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Abstract. The extension of the cosmological mechanism of Kibble to second order
phase transitions in condensed matter systems by Zurek, can be further general-
ized to bifurcations of out-of-equilibrium systems in continuum media, since the
argument used in the derivation of the Kibble–Zurek scaling law is general. Here
we review the validity of such scaling comparing several bifurcations where the
test has been checked. Also, new experimental results of a nonlinear optical system
are reported.

1 Introduction

Defects play an important role in fundamental aspects of Science, as for example their mediation
in phase transitions [1–3], and in general where breaking of symmetries are relevant [4–6]. Also
defects are very important in the quality of coatings, in materials processing, in semiconductors,
in genetics, among many other fields.
From the point of view of physics, a defect could be defined as a localized state which has

less symmetries than the linearly stable global state. Thus, the global state has a (locally)
broken symmetry due to the existence of the defect. The topological properties of defects can
be studied through their homotopy group [7–10].
The symmetries in a system could be inherited in the relevant variables which characterize

its state, giving rise to the structures which, when their typical lengths and times are at a
human scale, are commonly called patterns. In this case, usually it is possible to define an order
parameter to characterize the state in spatial and temporal scales larger than those determined
by the equivalent to the wavelength of the state. From the equilibrium phase transitions theory,
the order parameter should be zero in the more symmetric phase, while in the less symmetric
phase is different of zero. This constraint results in a definition which is useful only in the
neighborhood of the transition. Nevertheless, this definition could be extended (in pattern
formation) to a range of consecutive symmetry breaking bifurcations, given that the evolution
equations consider all the sequence of the symmetries through the transitions, provided that
they have the correct coefficients. From this point of view the model equations for the order
parameter could describe the dynamics of the system in complex contexts. Also, from the
equilibrium phase transitions field it is possible to define a control parameter E in the system
that, if it is changed quasi-statically, the system goes through the possible states, specifically
crossing all the bifurcations or transitions considered [11].
There are several mechanisms from which defects appear in patterns. Those mechanisms

could be from geometrical constraints where the boundaries make impossible the existence of
a perfect pattern, from thermal effects (where defects appear due to the energy given by the
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thermal fluctuations), from nonlinear effects (which could entangle non-trivially into states with
tendency to generate defects), or from symmetry changing transitions (where defects usually
appear as a consequence of the dynamical adjustment of the system to the new, possibly
degenerate, stable state).
The appearance of topological defects is closely related to bifurcations between patterns

with symmetry breaking [6]. When crossing one of such bifurcations, phase1 singularities (the
so called topological defect) appear as relics of the more symmetric state. Although the origin of
the topological defects is of a higher symmetry, they are localized states stabilized by topological
constraints, which reduce the symmetry of the defect (even less symmetric that the globally
stable state) [4,5].
In a non equilibrium bifurcation the reduced control parameter is defined as

ε ≡ E − Ec
Ec

, (1)

where Ec is the value of the control parameter at which the stable state before the transition
becomes linearly unstable. It is usually considered as the (non-reduced critical) control para-
meter for the primary bifurcation, i.e. one bifurcation which transitions from a homogeneous
state to a patterned one.
In a standard phase transition the most symmetric phase occurs at very high temperatures

(the temperature is the main control parameter) because the thermal energy (disordering field)
is much greater than the other involved energies (for example, those corresponding to the
ordering magnetic field). This is related to the effect that thermal fluctuations have on the
order. However, in a non equilibrium bifurcation the control parameter ε is closely related to
how much the system is out of equilibrium. And the equilibrium is of course homogeneous,
because if this was not the case, fluxes would appear which would show an out of equilibrium
behavior. Thus, the higher the control parameter is, the less symmetries are present in the
system. In this case the thermal fluctuations are not relevant and even they might be neglected
if the system is not very close to a thermodynamical transition. The important fluctuations are
of other origin [12].
Kibble [2] noticed that the early Universe in expansion could imply that different regions of

the space-time would be causally uncorrelated through the cosmological phase transitions which
actually occurred. In this way, a lack of phase matching could happen between regions due to
the falling of the system to different minima coming from the degeneration of the symmetry
breaking transition. Thus, phase singularities or topological defects appeared. Those defects in
a quickly expanding Universe determined huge energy fluctuations which could be involved in
the present distribution of galaxies.
Almost a decade later, Zurek [3,13] noticed that this mechanism is common to all breaking

phase transitions. The main difference between a cosmological phase transition, and a condensed
matter one is that in the former the limiting speed which define whether two regions are causally
non-connected is the speed of light, meanwhile in the latter the limiting speed is much slower
and is related more or less to the media (usually the speed of sound). The generalized mechanism
is known as the Kibble–Zurek one. It can be summarized in the following way: If the control
parameter of the system is changed linearly slowly far from the critical point, the selected state
follows adiabatically the control parameter value in such a way that the instantaneous state is
the equilibrium one for the instantaneous control parameter. Near a second order transition, the
relaxation time which the system goes back to the equilibrium values diverges, in such a way
that the system has no time to follow adiabatically the control parameter. So the correlation
length, among other magnitudes, should change faster than the limiting speed in the system and
consequently gets frozen until the adiabatic dynamics is restored well after the phase transition.
The observed correlation length after the critical point is the one the system had when it froze.
This kind of mechanism leads to a power law for the correlation length as a function of the
rate of change of the control parameter. It is thought that this behavior depends only on the

1 It is worth to say, that here the phase is a fraction of a period in the parameter which defines the
degeneracy above. We will use the phase term in both senses along this paper.
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space dimension, topology and the dissipative character of the system, therefore constituting a
universal scaling law.
Concerning a bifurcation between two out-of-equilibrium states of a system, the Kibble–

Zurek mechanism could be extended naturally to report the density of defects of the patterns
obtained after a quench in the control parameter. In what follows in this section, we are going
to argue this generalization.
Consider either a conserved or not conserved order parameter φ, whose evolution equation is:

∂φ

∂t
= G[φ; ε] , (2)

where the functional G could describe either a time-dependent Ginzburg–Landau type equation
or a Cahn–Hilliard type equation, among others depending on its form. Consider that ε is
the reduced control parameter, and that the bifurcation is a primary one. The functional G
can include noise or fluctuations. In that sense the evolution equation is a Stochastic partial
differential equation. The original field u corresponding to the order parameter φ can usually
be obtained by multiplying the order parameter by the linear modes ψj of the system near the
bifurcation. That is, in a system which below the threshold is in the state characterized by u0,
slightly above the threshold its state could be expressed as:

u = u0 +
∑
j

φjψj . (3)

Each ψj represents the broken symmetry through the bifurcation along with its degeneracy.
Some degeneracies sometimes can be included in the order parameter as a phase or with other
kind of artifacts in such a way that the effective components of the order parameter could be
drastically reduced into the sum above.
The degeneracy which comes from the symmetry breaking appears (usually) as the contin-

uous parameter which defines the phase involved in the topological defects [10,14].
Let us call εc the critical reduced control parameter and redefine it in order to be equal

to zero, that is referring it to the studied bifurcation. Let also the initial value of the control
parameter be εi < 0. Let finally the system attain a stationary state, which is corresponding to
φ = 0, plus the existence of fluctuations which are unstable and consequently disappear after
a while. Those fluctuations are characterized by a correlation length ξ (and survival time τ)
depending on the stationary value of εi. The actual value for ξ depends on the model: in non
relativistic mean-field second order transitions we have ξ ∼ 1/√ε [3,13], while in the quantum
Ising model we have ξ ∼ 1/ε [15], among many other possibilities. All these cases can be
included in a phase transition picture where

ξ ∼ ε−ν , (4)

where ν is the critical exponent corresponding to the correlation length of the order parameter.
Thus, at the initial state, the value for the correlation length will be ξi = ξ (εi). If the

characteristic time for fluctuations of size ξi is τ , then the mean time which quasi-domains
of fluctuations of size ξi survive is τ . So, if we have one of such fluctuations and the control
parameter is changed in order to cross the bifurcation in less time than τ , that quasi-domain
will overcome stable.
In a causally extended system (that is non-connected) all possible degeneracies could be

present in the fluctuations field, giving rise to uncorrelated domains corresponding to different
values of the phase. In this sense, the macroscopic typical length of the system could be, for
example, much larger than the correlation length of the order parameter.
Below a symmetry breaking bifurcation, in the absence of fluctuations, the order parameter

φ is zero, so the presumably small fluctuations δφ will follow a linearized version of equation (2).
Assuming that

δφ =
∑

B(λ,k)eλt+ık·r , (5)

if the system is below the threshold, then small fluctuations should decay exponentially in
time to zero; therefore �e[λ] < 0. However, when the system crosses the bifurcation, at least
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Fig. 1. Sketch of the continuity of the modes which show
slower decay below the threshold and faster growth above the
threshold. Usually these modes have k = 0, because the oscil-
lation of the relevant modes is included in ψj .

some components of the fluctuations will grow exponentially in time; therefore �e[λ] > 0.
The evolution characteristic time will be defined through the coefficient of the real exponential
exp(�e[λ]t):

τ =
1

�e[λ] . (6)

It is important to notice that �e[λ] depends on ε and k, which is the wave vector of the Fourier
component for the order parameter, and does not correspond to the linear modes ψj . The
fluctuations of the order parameter below the bifurcations are governed by the minimum of
the |�e[λ]|, which gives the highest τ , and consequently describe the most durable fluctuations.
If the bifurcation is of continuous type (supercritical bifurcation), at the critical point εc, the
fluctuations follow �e[λ] = 0. Thus, in the nearness of ε = 0:

�e[λ] ∝ εg(ε) . (7)

In general, it is convenient to define the control parameter in such a way that g(0) is finite but
not zero. Then, the so-called slowing down near the critical point of the relevant modes occurs
giving:

τ(ε) ∼ |ε|−1 , (8)

that corresponds in the phase transitions theory to a critical exponent zν = 1, where z is the
dynamical critical exponent [16].
On the other side, above the threshold, the relevant fluctuations are those which grow faster

and are obtained continuously from those than decay slower below the threshold (figure 1).
If the control parameter ε is slowly increased through the bifurcation at a constant rate µ in

such a way that the bifurcation is crossed over at t = 0, then ε(t) = µt. Assume that −t0 is the
time at which the fluctuations of size ξ(ε(−t0)) survive τ = 2t0. The size of those fluctuations
will be the correlation length (size of domains) selected above the bifurcation. Thus:

ε(−t0) = −µt0 = −µτ/2 ∝ −µ|ε|−zν , (9)

consequently:
|ε(−t0)|1+zν ∝ µ . (10)

Then,

|ε(±t0)| ∝ µ 1
1+zν , (11)

At +t0 the dynamics is restored. Therefore, the pattern appears clearly. For almost all the
cases, zν = 1 and ε ∼ √µ. To obtain the selected correlation length, it is usual to substitute
expression (11) in equation (4); obtaining:

|ξ(±t0)| ∝ µ− ν
1+zν . (12)
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Assuming that the critical exponent of the correlation length is that of a mean field theory
(ν = 1/2) then |ξ(±t0)| ∝ µ−1/4.
It is possible to relate this argument to the following. On one hand, we have:

µ ≡ dε
dt
=
ε|t=τ
τ

, (13)

multiplying both sides of the equality by ε−1−ν ∝ dξ
dε ∝ ξ

ε
. In this way we have that, at the

moment of the slowing down:

dξ

dt
∼ ξ

τ
. (14)

The right side of the equation (14) would be the maximum rate of increase of the correlation
length. So, it can be regarded as the limiting speed in the medium. Therefore, the argument
given above has a causal nature of Kibble–Zurek type:

dξ

dt
≤ vlim ∼ ξ

τ
. (15)

Therefore, the system cannot correlate regions non connected in the above sense. Of course, as
has been told above, in the case of cosmological transitions (Kibble) the limiting speed is the
speed of light, which not depends on µ.
Once the correlation length of the fluctuations is frozen, when the dynamics is restored

on the basis of the domains determined by that correlation length, there appear a lack of
phase matching among the domains which implies the appearance of phase singularities. The
mean distance between phase singularities, in the case of zero dimensional defects, will be the
correlation length. This fact emphasizes the role of defects in correlating or in decorrelating
the structure [17]. Thus, the density of defects ρ is going to be ξ−d, where d the geometrical
dimension of the system. As a consequence:

ρ ∼ µ dν
1+zν . (16)

In all the experimental cases investigated here d = 2, and we assume on the base that was told
above, that zν = 1, then ρ ∼ µν .
Since the establishment of Kibble–Zurek mechanism and its consequences on the confirma-

tion of cosmological theories in a laboratory [13,18,19] several experiments have been performed
in non-equilibrium phase transitions, among others in liquid crystals [20–22], superfluid helium
[23–29], and in superconductors and Josephson junctions [30–35]. Lately some experiments in
non-equilibrium bifurcations have also been done in non-linear optical systems [36] and in fluid
convection systems [37–39].
In this article we aim at comparing the results of different non-equilibrium bifurcations from

the point of view of the Kibble–Zurek mechanism, in order to focus on the peculiarities in this
kind of systems. Also, we report new experimental results of the non-linear system studied
by Ducci et al. [36] in a new configuration which leads to a different pattern and selection
of it. The new experimental results can shed light on why some of the other experiments in
non-equilibrium bifurcations which seem not to give the expected scaling exponents.
After this introduction to the subject, the article has been organized in the following way:

Firstly, the measurement process and image analysis will be briefly explained. Secondly, we
will focus on the conduction-convection bifurcations and their results. Thirdly, we will do the
same for the nonlinear optical systems. There, the new experimental results will be reported.
They concern principally about the defect density appearing in a Kerr-like nonlinear optical
medium [36,40,41]. The state below the bifurcation threshold is a homogeneous state (so we
will deal with a primary bifurcation). The state after the threshold is a hexagonal pattern. We
also compare the results for two effective viscosities. Finally, we compare the systems in the
discussion and conclusions section.
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Fig. 2. Sketch of the measurement process in this kind
of experiments (h.s. stands for homogeneous state, and
the interval [−t0, t0] corresponds to the critical slowing
down).

2 Measurement process

All results shown in this article follow a measurement process which can be explained by the
next steps: The system is set in a homogeneous stationary state below the symmetry-breaking
bifurcation (εi < 0). In that state, the control parameter is linearly increased with a rate of
change µ. When the control parameter reaches the value ε(t0) > 0, the structure abruptly gets
formed, and then a snapshot of the pattern is taken to analyze it. It is crucial that the increase
of the control parameter through all the experiment would be linear.
In order to obtain the number of defects in the emerging structure, we have use different

methods, depending on the kind of image and dimensionality of the order parameter. In figure 3
can be seen the patterns obtained in the four experimental systems studied. As it can be seen,
there is a pattern of stripes, a pattern of square symmetry and two patterns of hexagonal type.

b) c)a) d)
Fig. 3. Patterns appearing after the threshold in the systems presented in this article. (a) Kerr-like
optical system with translation (non-locality) (b) Rayleigh–Bénard convection pattern (c) Bénard–
Marangoni convection pattern (d) Kerr-like optical system without translation.

The pattern of stripes it is very easily analyzed: defects correspond to dislocations in the
stripes structure. They can be counted either by visual inspection or by complex demodulation
of the Fourier peak corresponding to the stripes. The phase singularities correspond to zeros of
the amplitude in the complex demodulated image.
In the case of a square pattern, the analysis of the number of defects is much more com-

plicated in general, due to the two kind of defects that could be observed, that is to say:
dislocations of either modes and the grain boundaries dividing regions with different global
orientation. This would make the complex demodulation technique very difficult unless the
orientation of the two modes would be anchored. That was what was made. In this way it is
possible to complex demodulate two more or less wide peaks at an angle of π/2.
The analysis for the case of hexagonal symmetry pattern happens to be equally complicated

than the case of coexisting domains of squares with various global orientations. It is difficult, in
this case, to anchor the structure at one global direction without also removing the other kind
of defects. Then, what had been done is to use the Voronoi analysis [37,42]. This analysis builds
for each lattice site its Voronoi cell, which allows to extract all the connectivity information of
the structure. By means of this data it is possible to infer the most common topological defects
of hexagonal structures (penta-hepta), and obtain the exponents for the number of defects
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upon the rate of increase of the control parameter. Another good possibility is to isolate one
or few defects (corresponding to only one domain of global orientation) in order to check their
evolution backwards by complex demodulation [38]. The exponents obtained in a three modes
pattern experiment by counting pentagons, heptagons or polygons different than hexagons are
consistent. among them.
The Voronoi analysis in a square symmetry pattern is not possible due to a geometric

instability of the coordination number [6].

3 Hydrodynamical systems

We restrict ourselves into the study of thermoconvective systems, heated from below in a
homogeneous way. They were first considered by Bénard [43]. We consider the temperature
difference between the top and the bottom of the liquid layer as the experimental control
parameter ∆T . For low values of ∆T the heat transport is only done efficiently by conduction.
Therefore it will be attained a linear temperature profile upon the depth ζ,

T (z) = T0 +∆T
ζ

h
, (17)

where h is the depth of the fluid layer and T0 the temperature of the bottom (ζ = 0).
This temperature profile influences on the density stratification of the fluid, which can be

modelled in a first approximation by:

ρ(T ) = ρ0 (1− α∆T ) , (18)

where α is the volumetric thermal expansion coefficient. Although there is also a variation of
other parameters due to the temperature profile, it is assumed that the variation is small and
does not influences on the dynamical regimes of the systems. Along with this, if the stratification
is considered only in the gradient of hydrostatic pressure term, the Boussinesq approximation
is used in interpreting the results.
The density stratification tries to destabilize the conductive state when fluctuations exist,

due to the Archimedes buoyancy force. The destabilizing effect of buoyancy can be offset owing
to the stabilizing effects of thermal diffusion and viscous dissipation, i.e.: if the time needed
for the volume which fluctuates to move an infinitesimal is longer than the time needed by the
stabilizing forces to counteract the fluctuation. The buoyancy time is defined as:

τb =

√
h

gα∆T
, (19)

where g is the acceleration of gravity. The stabilizing effects are governed by the following
characteristic times:

τθ =
h2

κ
, τν =

h2

ν
, (20)

where κ and ν are the thermal diffusivity and the kinematical viscosity, respectively. τθ is the
typical time of stabilization of the temperature by conduction in a liquid layer of depth h.
Classically, the conduction convection bifurcation in a Rayleigh–Bénard system (a system

where the surface tension effects are neglected, as it can occur, for example, if the top of the
liquid layer is bounded by a solid surface) is parameterized by the Rayleigh number Ra [44]:

Ra =
τθτν

τ2b
. (21)

In this way, if the Rayleigh number is greater than a critical value (Rac), the bifurcation is
crossed over. Therefore it is possible to define the control parameter ε as:

ε ≡ Ra−Rac
Rac

=
∆T −∆Tc
∆Tc

. (22)
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For ε ≈ 0, any small enough fluctuation will evolve (decay or grow) exponentially in time
with a typical response time inversely proportional to ε. The correlation length scales with a
critical exponent 0.5 [45].
When, the system is upper bounded by a fluid state, as in the case of a system open to

the atmosphere, it is needed also to take into account the interface tension effects. This kind
of convection is called Bénard–Marangoni convection. This introduces a new non-dimensional
number called the Marangoni number Ma,

Ma =
τθτν

τ2σ
, (23)

where:

τσ =

√
h3ρ0∣∣ ∂σ
∂T

∣∣∆T , (24)

and ρ0 is the density at the mean temperature and σ is the surface tension. The main effect
of this change on the relevant behavior at the threshold is the kind of pattern selected and the
predominant characteristic time. When both effects (bouyancy and surface tension) are impor-
tant the system at threshold verifies the Nield equation [46]. It is important to our discussion
to consider that the Bénard–Marangoni convection is slightly subcritical. Therefore, rigorously,
expression 8 does not apply near the threshold enough.
The experimental set-up used in this systems has been extensively used in the past by the

Complex Systems Group. A sketch of it and a detailed description could be found in [37,38]
regarding the Bénard–Marangoni system and in [6,39] for the Rayleigh–Bénard case. In all cases,
the used fluids were Silicone oils of different nominal viscosities. The main difference regarding
the measurements is due to the high sensitivity of the fluid layer to any temperature sensor
you put nearby, if the experiment is open to the atmosphere. Therefore, the measurements in
Bénard–Marangoni had been made after a learning step, where for each ramp of the control
parameter, the temperature of the liquid surface was measured in the moment of the appearance
of the structure, in order to know the reduced control parameter value, when the dynamics is
restored. The range of possible time quenches for both experiments is limited by the system
thermal inertia and the initial value of the reduced control parameter (fast quenches) and the
slow dynamics characteristic time due to inhomogeneities in the system (slow quenches).
All the experimental results confirm a scaling law for the density of defects upon the rate

of increase of the control parameter. However, the exponents are diverse.
In summary, if we plot the exponent appearing in the power law for the density of defects

(equation (16)) (figure 4), we can see that the exponent is the one expected for a mean-field
system (1/2), for the case of Rayleigh–Bénard. This is the case of having less than three modes
in the state. Also the experiment has been done at the lowest viscosity of the fluid (20 cSt).
One can see that the exponent decreases as the number of modes does and the viscosity does.

4 Optical systems

We will restrict ourselves to a Kerr-like non-linear optical system. It consists of a liquid crystal
light valve (LCLV) in which impinges a spatially uniform laser beam. This LCLV is inserted
in a feedback loop. For an extensive review see Residori [41]. The LCLV is made of a liquid
crystal layer (which is highly birefringent and consequently phase modulating) and of a photo-
conductive layer (which is sensitive to the light intensity), and of a mirror sandwiched by the
other two layers. The boundaries are treated in such a way we have a planar geometry, that
is: in absence of applied field the director vector field of the liquid crystal remains parallel to
the boundaries of the LCLV. On one hand, if an electric field perpendicular to the boundaries
is applied there is a critical value for which the liquid crystal molecules turn over to follow the
field. On the other hand, the incident light to the photoconductive layer diminishes locally its
impedance making the effective electric field higher and consequently more efficiently rotates
the molecules. Different orientations of the molecules in different places of the LCLV, makes
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Fig. 4. Exponents for the num-
ber of defects upon viscosity in
the convection experiments. The
exponents for the case of Bénard–
Marangoni (circles) have been con-
sidered as those which fulfill at least
one of the counting methods (see
text, section 2).

that the light reflecting on the mirror would be spatially phase modulated. The recently read
state, in the form of a modulated wavefront is carried by a fiber bundle, which carries coherently
the information through a point to point mapping. Afterwards, the wavefront is let to a free
propagation length which converts the phase modulation into an amplitude modulation (Talbot
effect). This intensity modulation writes a new state to the photoconductive layer. If the phase
to amplitude conversion only comes from the Talbot effect, this is a purely diffractive set-up.
Thus, this feedback allows the optical system to be a Kerr-like one. The phase of the wavefront
evolves following the equation:

∂φ(x, y, t)

∂t
= −φ(x, y, t)− φ0

τ
+D∇2⊥φ(x, y, t) + αIfb(x, y, t) , (25)

where τ is the local relaxation time, D is the diffusive constant of the medium and φ0 the
working point set by the applied voltage V0 when light does not arrive to the photoconductive
layer. Ifb is the light that impinges to that layer, and α phenomenologically determines the
effect of the layer to the phase change through the voltage variation. The sign of α defines
whether the Kerr-like medium is focusing or de-focusing. The feedback light intensity comes
from the free propagation of the field outgoing from the Kerr medium E0e

ıφ(x,y,t); within the
paraxial approximation at a distance L of free propagating beam,

E(x, y, L, t) = e
ıλL
4π ∇2⊥E(x, y, 0, t), (26)

which is the electric field defining, in principle, the intensity of feedback. The sign of α can be
changed, at a first approximation, making the free-propagation length negative. If the feedback
includes some non-locality (as a rotation, or a translation, among other possibilities, of the
fiber bundle) this should appear in equation (25) changing the feedback term to for example
Ifb(x+∆x, y, t) in the case of a translation in the x direction.
The experimental set-up used in this systems has been extensively used in the past by

the Istituto Nazionale di Ottica Applicata. A sketch of it and a detailed description could be
found in [36] regarding the system with a translation inserted in the feedback loop and in [39]
concerning the case of the three modes LCLV system. Moreover, an extensive description of
variations on the experimental set-up can be found in [41] and references therein.
The main differences between both experiments are the existence of such non locality and

the values for the free propagation length (3.5 cm/−6 cm respectively). The translation breaks
the symmetry of the spontaneous hexagonal symmetry giving rise to standing stripes with a
non zero group velocity along the direction of the translation. This group velocity sweeps away
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the phase singularities which appear in the system, and this had to be taken into account
when measuring the density of defects, due to the perfect appearance of stripes on the lateral
boundary through coherent transport. In this kind of systems, the measurements are limited
on the hand of fast quenches by the LCLV inertia and, on the hand of slow quenches, by the
characteristic time of drifting defects either due to the translation or to small inhomogeneities
in the system.
In the case of the translation of the feedback loop, it is found that the number of defects

follows a power law (once the shrinking effective area has been taken into account) and that
the exponent agrees with a mean field theory (ρ ∼ µ0.5±0.04) [36].
In the system where there appear three modes, there is not the relatively high motion of

defects due to the group velocity of the structure, so it is not necessary to take into account a
shrinking area. Nevertheless, small inhomogeneities in the system set a limit for slow quenches,
too. In this case, we made the experiment for two working points (corresponding to an applied
a.c. voltage, which determines the response time of the LCLV under external illumination):
4.18V at 2.16 kHz and 6.53V at 1.94 kHz. Under these conditions, comparing the response of
the LCLV, it was measured that τr(4.18V) = 2.11 · τr(6.53V). The main measurements were
obtained making linear ramps of the control parameter (light input intensity) and taking a
snapshot of the pattern at the time the dynamics was restored. That image was analyzed by
means of Voronoi analysis. The obtained curves for the density of defects upon the quench time
rescaled by the relative response time are shown in figure 5.
In figure 5 it can be seen two distinguished domains separated by ln(τ∗r µ) ≈ −0.5. The

solid (dashed) line is a power law adjusted to the 6.53V (4.18V) case for points at the left
(right) region. The other solid (dashed) line is a power law with the same exponent as obtained
before adjusted to the case of 4.18V (6.53V) for points at the left (right) region showing good
agreement of the adjustment in the regions and cases where the number of points are too few.
Therefore we can conclude that in this kind of experimental systems there are two distin-

guished regions consistent with power laws. The exponent is for the case of small (large) rates
of increase of the order parameter 0.15±0.01 (0.28±0.04). Neither of them follows a mean-field
theory. They are of the order of those obtained by high viscosity Bénard–Marangoni systems.
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V = 4.18 V
ρ∼µ0.15±0.01

Fig. 5. Density of defects upon
the rescaled rate of increase of
the control parameter in logarith-
mic scale. The rescaling parame-
ter τ∗r is 1 s for the 6.53V case and
τr(4.18V)/τr(6.53 V) s = 2.11 s
for the 4.18V case. See the text
for the meaning of the adjusted
power laws.

5 Discussion and conclusions

It has been proved that it is possible to extend the mechanism of Kibble–Zurek to bifurcations
of out-of-equilibrium systems in continuum media. Regarding the specific experiments reported
here we found the scaling laws predicted by the above mechanism, at least over a range of rate
of increase of the control parameter through the threshold of primary bifurcations.
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A priori, one of the main drawbacks of the mechanism reported here is that it is not always
applicable in the case of having a subcritical bifurcation (equivalent to a first order phase tran-
sition). However, if the subcriticality is smaller than |ε(−t0)| the fluctuations which determine
the density of defects already survive till well after the bifurcation. Thus, the subcriticality only
sets a limit for the slow quenches (µ small enough).
The translation in the feedback loop leads to the reduction of defects by coherent transport.

Moreover, as this feedback is introduced in a non local way, the system fall into a mean field
system. Consequently, this kind of system verifies ρ ∼ √µ.
Regarding to the Rayleigh–Bénard system, the experiments confirm that there could be

bifurcations leading to more than one mode pattern which verify not only the Kibble–Zurek
mechanism, but the corresponding exponents of a mean field theory, accordingly with the steady
scaling exponents [45].
In summary, the deviations from the mean field only occur in systems where there are more

than two interacting modes (in the studied cases, three), without the global orientation fixed.
This disagreement is not due to the possibility in this kind of states of appearance of other
types of defects (for example: boundary grains) which are not zero dimensional ones, because
they follow the same scaling relation, thus not modifying the results.
Thermal effects do not have to do very much in this discrepancy, since the thermal fluctu-

ations are negligible unless the system is very near a thermodynamic critical point [11]; which
is not our case.
It is possible to think that the measurements using the Voronoi analysis could not be

complete, because there are other zero dimensional defects which are not (at the time of taking
the snapshot) penta-hepta, although once the dynamics is restored they evolve to penta-hepta
[38]. The fact that other defects exist which are not detected as penta-hepta and which are less
stable (consequently, the faster is the quench, the larger is their number) could explain partially
that in this case the exponent measured is lower than expected. On the other hand, at a greater
viscosity, these kind of defects should tend to the penta-hepta at lower rates, thus this effect
is more remarkable. However, the Voronoi analysis was made not only for penta-hepta, but for
sites with coordination number different to six, giving the same results.
As open question, this disagreement could be explained for the low correlation among defects

in different modes, though this critical exponent (ν) is the same that those for the correlation
length. Nevertheless, the exponent zν is the one corresponding to only one mode. In conclusion,
the correlation in such a system should be weaker than in a mean field theory, so the system
could be considered as having a high aspect ratio, or being spatially extended. That correlation
will diminish also for increasing viscosities. All this effects come from having a multi-component
order parameter, where different components interact non-linearly, but with small correlations.
In addition to the Kibble–Zurek mechanism, there could exist others that made the scaling

laws would not hold over the whole range of increase rates, as can be seen in the results of the
three modes LCLV system. The explanation of such behavior could rely on the elastic effects
related to the oscillations of the liquid crystal molecules around their new equilibrium position
parallel to the electric field. Another possibility is that the behavior would be related to some
oscillations found in some numerical simulations [47]. This is an interesting issue, because this
oscillations are predicted to occur in time. The question on how this oscillations imply the
appearance of two regimes in the system it is open yet.
Finally, this kind of experiments could be an indirect determination of the steady critical

exponents, which are much more difficult to measure directly [48].
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45. J. Wesfreid, P. Bergé, M. Dubois, Phys. Rev. A 19, 1231 (1979)
46. D. Nield, J. Fluid Mech. 19, 341 (1964)
47. E. Moro, G. Lythe, Phys. Rev. E 59, 1303 (1999)
48. V.C. Regnier, G. Lebon, Q. J. Mech. Appl. Math. 48, 57 (1995)


