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This paper describes the effects of an asymmetric coupling in the synchronization of two
spatially extended systems. Namely, we report the consequences induced by the presence
of asymmetries in the coupling configuration of a pair of one-dimensional fields obeying
Complex Ginzburg Landau equations. While synchronization always occurs for large
enough coupling strengths, asymmetries have the effect of enhancing synchronization
and play a crucial role in setting the threshold for the appearance of the synchronized
dynamics, as well as in selecting the statistical and dynamical properties of the synchro-
nized motion. We discuss the process of synchronization in the presence of asymmetries
by using some analytic expansions valid for a regime of soft spatial temporal chaos (i.e.
phase turbulence regime). The influence of phase singularities that break the validity of
the analysis is also discussed.
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1. Introduction

In recent years, synchronization of complex systems have generated a great echo
in the scientific community [1], as well as in the literature oriented to lay audi-
ences [2]. A relevant and counterintuitive result is that an increase in coupling
strength between two complex systems does not necessarily induce a better degree
of synchronization. An example is the anomalous behavior observed in the fre-
quency synchronization between a limit-cycle and a time chaotic oscillator [3, 4],
where increasing the coupling leads initially to an increase of the frequency differ-
ence.

In this paper we will analyze anomalous frequency synchronization (AFS) oc-
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curring for space extended system obeying Complex Ginzburg Landau Equation
(CGLE) in Phase Turbulence (PT). PT is a regime where the chaotic behavior of
the complex field is dominated by the dynamics of its phase, while the dynam-
ics of the modulus is slaved to the phase variations. The modulus is changing
only smoothly throughout the system extension and is always bounded away from
zero. We will show that depending on the value of the coupling asymmetry the
system of two coupled CGLE exhibits anomalous or monotonic synchronization.
The monotonic synchronization means that the frequency difference is decreasing
monotonously to zero as the coupling is increased. In the following, we will show
that the presence of phase defects in spatially extended chaotic oscillators has the
role of enhancing the anomaly in frequency synchronization with respect to the case
of merely time chaotic oscillators. A detailed account of the different dynamics of
the CGLE as well as an introduction to synchronization phenomena can be found in
Ref. [6,7]. In order to be able to use analytical tools, we will study the case of phase
turbulence which is more amenable to analytical approaches. For this purpose, we
set the parameters in Eq.(1) to be α = 2, β1 = −0.75 and β2 = −0.9. This will
permit to perform detailed analytical study of the synchronization process and in
particular allow us to predict a priori which values of the asymmetry will lead to
regular (FS) or AFS.

Let us recall the model equation under study:

Ȧ1,2 = A1,2 + (1 + iα)∂xxA1,2 − (1 + iβ1,2) | A1,2 |2 A1,2

+ c
2(1∓ θ)(A2,1 −A1,2).

(1)

Here, A1,2(x, t) = ρ1,2(x, t)eiφ1,2(x,t) are two complex field of modulus ρ1,2(x, t)
and phases φ1,2(x, t), dots denote temporal derivatives, ∂xx stays for the second
derivative with respect to the space variable 0 ≤ x ≤ L, L is the system extension,
α and β1,2 are real parameters that measure linear and nonlinear dispersion [8], c
represents the coupling strength and θ is a parameter accounting for asymmetries
in the coupling.

The numerical simulations presented in this article have been done using a stan-
dard Cranck-Nicholson Adams-Bashforth scheme [9] with a time step δt = 10−2 and
grid size δx = 0.25. The spatial extension of the system is L = 100 and periodic
boundary conditions are imposed.

Let us now define the natural average frequencies of the two CGLE

Ω1,2 = lim
t→∞

< φ1,2(x, t) >x
t

(2)

where φ is defined in < rather than in [0, 2π] and (<>x) denotes a spatial average.
The sub-indices 1, 2 refer to A1 and A2, respectively. Figure 1 reports the variation
of the natural frequency of a single CGLE as a function of the parameter β. The
region where the CGLE is in the PT regime is for β > −0.97. From Eq. (2),
one can define the frequency difference ∆Ω ≡ Ω2 − Ω1 which is the indicator for
characterizing frequency synchronization.

Figure 2 reports the frequency difference (∆Ω) as a function of the coupling
parameters (c, θ) and indicates that the transition to a frequency locked state (∆Ω =
0) can occur in a regular (∆Ω is a monotonically decreasing function of c) or in an
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Fig 1. Natural average frequency Ω vs. β for α = 2. The filled dots report the values obtained
from simulations of the CGLE. The dashed line Ω = −β indicates the prediction given by the
dispersion relation of the plane wave solutions of the CGLE with zero wavenumber A(x, t) = eiΩt.

anomalous fashion (∆Ω increases initially with c), depending upon the level of
asymmetry in the coupling configuration.The critical point at θcr = −0.09 draws
the separation between regular (θcr < θ ≤ 1) and anomalous (−1 ≤ θ < θcr)
phase synchronization and is represented by an arrow in Fig. 2. This value of
the asymmetry marks the separation between the two regimes i.e. regular and
anomalous and will be determined analytically in the next section.

−1

0

1 0   
0.3

0   

0.3 

c 

θ 

∆Ω 

Fig 2. Frequency mismatch |∆Ω| vs. the parameter space (c, θ) for Eq. (1). The parameters are
α = 2; β1 = −0.75 and β2 = −0.9. Each value of ∆Ω is an average over a time t=15000 after a
large transient has elapsed T=6.000.

2. Anomalous Frequency Synchronization

In the PT regime the dynamics of the CGLE can be described by a phase equation
[10]. The equation for the phase dynamics of the single CGLE has been derived by
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Sakaguchi [11] and reads as:

φ̇ = t1φxx + t2φ
2
x + t3φxxxx

+ t4φxφxxx + t5φ
2
xx + t6φ

2
xφxx

(3)

where t1 = 1+αβ, t2 = β−α, t3 = −α2(1+β2)/2, t4 = −2α(1+β2), t5 = −α(1+β2)
and t6 = −2(1 + β2). Equation (3) is obtained by doing a systematic asymptotic
expansion of Eq. (1) with c = 0, in powers of φx.

As we are interested in a maximum reduction of the dynamics of the two coupled
CGLE, we will approximate the effect of the spatial terms in Eq. (3) by an adequate
additive noise in the equation of two coupled oscillators Eq. (4)

φ̇1 = −β1 − c1 [β1(cosϕ− 1)− sinϕ] + η1,

φ̇2 = −β2 − c2 [β2(cosϕ− 1) + sinϕ] + η2,

(4)

where ϕ = φ2 − φ1 represents the phase difference between the two oscillators,
c1 = c(1− θ)/2, c2 = c(1 + θ)/2, and η1, η2 are additive noise.

The drastic reduction from the partial differential equations (1) to the two
stochastic differential equations (4) will only be justified if we can extract some
useful information from Eq. (4). In particular, we are interested in reproducing the
regular and anomalous frequency synchronization that has been observed in the full
coupled CGLE Eq. (1).

If we are interested in a first order approximation theory, we can keep only the
first three terms in the right-hand-side of Eq.(3). The spatial average of the phase
variation

< φ̇ >x= t2 < φ2
x >x . (5)

takes a very simple form due to the spatial periodic boundary conditions. The
simulations of Eq. (3) show that the phase φ is drifting linearly with time (<
φ >x≈ st + b, where s is the slope of the linear drift evaluated by performing a
linear fit. The frequency estimate from the phase approximation model is therefore
given by Ω = −β + s. In Fig. 1 the small correction s given by Eq. (3) has been
represented by a double arrow between the line Ω = −β and the results of the
simulations of the full CGLE in the PT regime (−0.9 < β < −0.7).

The term < φ2
x > (from now on referred to as T2) is responsible for the deviation

of the frequency between the linear dispersion relation and the frequency given by
the full CGLE Eq. (1).

The time evolution of T2 is chaotic and it is displayed in Fig. 3. From the
time evolution, we can extract a probability distribution function (PDF) that can
be conveniently fitted by a Gaussian (as shown in Fig. 4(a)). Furthermore, the
time correlation function for T2 is also calculated and reported in Fig. 4(b). The
PDF is well approximated by a Gaussian distribution. (see Fig. 4). The next
step is to use the fluctuation characteristics of the term T2 and use it as an additive
colored Gaussian noise in Eq. (4). The statistical properties of this noise is obviously
dependent of the parameters α and β of the original CGLE. We have calculated from
extensive numerical simulations (on nine different realizations) that for β1 = −0.75
(β2 = −0.9) we have that the mean of the PDF is µ1 = 2.92 10−3 (µ2 = 1.14 10−2),
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Fig 3. Time evolution of < φx(x, t)2 >x from Eq. (1) with c = 0, α = 2, β = −0.75.

the standard deviation is σ1 = 5.46 10−4 (σ2 = 1.7 10−3) and the correlation time is
τ1 = 51.2 (τ2 = 15.3)]. Note that, as β is increased (in absolute value), the system
becomes more and more chaotic, thus the correction to the frequency is larger (as
indicated by a larger µ), the fluctuations are higher (as indicated by a larger σ) and
the correlation time of the signal decays (as confirmed by a lower value of τ).
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Fig 4. Probability distribution function of the term T2 (a), and its time correlation function (b),
calculated from Eq. (1) with c = 0, α = 2, and β = −0.75 (dotted lines) and β = −0.9 (dashed
lines). In (a), we also draw with solid lines the two Gaussian PDFs that provide the best fit for
the two distributions.

The characterization of the noise permits the drastic reduction from the two
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coupled CGLE Eq. (1) to two single differential equations (Stuart-Landau type)
plus some additive noise Eq. (4).

Let us now demonstrate that we get some understanding of mechanisms behind
AFS from these reduced equations (4).

Analytical study of Eqs. (4) can be performed, following what done in Ref.
[3, 4, 12]. Namely, by neglecting the noise terms and subtracting Eqs. (4), one is
able to write an equation for ϕ̇ in a closed form. Then frequency synchronization
is:

| ∆Ω |=
√
B2
− + cB−[θB+ −B−] + c2, (6)

where B+ ; (B−) stays for β1+β2 ; (β1−β2), respectively. The interest of expression
(6) is that one can analytically estimate the transition point between FS and AFS.
Indeed, the slope of the detuning at zero coupling indicates regular (if negative) or
anomalous (if positive) frequency synchronization. It is straightforward to calculate
the value of θ for the transition between FS and AFS:

θcr =
B−
B+

=
β1 − β2

β1 + β2
. (7)

For the particular case treated here (β1 = −0.75 and β2 = −0.9), we have
θcr = −1/11 ≈ −0.09, in perfect agreement with what found numerically for the
full CGLE model and reported in Fig. 2. That means that for θcr < θ ≤ 1, we have
regular FS. Conversely, in the range −1 ≤ θ < θcr, we have AFS.
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Fig 5. Mean frequencies Ω1,2 calculated for the full CGLE (1) (solid line) and the effective SDE
(4) model (dashed line). (a) θ = 0.88 (regular FS). (b) θ = −0.88 (AFS) (β1 = −0.75, β2 = −0.9).

Finally, we compare the numerical integration of the SDE (4) and of the full
CGLE (1). In Fig. 5 we report the frequencies Ω1,Ω2 vs. the coupling strength c
for two asymmetric coupling configurations. Namely, Fig. 5(a) [Fig. 5(b)] refers to
the case of regular FS at θ = 0.88 (of AFS at θ = −0.88). The agreement between
the SDE (4) and the full CGLE (1) is very good at low coupling strengths. However,
for larger values of c, we observe an increasing difference between the two cases,
which is especially pronounced in the case of AFS. In particular, the full CGLE
shows an enhancement of the anomaly with respect to the SDE Eq. (4).
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Fig 6. Total number of defects appearing in the coupled CGLE systems (a) corresponds to the
system 1, (b) corresponds to the system 2.

In order to identify the reasons for such a difference, we point out that the
derivation of the reduced SDE model is rigorous only in the absence of coupling.
While one can reasonably expect that the validity of such reduction would hold also
for small values of c, at larger coupling strengths intrinsic spatial effects become
dominant in the dynamics of the coupled fields. In particular, even though initially
the two fields are set in PT regimes, an intermediate coupling induces the presence
of a finite number of phase defects (points where locally and instantaneously the
amplitude ρ(x, t) vanishes), as it appears from Fig. 6. Phase defects are objects
inherent to the spatially extended nature of the system and cannot be retrieved in
a SDE model. These objects are therefore leading to a violation of one of the basic
assumption of our reduction i.e. the absence of phase defects. Even if the reduction
is no longer valid in the presence of phase defects, one can use an ad hoc rescaling
to compare the frequency given by the reduced model and the full equation.
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Fig 7. Number of defects in system 1 (solid line-left ordinate) and frequency mismatch ∆Ωe1
(dashed line-right ordinate, see text for definition) vs. c for θ = −0.88 (AFS).

Phase defects are entirely responsible for the frequency mismatch observed in
Fig. 5. Calling Ωeff1 (Ω1) the mean frequency of system 1 as calculated with
reference to the SDE model (the full CGLE model), in Fig. 7 we show that for θ =

−0.88 (AFS), the 1:1 correlation between the frequency mismatch ∆Ωe
1 = Ωeff1 −Ω1

and the number of defects appearing in system 1 is indeed remarkable, indicating
that a simple correction of the frequency proportional to the defect numbers is
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enough to produce an excellent agreement between the SDE and the full CGLE
models for the whole range of c.

3. Conclusions

To summarize, the comparison between two time dependent oscillators and spatially
extended oscillators cannot be conducted without taking high care of phase defects
that may appear in the process of coupling two equations that were initially (for
c = 0) free of phase defects. These last objects are inherent to space extended
system and must be taken into account if we want to study synchronization if they
are present in the system. In particular, AFS experiences a further enhancement
by phase defects, while in the case of regular FS, the presence of defects shifts down
the threshold for synchronization, allowing for an easier frequency locking.
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