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Abstract

Fréchet–Urysohn (briefly F-U) property for topological spaces is known to be highly non-multiplicative; for instance, the square
of a compact F-U space is not in general Fréchet–Urysohn [P. Simon, A compact Fréchet space whose square is not Fréchet,
Comment. Math. Univ. Carolin. 21 (1980) 749–753. [27]]. Van Douwen proved that the product of a metrizable space by a Fréchet–
Urysohn space may not be (even) sequential. If the second factor is a topological group this behaviour improves significantly: we
have obtained (Theorem 1.6(c)) that the product of a first countable space by a F-U topological group is a F-U space. We draw
some important consequences by interacting this fact with Pontryagin duality theory. The main results are the following:

(1) If the dual group of a metrizable Abelian group is F-U, then it must be metrizable and locally compact.
(2) Leaning on (1) we point out a big class of hemicompact sequential non-Fréchet–Urysohn groups, namely: the dual groups of

metrizable separable locally quasi-convex non-locally precompact groups. The members of this class are furthermore com-
plete, strictly angelic and locally quasi-convex.

(3) Similar results are also obtained in the framework of locally convex spaces.

Another class of sequential non-Fréchet–Urysohn complete topological Abelian groups very different from ours is given in
[E.G. Zelenyuk, I.V. Protasov, Topologies of Abelian groups, Math. USSR Izv. 37 (2) (1991) 445–460. [32]].
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0. Preliminaries and notation

This short note was originated by the following question of D. Dikranjan: if the compact subsets of a topological
space X are Fréchet–Urysohn must the k-extension of X be Fréchet–Urysohn? Together with the negative answer to
this question, the results obtained here make us conclude, loosely speaking, that very good convergence properties
for the compact subsets of a sequential hemicompact topological group are not shared by all the closed subsets. More
precisely, let C be the class of all Abelian topological groups which are metrizable, separable, dually separated, with
non-locally compact dual group. The class C∧ of the dual groups of members of C, is a family of angelic, sequential,
hemicompact complete topological groups which are not Fréchet–Urysohn, while their compact subsets are even
metrizable. In the same spirit, if V denotes the class formed by the infinite dimensional topological vector spaces
which are metrizable, separable, dually separated, and V∗ the class formed by the dual vector spaces of members
of V endowed with the compact-open topology, then V∗ is a class of sequential hemicompact non-Fréchet–Urysohn
complete locally convex topological vector spaces.

Now some notation needed: Denote by K either the real or the complex field and by E a topological vector space
over K. The vector space of all continuous linear functionals on E will be denoted by E∗, and E∗

c and E∗
β will stand for

the same set endowed with the compact-open topology or with the topology of uniform convergence on the bounded
subsets of E respectively. The space E∗

β is usually called the strong dual of E, and we have called E∗
c the Pontryagin

dual of E. The polar of a subset U ⊂ E will be denoted by U◦ := {f ∈ E∗; |f (x)| � 1, ∀x ∈ U}.
Next we give the analogue setting for Abelian topological groups. From now on all the groups considered must be

Abelian, even if it is not explicitly said. Let us denote by G a topological Abelian group and by G∧ the group of all con-
tinuous homomorphisms from G into T, where T is the unit circle in the complex plane, with multiplicative structure.
If G∧ is endowed with the compact-open topology we will write G∧

c , and this is called in the literature the Pontryagin
dual—or just the dual—of G. The polar of a subset U ⊂ G is defined by U� := {χ ∈ G∧: χ(x) ∈ T+, ∀x ∈ U},
where T+ = {x ∈ T; Rex � 0}. Also, the inverse polar of a subset V ⊂ G∧ is defined by V 	 := {x ∈ G: χ(x) ∈ T+,
∀χ ∈ V } and a set U ⊂ G is called quasi-convex if U = (U�)	. The group G is locally quasi-convex if its neutral
element has a basis of neighborhoods consisting of quasi-convex sets.

1. Auxiliary results

For the reader’s convenience we enter the forest of sequentiality and state the definitions and results to be used in
the main theorems.

Definitions. Let X be a topological space.

• A subset M ⊂ X is said to be sequentially closed if from (xn)n∈N ⊂ M , x ∈ X and limn xn = x, it follows that
x ∈ M .

• X is a sequential space if every sequentially closed subset of X is closed.
• X is Fréchet–Urysohn provided that for any point x in the closure of a subset M , there exists a sequence in M

converging to x.
• X is angelic if its relatively countably compact subsets are relatively compact and the compact subspaces of X

are Fréchet–Urysohn.
• X is strictly angelic if it is angelic and the separable compact subspaces of X are first countable
• X has countable tightness provided that for any point x in the closure of a subset M , there exists a countable set

Mx ⊂ M such that x is in the closure of Mx .
• X is a k-space if a subset M ⊂ X is closed in X provided M ∩ K is closed in K for every compact subset K .
• X is bisequential if whenever a filter base F accumulates at x ∈ X, there exists a decreasing sequence of

nonempty3 subsets of X, {An; n ∈ N} which considered as a filter base converges to x, and is such that
An ∩ F �= ∅, ∀n ∈ N and ∀F ∈F .

3 From now on we omit the word nonempty in this context.



M.J. Chasco et al. / Topology and its Applications 154 (2007) 741–748 743
• X is countably bisequential [24, Definition 4.D.1] if whenever a countable filter base F accumulates at x ∈ X,
there exists a decreasing sequence {An; n ∈ N} of nonempty subsets of X, which considered as a filter base
converges to x, and is such that An ∩ F �= ∅,∀n ∈ N and ∀F ∈ F .

In [24] it is mentioned that Siwiec introduced the term strongly Fréchet–Urysohn to denominate the countably
bisequential spaces because of the equivalence expressed in the next lemma. We will use both terms for this notion,
depending on which properties we want to underline.

Lemma 1.1. [24, 4.D.2] Let X be a topological space. The following statements are equivalent:

(i) X is countably bisequential;
(ii) If {An; n ∈ N} is a decreasing sequence accumulating at x ∈ X, then there exists xn ∈ An such that xn → x.

The following picture illustrates the main relationships among the above notions:

Metrizable
(1)�⇒ First countable

(2)�⇒ Bisequential
(3)�⇒ Countably bisequential

(4)�⇒ Fréchet–Urysohn
(5)�⇒ Sequen-

tial
(6)�⇒ Countable tightness.

Metrizable
(7)�⇒ Strictly angelic

(8)�⇒ Angelic.
The implications (1), (3), (7) and (8) are trivial. Observe that if X is first countable the condition of bisequentiality

is satisfied: for a filter base F that accumulates at x ∈ X, take as {An; n ∈ N} a decreasing sequence of members of a
countable neighborhood basis of x. This proves (2).

In order to prove (4), assume that X is a countably bisequential space. Take a subset A ⊂ X and any x ∈ A. For the
decreasing sequence formed by An = A for all n ∈ N, by (ii) in Lemma 1.1, a sequence xn ∈ A can be found such that
xn → x. Thus, X is Fréchet–Urysohn.

In [15, Theorem 1.6.14] it can be seen a proof of implication (5) and in 1.7.13(c) of the same reference there are
hints to prove (6). We give below a direct and simple proof of this fact.

Proposition 1.2. Any sequential space has countable tightness.

Proof. Assume X is sequential and take M ⊂ X. For any x ∈ M we must prove that there exists a countable subset,
say Mx ⊂ M such that x ∈ Mx . Call N := ⋃{A; A ⊂ M , and cardA � ℵ0}. Clearly N ⊂ M . We prove now that N is
sequentially closed. Take {xn, n ∈ N} ⊂ N such that xn → y ∈ X. For every n ∈ N there is a countable set An ⊂ M

such that xn ∈ An. Therefore y ∈ ⋃
n∈N

An, and by the definition of N , y ∈ N . Since X is sequential, N is closed, and
so x ∈ N = M . �

Next we state the double sequence property for a topological space X, introduced by Arhangelskii in [2]:

(α4) For any family {xm,n; (m,n) ∈ N × N} ⊂ X with limn xm,n = x ∈ X, m = 1,2, . . . , it is possible to choose a
sequence (ik)k∈N of distinct natural numbers and a sequence (jk)k∈N of natural numbers such that limk xik,jk

= x.

It is proved in [25, Theorem 4] that a Fréchet–Urysohn topological group satisfies (α4), although “topological
group” cannot be replaced here by “topological space”. Earlier in [5, Lemma 3.3, p. 99] (see also [31, p. 140]), it was
observed that a Fréchet–Urysohn topological vector space has the following stronger property:

(AS) For any family {xm,n; (m,n) ∈ N × N} ⊂ X, with limn xm,n = x ∈ X, m = 1,2, . . . , it is possible to choose
strictly increasing sequences of natural numbers (ik)k∈N and (jk)k∈N, such that limk xik,jk

= x.

Lemma 1.3. A Fréchet–Urysohn Hausdorff topological group G satisfies (AS) and hence (α4) as well.

Proof. Denote by 0 the neutral element of G; it is enough to show (AS) for any family {xm,n; (m,n) ∈ N × N} ⊂ G

with limn xm,n = 0, m = 1,2, . . . . Fix a sequence (am)m∈N ⊂ G with limm am = 0 and am �= 0, m = 1,2, . . . (if such
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a sequence does not exist, then G is a discrete space and the conclusion of the lemma holds trivially). Put ym,l =
am + xm,l+m if am + xm,l+m �= 0 and ym,l = am otherwise. Consider the set

M := {
ym,l; (m, l) ∈ N × N

}
.

Then 0 /∈ M . Let us see that 0 is in the closure of M . Fix a neighborhood U0 of 0 and take another neighborhood U

of 0 such that U + U ⊂ U0; since limm am = 0, there is m such that am ∈ U , and limn xm,n = 0 implies that we can
choose l such that xm,l+m ∈ U ; then ym,l ∈ U + U ⊂ U0.

Since 0 is in the closure of M and G is Fréchet–Urysohn, there is a sequence (mk, lk)k∈N such that limk ymk,lk = 0.
Case 1. The sequence (lk)k∈N is bounded.
Taking a subsequence if necessary, we can suppose that lk = r, k = 1,2, . . . for some natural number r . Since 0 =

limk ymk,lk = limk ymk,r and ymk,r �= 0, k = 1,2, . . . , we conclude that limk mk = ∞. Taking once more a subsequence,
we can suppose that m1 < m2 < · · · .

Subcase 1.1. The set N1 = {k ∈ N: ymk,r = amk
} is infinite.

Write N1 = {p1,p2, . . .} with p1 < p2 < · · · . Then ampk
+ xmpk

,r+mpk
= 0, k = 1,2, . . . . As limk ampk

= 0, we
get: limk xmpk

,r+mpk
= 0.

If we set now ik := mpk
, k = 1,2, . . . and jk := r + mpk

, k = 1,2, . . . , we get the strictly increasing sequences
(ik)k∈N and (jk)k∈N, such that limk xik,jk

= 0.
Subcase 1.2. The set N1 = {k ∈ N: ymk,r = amk

} is finite.
The set N2 = {k ∈ N: ymk,r �= amk

} is infinite and we may write: N2 = {q1, q2, . . .} with q1 < q2 < · · · . Then
ymqk

,lqk
= amqk

+ xmqk
,r+mqk

, k = 1,2, . . . . As limk ymqk
,lqk

= 0 and limk amqk
= 0, we get: limk xmqk

,r+mqk
= 0.

If we set ik := mqk
, k = 1,2, . . . and jk := r + mqk

, k = 1,2, . . . , we get again the strictly increasing sequences
(ik)k∈N and (jk)k∈N, such that limk xik,jk

= 0.
Case 2. The sequence (lk)k∈N is not bounded.
We may suppose that (lk)k∈N is strictly increasing. Then limk mk = ∞. Otherwise, taking a subsequence if neces-

sary, we can state that mk = s, k = 1,2, . . . for some s. Since (lk)k∈N is strictly increasing, we have limk xs,s+lk = 0.
From limk ys,lk = 0, we get amk

= as = 0, which contradicts our choice of (am)m∈N. So, limk mk = ∞. Then for some
strictly increasing sequence (nk)k∈N of natural numbers we have mn1 < mn2 < · · · . Set ik := nk , k = 1,2, . . . and
jk := mnk

+ lnk
, k = 1,2, . . . . Then (ik)k∈N and (jk)k∈N are strictly increasing sequences of natural numbers such that

limk xik,jk
= 0. �

Remark 1. In [5, Problem 5, p. 111] it is posed the next question: let E be a topological vector space satisfying (AS),
is then E a Fréchet–Urysohn space? The answer to a similar question is negative in the context of topological groups.
In fact, in [25, Example 5] it is shown that a countable group may satisfy the following stronger property (∗), without
being even sequential.

(∗) For x ∈ X and for a family {xm,n; (m,n) ∈ N×N} ⊂ X with limn xm,n = x, m = 1,2, . . . , it is possible to choose
a sequence (jk)k∈N of natural numbers such that limk xk,jk

= x.

The first claim of the following proposition was stated in [2]:

Proposition 1.4. A topological space X is strongly Fréchet–Urysohn if and only if it is Fréchet–Urysohn and has the
double sequence property (α4). Consequently, if X is a topological group, Fréchet–Urysohn and strongly Fréchet–
Urysohn are equivalent properties.

Proof. Both implications can be proved in a very natural way; we prove one of them, and leave the other for the
reader. The last assertion follows from Lemma 1.3.

(⇐) Let {Fn} be a decreasing sequence such that x ∈ ⋂
n∈N

Fn. Since x ∈ Fm, and X is Fréchet–Urysohn,
a sequence can be taken {xm,n; n ∈ N} ⊂ Fm such that xm,n → x. By the property (α4), there exist a sequence
{ik} of distinct natural numbers and a sequence {jk} of natural numbers such that xik,jk

→ x. Now the sub-
sets An := {xik,jk

; k = n + 1, n + 2, . . .} constitute a decreasing sequence which accumulates at x and satisfies
An ∩ Fm �= ∅, for all n,m ∈ N. �
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Lemma 1.5. Let X be a topological space.

(a) If X is sequential, then it is a k-space.
(b) If X is a Hausdorff k-space and its compact subsets are sequential (in particular first countable or metrizable),

then X is sequential.

Proof. (a) is easy to verify.
(b) Take L ⊂ X sequentially closed. Let us prove that L∩K is closed for every compact subset K ⊂ X. Since K is

sequential, it is enough to see that whenever a sequence {xn; n ∈ N} ⊆ L ∩ K converges to some x ∈ X, then x must
lie in L ∩ K . But this follows from the facts that L is sequentially closed, and K ⊂ X is closed. �

We deal now with the finitely multiplicative behaviour of sequential-like properties. A nice proof of the fact that
the product of a metrizable space with a Fréchet–Urysohn may be even nonsequential is obtained in [14]. By the
following theorem we can claim that a substantial improvement of this behaviour is obtained when requiring some
algebraic structure in one of the factors.

Theorem 1.6. Let X,Y be topological spaces.

(a) [24, Proposition 4.D.4] If X is bisequential and Y is countably bisequential, then X×Y is countably bisequential.
(b) If X is first countable and Y is a Fréchet–Urysohn space with the property (α4), then X × Y is Fréchet–Urysohn.
(c) If X is a first countable space and Y is a Fréchet–Urysohn topological group, then X × Y is a Fréchet–Urysohn

topological space.

Proof. (b) As we have already noted, a first countable space is bisequential. Since Y is a Fréchet–Urysohn topological
space with (α4), from Proposition 1.4 it follows that Y is countably bisequential (or what is the same, strongly Frechet–
Urysohn). Now from (a) we obtain that X × Y is a countably bisequential space, and by Lemma 1.1 it is Fréchet–
Urysohn.

(c) follows from (b) because a Fréchet–Urysohn topological group satisfies (α4) by Lemma 1.3. �
Remark 2. Earlier, in [5, Proposition 3.2, p. 99], the following weaker version of Theorem 1.6(c) was proved: if
X is a metrizable topological vector space and Y is a Fréchet–Urysohn topological vector space, then X × Y is a
Fréchet–Urysohn space. In this context observe that the product of two Frechét–Urysohn topological groups may not
be Frechét–Urysohn. In [29] it is proved that the product of two Frechét–Urysohn locally convex spaces may fail to
have countable tightness.

Our next statement gives a source of angelic sequential spaces with additional nice properties.

Theorem 1.7. Let G be a metrizable Abelian topological group. The following statements hold:

(a) G∧
c is a hemicompact k-space. Moreover, G∧

c is a complete locally quasi-convex topological Abelian group.
(b) If G is furthermore separable, then G∧

c is a strictly angelic sequential space whose compact subsets are metriz-
able.

Proof. (a) is known (see [8] and [4, Corollary 4.7, Proposition 4.11]).
(b) Let D be a countable dense subset in G and let TD be the topology in G∧ of pointwise convergence on D. Then

TD is metrizable and coarser than the compact open topology. Thus, in the compact subsets of G∧
c they coincide.

By (a) and Lemma 1.5(b) we get that G∧
c is a sequential space. From [9, Proposition 9] it follows that G∧

c is strictly
angelic. �

The assumption of separability cannot be dropped in Theorem 1.7(b). In fact, if G is an uncountable discrete
group, then G∧

c is a compact group which may be neither sequential nor angelic, as the following example shows.
Take G as the direct sum of c copies of Z with the discrete topology (in what follows we refer the reader to [7] for
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dualities between direct sums and products of topological Abelian groups). Its dual group is the product T
c , which is

compact but not sequentially compact [9, Example 28(1)], therefore non-angelic. On the other hand, the corresponding
Σ -product is a sequentially closed, non-closed subgroup.

2. The main theorems

In this section we deal with further relationships among the sequential-like properties so far cited. We keep in mind
especially the questions of for which classes of topological groups metrizability is equivalent to the Fréchet–Urysohn
property and of when the latter differs from sequentiality.

It is known that in general a Fréchet–Urysohn Hausdorff locally convex space may not be metrizable. Seemingly
the first example of this sort appeared in [6]. Many other examples of non-metrizable Fréchet–Urysohn locally convex
spaces are contained in Proposition 2.1 below. For its formulation we recall some standard notation. For a topological
space X, Cp(X) (respectively Cc(X)) is the space of continuous real valued functions equipped with the topology of
pointwise convergence (respectively with the compact-open topology).

Proposition 2.1. Let X be a Tychonoff space. Then:

(a) Cp(X) is Fréchet–Urysohn ⇔ it is sequential ⇔ it is a k-space [1, Theorem II.3.7].
(b) If X is compact, then Cp(X) is Fréchet–Urysohn ⇔ Cp(X) is a k-space ⇔ X is scattered [1, Theorem III.1.2]

(the same equivalences hold if X is K-analytic [11, Corollary 4.2]).
(c) Cc(X) is Fréchet–Urysohn ⇔ it is sequential ⇔ it is a k-space [26, Theorem 5.1].
(d) If X is first countable, then Cc(X) is Fréchet–Urysohn ⇔ X hemicompact [16, Theorems 1, 2]).

It is known that every locally compact group with countable tightness (in particular, a compact Fréchet–Urysohn
group) is metrizable [19], however a countably compact Fréchet–Urysohn topological group may not metrizable [26,
Theorem 2.7]. The Malyhin’s problem [26, Problem 3.11]: is every countable Fréchet–Urysohn topological group
metrizable? remains open. In [30, Theorem 7.3] it is asserted that a countable Fréchet–Urysohn topological group
is metrizable iff its topology is analytic. In [9] under (CH) it is shown that every compact sequentially compact
topological group is metrizable; the same claim can be stated as an axiom weaker than (CH) [13].

In [10,20] a wide class of topological vector spaces for which Fréchet–Urysohn implies metrizability is considered.
Next, we see that the dual of a metrizable group also has this property.

Theorem 2.2. For a metrizable topological group G the following statements are equivalent:

(i) G∧
c is Fréchet–Urysohn.

(ii) G∧
c is a locally compact metrizable space.

Proof. (i) ⇒ (ii). By Theorem 1.6(c), G × G∧
c is Fréchet–Urysohn, and in particular a k-space. Therefore, the eval-

uation mapping w :G × G∧
c → T (w(x,ϕ) = ϕ(x)), which is always k-continuous, is continuous. According to [23,

Proposition 1.2] (see also [22]), we have that G∧
c is locally compact.

Next we show that G∧
c is metrizable.

Step 1. If K is a compact subgroup of G∧
c , then K is metrizable.

In fact, every compact group is dyadic (in Abelian case, which is sufficient for our aims, this result can be found in
[17, (25.35)]). Since every dyadic Hausdorff space with countable tightness is second countable (see [3, Theorem 7,
p. 1223] or [15, 3.12.12(h), p. 231]), we get that K is metrizable.

Step 2. The metrizability of G∧
c will be obtained by an argument similar to that of [9, Proposition 12]. Since G∧

c

is locally compact, by [12, Theorem 3.3.10] there exists a closed subgroup H of G∧
c containing an open compact

subgroup, say K, such that G∧
c is topologically isomorphic to the product R

n × H for some n ∈ N ∪ {0}. By step 1,
K is metrizable. Since K is open in H , it follows that H is metrizable and therefore G∧

c is metrizable. �
Corollary 2.3. Let E be a metrizable dually separated topological vector space. The following statements are equiv-
alent:
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(i) E∗
c is Fréchet–Urysohn.

(ii) E is finite-dimensional.

Proof. (i) ⇒ (ii). In [28] it is proved that E∗
c is topologically isomorphic to E∧

c . Thus, by the implication (i) ⇒ (ii)
of Theorem 2.2, the Hausdorff topological vector space E∗

c is locally compact and consequently finite-dimensional.
Since E is dually separated, E is also finite dimensional. �
Theorem 2.4. Let G be a metrizable separable topological Abelian group for which G∧

c is not locally compact. Then
G∧

c is a complete strictly angelic hemicompact sequential non-Fréchet–Urysohn locally quasi-convex group.

Proof. From Theorem 1.7 we obtain the positive claims about G∧
c . Since G∧

c is not locally compact, it is not Fréchet–
Urysohn by (i) ⇒ (ii) of Theorem 2.2. �
Corollary 2.5. The direct sum of countably many copies of T endowed with the box topology, say ωT, is a sequential
hemicompact complete topological group, which is not Fréchet–Urysohn.

Proof. Clearly ωT is topologically isomorphic with G∧
c , where G := Z

N [7]. Since G is metrizable and separable and
ωT is not locally compact (otherwise (ωT)∧c , which is topologically isomorphic with Z

N, would be locally compact),
Theorem 2.4 applies. �

The following consequence of Theorem 2.4 looks more impressive.

Theorem 2.6. Let E be a metrizable separable topological vector space for which E∗ is infinite-dimensional. Then
E∗

c is a sequential hemicompact strictly angelic complete non-Fréchet–Urysohn locally convex space whose compact
subsets are metrizable.

Corollary 2.7. The locally convex direct sum of countably many copies of R, say ωR, is a sequential hemicompact
complete countable dimensional non-Fréchet–Urysohn locally convex space whose compact subsets are metrizable.

Proof. Clearly ωR is topologically isomorphic with E∗
c , where E := R

N [18, Theorem 8.8.5]. Since E is metrizable
and separable and ωR is not finite-dimensional, Theorem 2.6 applies. �

An analogue of the previous theorem can be stated for the strong dual, as we do next.

Theorem 2.8. For a metrizable locally convex space E the following statements are equivalent:

(i) E is normable;
(ii) E∗

β is Fréchet–Urysohn.

Proof. (i) ⇒ (ii) is clear, since under this assumption E∗
β is also normable.

In order to prove (ii) ⇒ (i), observe that E × E∗
β is Fréchet–Urysohn by Theorem 1.6(c), and the evaluation

e :E × E∗
β → K is sequentially continuous. Therefore e is continuous, and this implies that E is normable (this is a

well-known fact, see e.g. [18, Theorem 9.1.3(a)]). �
Remark 3. (a) The result of Corollary 2.7 was already known (see [25, Example 1], where a direct proof is given).

(b) Theorem 2.8 can be derived also from the results of [10]. Our proof is different.
(c) In connection with Theorem 2.8 we note that for a metrizable locally convex space E the space E∗

β is sequential
iff either it is normable or it is Montel [21, Theorem 4.5].
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