),
from which we conclude(lim←− Gn)

� ⊂ 〈in(�n)− im(gnm)
∧
(�n)〉. �

Recall that for a direct sequence{(Gn)n∈N, f
m
n : Gn→ Gm, n�m} the limit inHTAG

is (
⊕
Gn)/H whereH is the subgroup of

⊕
n∈NGn generated by{im ◦ f mn (g) − in(g) :

g ∈ Gn} with in : Gn→⊕
Gn the canonical inclusions.
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For reflexive groups we obtain the following proposition.

Proposition 4.2. Given a direct sequence of reflexive topological groups the direct limit in
HTAG lqc is

lim−→HTAG lqc

Gn�
((⊕

Gn

)/
H̄ , �lqc

)
,

where�lqc is the associated locally quasi-convex topology.

Proof. The functorLQC : HTAG → HTAG lqc defined on the objects byLQC(G) =
(G, �lqc)/{eG}, is a left adjoint to the inclusionHTAG lqc → HTAG . Hence it preserves
direct limits, in particular, lim−→HTAG lqc

Gn�LQC(lim−→HTAG

Gn). �

Remark. In order to obtain the direct limit for sequences of reflexive topological groups in
the categoriesHTAG andHTAG lqc, we have used two topologies on(

⊕
Gn)/H̄ . InHTAG

we have taken the quotient group topology denoted by�. In HTAG lqc we have considered
�lqc, which is the associated locally quasi-convex topology to�. We note here that the
respective algebraic and topological duals are the same whenever the groups arek�-spaces,
since((

⊕
Gn)/H̄ , �)

∧
is a k-space with the same compact sets as((

⊕
Gn)/H̄ , �lqc)

∧
.

This implies that the isomorphism obtained in Corollary 2.2 is valid when the direct limit is
taken in any of the categoriesHTAG or HTAG lqc. Note also that for a sequence{Gn}n∈N

of reflexive groups, lim←−HTAG lqc

Gn = lim←−HTAG

Gn since products and subgroups of locally

quasi-convex groups are locally quasi-convex. Hence we will denote both limits by lim←− Gn.

Theorem 4.3. Let {Gn, gnm, n�m} a reduced inverse sequence of metrizable, reflexive,
topological groups. Then(

lim←− Gn
)∧

�lim−→HTAG lqc

G
∧
n .

Proof. We have from Lemma 4.1(
lim←− Gn

)� =
{
(�n)n∈N ∈

⊕
G
∧
n :

∑
�n(xn)= eT, for all (xn) ∈ lim←− Gn

}
= 〈in(�n)− im(gnm)

∧
(�n), : n�m,�n ∈ G

∧
n〉.

Considering the locally quasi-convex topology�lqc, associated to the quotient topology in
(
⊕
G
∧
n)/(lim←− Gn)

� we have an object isomorphic to lim−→HTAG lqc

G
∧
n in HTAG lqc. We still

need to prove that(lim←− Gn)
∧

is topologically isomorphic to this object.

We have proven before that lim←− Gn is dually closed and embedded in
∏
Gn. Let

i: lim←− Gn →
∏
Gn be the inclusion. Since lim←− Gn is dually embedded, the continuous

homomorphismi
∧

: (
∏
Gn)

∧ → (lim←− Gn)
∧

is onto and has(lim←− Gn)
� as kernel.
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Therefore we have a continuous isomorphism

	:

((∏
Gn

)∧/ (
lim←− Gn

)�
, �lqc

)
→

(
lim←− Gn

)∧
,

with both((
∏
Gn)

∧
/(lim←− Gn)

�, �lqc) and(lim←− Gn)
∧

locally quasi-convex. We obtain from

Lemma 14.8 in[3] that	 is open and hence a topological isomorphism.�

Theorem 4.4. If {Gn, gnm} is a reduced inverse sequence of reflexive metrizable groups, its
dual {G∧n, (gnm)

∧} is a reduced direct sequence of reflexivek�-spaces andlim−→HTAG lqc

G
∧
n is

reflexive.

Proof. Every reflexive metrizable groupG is complete, its dual groupG
∧

is a k�-space
and its bidual groupG

∧∧
is again metrizable (see[6]).

Eachgnm is an onto map, hence its dual(gnm)
∧

is injective and therefore{G∧n, (gnm)
∧} is a

reduced direct sequence ofk�-space groups.
Now we see that lim−→HTAG lqc

G
∧
n is reflexive.

Since(lim−→HTAG

Gn)
∧
�(lim−→HTAG lqc

Gn)
∧

, from Corollary 2.2 and the reflexivity of the

Gn’s we obtain

(lim−→HTAG lqc

G
∧
n)
∧∧ = ((lim−→HTAG lqc

G
∧
n)
∧
)
∧
�

(
lim←− G

∧∧
n

)∧
�

(
lim←− Gn

)∧

and since{Gn, (gnm)} is a reduced inverse sequence of metrizable groups, Theorem 4.3 gives
(lim←− Gn)

∧
�lim−→HTAG lqc

G
∧
n which completes the proof. �

Theorem 4.5. If {Gn, f mn } is a strict direct sequence of reflexive groups inK� such that
f mn (Gn) is dually embedded inGm for all n�m, thenlim−→HTAG lqc

Gn is reflexive.

Proof. Sincef mn (Gn) is dually embedded inGm, we have that(f mn )
∧

:G
∧
m → G

∧
n is

onto. Therefore{G∧n, (f mn )
∧} is a reduced inverse sequence of reflexive metrizable groups.

Again the fact that(lim−→HTAG

Gn)
∧
�(lim−→HTAG lqc

Gn)
∧

together with Corollary 2.2 yield

(lim−→HTAG lqc

Gn)
∧∧

�(lim←− G
∧
n)
∧

. Now Theorem 4.3 and the reflexivity of theGn’s give

(lim←− G
∧
n)
∧
�lim−→HTAG lqc

G
∧∧
n �lim−→HTAG lqc

Gn. �

We conclude this article with an application of Theorems 3.2 and 4.5 to nuclear groups.
The class of nuclear groups contains all locally compact Abelian groups and the additive

groups underlying nuclear vector spaces. Moreover, it is closed with respect to the operations
of taking subgroups, Hausdorff quotients, arbitrary products and countable direct sums. The
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intensive study of nuclear groups developed since their introduction has produced important
results (see[2] for a survey). Some of these results are related with strong reflexivity. A
reflexive groupG isstrongly reflexiveif every closed subgroup and every Hausdorff quotient
group ofG and ofG

∧
is reflexive. It follows that locally compact groups are strongly

reflexive. This notion was defined by Brown, Higgins and Morris in[4] where they showed
that countable products and sums of lines and circles are strongly reflexive. Concerning
nuclear groups, Banaszczyk proved the strong reflexivity of metrizable complete nuclear
groups[3, p. 153]. In particular, countable products of metrizable reflexive nuclear groups
are strongly reflexive. Note that strong reflexivity is not a productive property[3, p. 155].
We obtain the following dual result for direct sums.

Corollary 4.6. Let (Gn)n∈N a collection of strongly reflexive, k�-spaces, nuclear Abelian
topological groups. Then its countable sum

⊕
n∈NGn is strongly reflexive.

Proof. Note first thatH =⊕
Gn, is reflexive.

Let Q be a closed arbitrary subgroup ofH. For eachn ∈ N, Hn = G1 + · · · + Gn is a
subgroup ofH. ConsiderQn =Q ∩Hn. We can now define bonding maps for alln�m:

f mn :Hn→ Hm,

(f mn )
′:Qn→ Qm,

(f mn )
′′:Hn/Qn→ Hm/Qm,

which are all embeddings between nuclear groups. Then we obtainQ�lim−→HTAG lqc

{Qn,
(f mn )

′} andH/Q�lim−→HTAG lqc

{Hn/Qn, (f mn )′′}, which are direct limits of strict sequences

of reflexive nuclear groups that arek�-spaces. They are all subgroups of nuclear groups
and hence dually embedded[3, p. 82]. We can now apply Theorem 4.5 which ensures that
the limitsQ andH/Q are reflexive.

Consider nowL=∏
G
∧
n , withG

∧
n reflexive, metrizable, thenL is reflexive. LetP be an

arbitrary closed subgroup ofL andLn =G∧1 × · · · ×G
∧
n with �n:L→ Ln the canonical

projection. DefinePn=�n(P ), a closed subgroup ofLn, and bonding maps for eachn�m:

gnm:Lm→ Ln,

(gnm)
′:Pm→ Pn,

(gnm)
′′:Lm/Pm→ Ln/Pn.

Now we have the following isomorphisms:P� lim←− {Pn, (g
n
m)
′} andL/P� lim←− {Ln/Pn,

(gnm)
′′} which are inverse limits of sequences of metrizable topological groups with onto

bonding maps. HenceP andL/P are reflexive by Theorem 3.2.�
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