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Experimentally observed route to spatiotemporal chaos in an extended one-dimensional array

of convective oscillators

M. A. Miranda™ and J. Burguete%

Department of Physics and Applied Mathematics, Universidad de Navarra, Irunlarrea s/n, E-31080 Pamplona, Spain

(Received 20 January 2009; published 2 April 2009)

We report experimental evidence of the route to spatiotemporal chaos in a large one-dimensional array of
hotspots in a thermoconvective system. As the driving force is increased, a stationary cellular pattern becomes
unstable toward a mixed pattern of irregular clusters which consist of time-dependent localized patterns of
variable spatiotemporal coherence. These irregular clusters coexist with the basic cellular pattern. The Fourier
spectra corresponding to this synchronization transition reveal the weak coupling of a resonant triad. This
pattern saturates with the formation of a unique domain of high spatiotemporal coherence. As we further
increase the driving force, a supercritical bifurcation to a spatiotemporal beating regime takes place. The new
pattern is characterized by the presence of two stationary clusters with a characteristic zig-zag geometry. The
Fourier analysis reveals a stronger coupling than the previous mixed pattern and enables us to find out that this
beating phenomenon is produced by the splitting of the fundamental spatiotemporal frequencies in a narrow
band. Both secondary instabilities are phaselike synchronization transitions with global and absolute character.
Far beyond this threshold, a new instability takes place when the system is not able to sustain the spatial
frequency splitting, although the temporal beating remains inside these domains. These experimental results

may support the understanding of other systems in nature undergoing similar clustering processes.
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I. INTRODUCTION

Understanding complex systems in physics, chemistry, bi-
ology, and neuroscience is a topic of theoretical and experi-
mental relevance, particularly when we are dealing with the
route to spatiotemporal chaos in spatially extended systems.
In this route, the existence of various subsystems or domains
with spatiotemporal synchronization, coherent patterns, al-
lows to handle a description in terms of clusters. Accord-
ingly, we find cluster dynamics in networks of coupled os-
cillators such as reaction-diffusion systems in chemistry
[1,2], multicellular tissues in neurobiology [3,4], and coupled
arrays of oscillators in physics [5,6]. Although the scientific
community has focused much attention on complex dynam-
ics during recent decades, a universal route to chaos in ex-
tended systems has neither been understood nor described, in
contrast with the effort devoted to confined systems. Our aim
is to characterize experimentally the dynamics of a one-
dimensional (1D) spatially extended system in the weak tur-
bulence regime where a spatiotemporal splitting is produced
inside synchronized clusters. Hohenberg and Shraiman ap-
proached the understanding of spatiotemporal chaos with the
generalized Kuramoto-Sivashinsky equation [7] and also
there are several recent numerical simulations behind this
purpose in the field of complex networks [8-10].

The experimental results reported here are enclosed in the
field of extended, dissipative, and complex systems involv-
ing many degrees of freedom. Our experiment is a quasi-1D
thermoconvective system, which consists of an array of non-
linear coupled oscillators. These oscillators are ascending
convective cells (hotspots) that exhibit a spatiotemporal beat-
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ing regime of the type of a zig-zag pattern (ZZ). It is char-
acterized by the presence of stationary clusters, developed
from a previous mixed pattern of irregular clusters. If we
consider that strong nonlinear couplings between amplitude
and phase might be neglected, the 1D array displays “phase
locking phenomena” [11]. We try to approach a phase de-
scription to follow the dynamics far from the threshold of the
primary bifurcation. A particular point of view is also tackled
on the phase synchronization theory of N-coupled oscillators
which was first introduced by Winfree [12,13] and later de-
veloped by Kuramoto [14]. Modeling the extended 1D sys-
tem of N-coupled oscillators undergoing global phase insta-
bilities under certain constraints, such as weak coupling
between oscillators subjected to the same driving force, has
allowed us to build rich phase spaces [15].

1D experiments are particularly interesting for the diver-
sity of patterns they exhibit, for example in thermoconvec-
tion [16-23], electroconvection [24,25], the printer’s insta-
bility [26,27], directional solidification [28], directional
viscous fingering [29], circular liquid column arrays [30-32],
and the Taylor-Dean system [33]. Theoretical approxima-
tions to 1D oscillatory instabilities have already been suc-
cessfully modeled for supercritical bifurcations with the
Kuramoto-Sivashinsky phase equation (KS) [34], and for
subcritical bifurcations with a Ginzburg-Landau equation
adding a quintic stabilizing term [35,36]. Other 1D localized
patterns such as solitons and spatiotemporal intermittency
have been modeled using a modified Swift-Hohenberg equa-
tion [37] and the KS [38]. In a previous work [39], we char-
acterized quantitatively primary and secondary instabilities
for the same experimental cell. In this research, we reported
the existence of a mixed state for thin layers from a station-
ary cellular pattern (ST). This mixed pattern (ST/ALT) con-
sists of localized oscillatory domains in an alternating pattern
(ALT) which coexist with the basic cellular pattern, ST. This
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ST pattern always remains stable. Depending on the values
of the control parameter, the new unstable pattern shows a
different pinning to the underlying stationary cellular pattern
ST, and thus there might be two different kinds of fronts:
fluctuating and stationary.

Mixed states in weak transitions to chaos have been usu-
ally identified as spatiotemporal intermittency regimes, i.e.,
the Rayleigh-Bénard convection in an annular gap [40] and
the Faraday experiment [41]. A similar behavior is found in
experiments with open shear flows where the basic state is
always stable, such as plane Couette [42], circular Couette,
and Poiseuille [43]. These instabilities have in common a
“subcritical branch” sent to infinity [44]. In this sense, bista-
bility in these systems is understood as the coexistence be-
tween “patches” displaying the new pattern and the original
one.

Experimentally, certain extended systems in closed flows
show a higher complexity stage before achieving spatiotem-
poral chaos or defect mediated turbulence: regimes with tem-
poral or spatiotemporal frequency splitting. For example, the
dynamics of a 1D front in electroconvection with liquid crys-
tals [24,35] shows time biperiodicity, and in the Taylor-Dean
system [33] spatiotemporal biperiodicity appears. In 2D sys-
tems, spatiotemporal chaos via a zig-zag instability has been
experimentally observed in liquid crystals [45-48] and suc-
cessfully modeled in the frame of the Ginzburg-Landau
equation for a weak nonlinear regime [49] and for a selective
forcing [50].

This report is an experimental evidence of a clustering
process displayed by an array of coupled oscillators in hy-
drodynamics. This clustering process is the result of an in-
creasing coupling interaction between oscillators. We report
a cascade of secondary bifurcations in a quasi-1D convective
system, a rectangular layer of fluid opened to the atmosphere
under a 1D heating at the center of the bottom plate. For a
fluid with Prandtl number [=(viscous diffusivity)/(thermal
diffusivity)] Pr=75, the competing effects between buoy-
ancy and capillarity account for a Bénard-Marangoni con-
vection mechanism. For a fixed depth (d=3 mm), as we in-
crease the control parameter (the vertical temperature
difference AT,), the system undergoes a subcritical instabil-
ity toward a mixed pattern of irregular clusters from a sta-
tionary cellular pattern. Further on, a spatiotemporal beating
regime settles down, this consists of one or two large sized
clusters with stationary fronts. The quantitative analysis by
complex demodulation techniques shows a continuous evo-
Iution of the selected order parameter, the amplitude of the
critical modes, from which the spatiotemporal beating re-
gime is found to be supercritical. Both oscillatory instabili-
ties to the mixed pattern (ST/ALT) and to the spatiotemporal
beating regime (ST/ZZ) have absolute and global nature. We
will focus on the behavior of the critical modes nearby the
thresholds of these transitions and describe the subsequent
lost of spatial frequency splitting of the oscillatory modes
(ST/DW) in a new transition towards a temporal beating re-
gime (ST/DW) with a unique domain.

II. EXPERIMENTAL SETUP

A fluid layer of depth d is placed in a narrow rectangular
cell L, XL, (L,=470 mm, L,=60 mm) [Fig. 1(a)]. This layer
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FIG. 1. Top view (a) and cross section (b) of the experimental
cell. Both sketches do not keep the same scaling.

lies over a mirror [Fig. 1(b)] in order to implement the shad-
owgraphy technique. At the center and along a line in the £
direction, the layer is heated at 7}, by means of a thermoregu-
lated rail of 1 mm (thickness). This rail is placed beneath the
mirror and it is laterally isolated providing a smooth Gauss-
ian temperature profile in the y direction. The lateral walls
are two aluminum blocks (coolers) whose temperatures are
kept constant at 7,=20.0£0.1 °C by means of a secondary
water circulation. A more detailed description of the experi-
mental setup can be found in [39].

The fluid used is silicone oil with viscosity 5 c¢St. This
fluid is transparent to visible light with a slow evaporation
rate; therefore in the range of temperatures explored we can
work with the free surface of the layer opened to the atmo-
sphere  whose temperature is controlled at T,
=22.0*0.1 °C. The control parameter for a fixed depth is
the vertical temperature difference, AT,=T,—T,. The rel-
evant physical properties of the 5 cSt silicone oil are the
thermal conductivity A=0.117 Wm™! K7, the thermal diffu-
sivity k=6.68 X 108 m2s~!, and the surface tension o
=19.7 mNm'.

The results reported here are measured for a fixed depth
d=3 mm. The most suitable nondimensional number for the
Bénard-Marangoni convection mechanism is the dynamic
Bond number Bo,=R/M [=(Rayleigh number)/(Marangoni
number)], for which at AT,=30 K we get Bop=~1.04. In
consequence, thermobuoyancy effects (R) are balanced by
thermocapillary effects (M). There are two basic characteris-
tic time scales: the viscosity time scale 7,~2 s and the ther-
mal diffusivity time scale 7,~ 135 s; hence the convective
time scales are supposed to be enslaved to the temperature
diffusion scales.

The shadowgraphic flow-visualization technique allows
us to observe thermal gradients in the bulk of the fluid layer
when an incoming parallel light is sent through the convec-
tion pattern. Once it is reflected back at the mirror surface,
the output beam is projected into a screen. The space-time
varying modulation of the light beam on the screen reveals
the characteristic spatiotemporal periodicity of each pattern;
in Fig. 2 we show some images. The darker aligned spots in
the center correspond to the uprising thermal plumes (or
hotspots) at the heating line. The screen image is recorded
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FIG. 2. (Color online) Pictures on the screen of the patterns: (a)
ST for the stationary mode M (k,,0); (b) ST/ALT for the oscillatory
domains with counterpropagating modes M, (k,, = w,) which are
resonant with M; (¢) ST/ZZ for the spatiotemporal beating regime
with new modes M. (k,, w,) very close to the previous M, .. Below
each picture we show a zoomed sketch of the oscillators involved
and their characteristic wavelengths (A;,\,,N\,=\,—6\).

with a charge-coupled device (CCD) video camera with a
resolution of 570 X 485 pixels and constant focal length, ap-
erture, and gain. The optical devices allow us to visualize on
the screen a centered area of 310 mm X 60 mm from the total
surface area (450 mm X 60 mm) [Fig. 1(a)].

From the image on the screen (Fig. 2) the acquisition
image system records two kinds of spatiotemporal diagrams:
one along a line, over the bright modulation, parallel to the

PHYSICAL REVIEW E 79, 046201 (2009)

aligned hotspots at a fixed contrast position y,, S,(x,?)
[Figs. 3(a) and 3(d)], and another one perpendicular to it at a
given position x,, S,,(v,t) [Fig. 4(a)].

The following results and theoretical discussions concern
the study of a 1D convective system whose geometric aspect
ratios, at d=3 mm are I';=L,/d=150 and I'y=L,/d=20,

hence the ratio r_:7 5 allows us to classify the system as
weakly confined in x.

Measurement process

Spatiotemporal diagrams S,(x,?) are processed via the
bidimensional Fourier transform and complex demodulation
techniques in order to determine the modulus of the ampli-
tude . ;
fundamental Fourier j mode M(k;, ;) [see Figs. 3(c) and
3()]. In this way, each oscillating pattern will be defined by
the following field: W (x,1)=2A; exp[i(kx+w;t) ]+c.c. Also,
demodulation techniques allow us to characterize the dynam-
ics of localized patterns and fronts by defining the following
parameters on S, (x,1):

(i) The signal S, (x,7) is processed by dismissing the nor-
malized amplitude above a critical value u=1/¢ [see Figs.
3(b) and 3(e)]. This method is used to determine the average
size of localized patterns, L., and the nature of their bound-
aries: stationary or fluctuating fronts. Thus the parameter L.
is a coherence length. A similar parameter is defined in other
systems like in the Kiippers-Lorz instability [51], the plane
Couette flow [52], and the Belousov-Zhabotinsky reaction
[53].

(ii) The velocity of propagation of boundaries, v, is de-
termined by measuring the velocity of the front defined by

o Mv+(kv!mv)
- “M(k_,0
| "o
T .
g
Mv—(kv’_mv)
(©)
My, (K, s 0,) | (kvimv)
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FIG. 3. Spatiotemporal diagrams Sya(x,t) in the ST/ALT (a) and the ST/ZZ (d) regimes; (b) and (e) are the corresponding filtered signals
by complex demodulation techniques with u=1/¢; and (c) and (f) are the corresponding Fourier spectra where the fundamental modes have

been defined.
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FIG. 4. In the ST/ZZ regime, at AT,=33.5 K: (a) Spatiotempo-
ral diagram Sxo(y,t) taken over a period of approximately 400 s for
y=30 mm, dark spots correspond to an oscillator belonging to the
77 domain; (b) Fourier spectrum in  from the signal S xn(y,t) [in
(a)] at the acquisition position to record Syo(x,t). From the signal
Syo(x,t): (c) The Fourier spectrum in o [the scaling is different from
(b)]; (d) The Fourier spectrum in k. The components of the critical
mode M_,(k,,».) and the previous existing one M,,(k,,®,) have
been indicated in their respective graphics.
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the new traveling mode with wu=1/e. This method is not
suitable for fluctuating boundaries.

(iii) The invasion rate a;,, is the ratio between the total
surface occupied by the domains belonging to a certain mode
with respect to the total extension of Syo(x, t). This parameter
is measured for the new unstable mode, or modes, which
invade the whole system.

(iv) The attenuation length £ is measured for coexisting
patterns, and it is the length for which the new unstable
pattern penetrates further beyond the coexisting domain
[39,54]. We choose the unstable mode which represents the
new pattern, and we measure the length for which its ampli-
tude decays according to A ~e™¢ (from critical phenomena
[55]), where & is a correlation length of the system. This
parameter might be understood as a ‘“spatial memory” inside
the neighboring domain. This measurement is not suitable
for fluctuating boundaries.

From the unidimensional Fourier transform of the signal
Sxo(y,t), qualitative and quantitative information can be ex-
tracted about the dynamics of a particular hotspot. We
checked that outside the acquisition position selected to
record Syo(x,t), the temporal frequencies of a given oscillator
are the same as the ones provided by Syo(x,t). The sequences
of measurements are taken for ascending steps of 1 and
0.5 K, and correspond to the asymptotic states. Spatiotempo-
ral diagrams Syo(x,t) shown along this report are taken over
a period of 900 s for a centered region of 300 mm.

III. RESULTS AND DISCUSSION
A. A general approach to the experimental results

In the bulk of the fluid layer, for every value of the control
parameter, a primary convection (PC) appears. It consists of
two counterpropagative rolls which ascend at the heating line
and descend at the lateral cooled walls. As soon as AT, # 0,
a primary bifurcation to the stationary ST pattern takes place
(see the stability diagram in Fig. 5). In the shadowgraphy
image of ST [Fig. 2(a)] we observe this multicellular pattern,
with wavelength \;=6 mm [\,~2d, see Fig. 6(a)]. The
physical aspect ratio defined as va=Lx/ A,=~80 is large
enough and thus under this condition the system is extended.
The ST pattern is represented by the stationary mode
M(k;,0). At d=3 mm this pattern never loses stability
against the emerging unstable traveling modes. This is the
cause for which we always find localized domains of the new
pattern coexisting with the ST pattern. As we increase the
control parameter AT,, the transition to weak turbulence
starts. For the different regimes, results on k and w (in Fig. 6)
and on modules |A| (in Fig. 7) are obtained from the de-
modulation analysis of the spatiotemporal diagrams Syu(x,t).
The subsequent secondary instabilities give rise to the fol-
lowing asymptotic patterns summarized in Table I (see also
the stability diagram in Fig. 5):

(i) A mixed ST/ALT pattern. At AT,.;=21 K, the system
bifurcates toward a regime of fluctuating domains, which are
irregular clusters of variable size in the ALT pattern that
usually collapse [Figs. 3(a) and 3(b)]. These ALT domains
show a period doubling of the basic pattern (k,=k,/2), with
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FIG. 5. Stability diagram. Solid lines bound regions with the
same asymptotic dynamics. Dashed arrows correspond to the criti-
cal points, the solid upward arrow corresponds to the ascending
sequences of measurements. Stationary patterns are PC (primary
convection) and ST (cellular pattern). Oscillatory patterns are ST/
ALT (mixed pattern of irregular clusters), ST/ZZ (spatiotemporal
beating regime of stationary clusters), ST/DW (temporal beating
regime), and TW (traveling waves). ST/ALT+TW corresponds to
the coexisting ST/ALT and TW patterns.

two counterpropagative modes M, (k,, = w,) which overlap
the stationary mode M (k,,0). According to the weakly non-
linear coupling revealed from the Fourier spectra [i.e., Fig.
3(c)], inside the fluctuating fronts the two traveling modes
locally destabilize the basic ST pattern. Thus the resonant
triad [M(k,,0), M,-(k,, = w,)] is triggered. According to
results in Fig. 6(b), traveling modes have an average period
of the order of 15 s.

(ii) A spatiotemporal beating regime or ST/ZZ pattern. At
AT,.,=31 K, and for a range of 5 K, one or two large do-
mains in ZZ, with an average width of L.~ 80 mm coexist
with the ST pattern [see the coherent ZZ domain in Figs. 3(d)
and 3(e)]. The ZZ domains are stationary clusters resulting
from the splitting of the spatiotemporal frequencies of the
fundamental modes. The spatial beating phenomenon comes
from the existence of two traveling modes with close wave
numbers (k,,k,) [Fig. 4(d)], meanwhile their characteristic
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zig-zag geometry is due to the temporal beats [two close
temporal frequencies (w,,w,) extracted identically from dia-
grams S, (y 1) in Fig. 4(b) and diagrams S, (x t) in Fig.
4(c)]. From the bidimensional Fourier spectrum [Fig. 3(0)]
we confirm the increasing number of harmonic modes taking
part in a stronger nonlinear dynamics. Consequently, this
beating phenomenon corresponds to the following funda-
mental modes: the stationary mode M (k,,0), the new emerg-
ing traveling modes M. (k,, = w,), and the previous existing
ones M, (k,, = w,). From the results in Figs. 6(a) and 6(b),
we obtain a narrow spatiotemporal frequency band (5k, Sw),
where dk=|k,—k,| and Sw=|w,— w_| are the envelope period-
icities of the spatial and temporal beats, respectively.

(iii) A temporal beating regime or ST/DW pattern. From
AT,;=34.5 K [Figs. 6(a) and 6(b)] onward, the spatial
frequency splitting disappears. Hence in this regime the
competition between the split traveling modes is not able to
sustain spatial beats, only temporal beats remain by means
of a new mode which becomes unstable in a unique and
larger localized domain. This domain is composed of the
following fundamental modes: M (k,,0), M,.(k,, * w,),
th(kln * O)Z).

In Fig. 2, we show the characteristic distribution of
hotspots for these regimes: ST, ST/ALT, and ST/ZZ. Discon-
tinuities in the dynamics of hotspots denote the presence of
1D fronts. We may think of hotspots as a sort of “coarse-
grained units” linked to the hydrodynamic variables which
are able to oscillate like limit-cycle oscillators. Each charac-
teristic pattern depends on the couplings between oscillators,
and future work is devoted to determining different types of
couplings. This topic is discussed in the last section. A re-
view of patterns for thicker layers can be found in [39].

We have found no hysteresis for either of these instabili-
ties, i.e., there is no different behavior in the descending
sequence compared with the ascending one presented here.
For higher depths, classical subcritical bifurcations have
been found [39]. From the diagrams Sya(x,t), in Figs. 7(a)
and 7(b) we show the evolution of the modulus of the am-
plitude of each fundamental mode belonging to the same
quadrant of the symmetric Fourier spectrum: M, M, , M,_
In order to avoid large values of |A,| due to the resonance of
the stationary mode at the boundaries [39], data in Fig. 7(b)

1~
®
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3 (v
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[ DDDD
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FIG. 6. Evolution of the wave numbers (a) and the frequencies (b), scaled with d=3 mm and 7,=d?/v=1.8 s, respectively. Vertical

dashed lines correspond to threshold values (AT,
regime are a guide to the eye.

=31 K, AT,

be3=34.5 K) which bound the ST/ZZ regime and solid lines in the ST/ZZ
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TABLE 1. Regimes in the route to spatiotemporal chaos for increasing AT,.

Stationary pattern (ST)
Mixed pattern (ST/ALT)
Spatiotemporal beats (ST/ZZ)
Temporal beats (ST/DW)

Extended pattern

Localized domains
Localized domains
Localized domains

1 mode: M(k,,0)

3 modes: M(k,,0), M, (k,, £ w,)

5 modes: M(k;,0), M,+(k,, * w,), M +(k,, = w,)
5 modes: M(k;,0), M,+(k,, * w,), M,,+(k,, = ©,)

are determined inside the boundaries confining ZZ and DW
domains.

When we disturb the surface locally and close to the
threshold of the bifurcations to ST/ALT (at AT,.) and
ST/ZZ (at AT,,), the corresponding oscillatory domains be-
come globally unstable in transient regimes. Besides, fronts
show no transversal drifting. As a consequence, the group
velocity is null and both instabilities have an absolute char-
acter.

For consistency with the following sections, we define
two reduced control parameters &,=AT,/AT,.,—1 and &,
=AT,/AT,.,—1 for the two subsequent instabilities toward
the mixed ST/ALT pattern and toward the spatiotemporal
beating regime ST/ZZ, respectively.

B. Irregular clustering dynamics in the mixed pattern

In Fig. 8 we show a sequence of filtered spatiotemporal
diagrams in the mixed ST/ALT regime where the surround-
ing ST pattern has been filtered. The system is bistable in this
regime because localized domains in ALT, with well defined
fluctuating boundaries, coexist with the basic cellular pattern
ST. Fluctuating boundaries are irregular fronts which bound
these localized domains, hotspots belonging to these do-
mains are synchronized in w, and therefore the images in
Figs. 8(a)-8(d) remind us the nature of irregular clusters
(eventually they collapse) like the ones appearing in the
Belousov-Zhabotinsky reaction-diffusion systems [1]. Above
the threshold (g;=0) clusters spread over the whole diagram
S, (x.1) [ie., Fig. 8(c)] until they stop collapsing at AT,
~26 K (g£,=0.24), and saturate into a unique domain of high
spatiotemporal coherence [i.e., Fig. 8(¢)]. This domain will

remain in the next instability to spatiotemporal beats [i.e.,
Fig. 8(f)] where two new unstable modes will emerge.

The basic cellular pattern ST does not ever become un-
stable in the wide range of the explored control parameters
(AT,=[21,43] K). According to previous experimental work
(see references in [44]), the bifurcation diagram would cor-
respond to that of a global subcritical bifurcation where the
threshold branch is unstable for a diverging control param-
eter g, (see sketch in Fig. 9). If we take into account ther-
mocapillary effects competing against thermogravitatory ef-
fects, from the dynamic Bond number Boj, = d?, we infer that
by decreasing d, thermocapillary effects become stronger in
the mixed ST/ALT regime than for higher values of d, where
this dynamical regime coexists with a traveling wave pattern
[39] (see the stability diagram Fig. 5). Consequently, we may
consider that at d=3 mm subcriticality is sent to infinity, and
bistability is a natural consequence in the following instabili-
ties where critical modes become unstable inside these con-
fined domains. However, the subsequent instability might not
necessarily be subcritical as it will be shown in the next
section.

In this transition, the amplitudes of the traveling modes
are constant (see Fig. 9 where |A,,|=~|A,_|) in the range 0
<£,<0.35 (¢y=AT,/AT,.,—1). The frequency w, increases
monotonically with AT, and has an average value of 0.42 s~!
({w7,)=0.75) [Fig. 6(b)]. In Fig. 10(a) we show the invasion
rate of clusters o, vs €. Following the sequence of pictures
in Fig. 8 we infer that, from an initial domain in ALT, as we
increase the control parameter (&), 0, increases until it
spreads inhomogeneously (a;,, = 0.4) all over the spatiotem-
poral diagram Svo(x,t). This process corresponds to the left
branch in Fig. 10(a) with fluctuating fronts. Similarly, in
other transitions to turbulence in open flows we may say that,
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FIG. 7. (a) Evolution of the amplitudes of the fundamental modes M,_, M,,_ inside the domains defined by ZZ and DW; (b) evolution of
the amplitude of the stationary mode M inside the same domains in order to filter the resonant contribution of the mode M| at the boundaries
[the scaling in amplitudes is different from (a)]. Dashed lines correspond to threshold values and solid lines are a guide to the eye. In (a) and
(b) 82=ATU/ATUC2— 1.
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FIG. 8. Sequence of filtered diagrams S, (x t) with u=1/e, the reduced control parameter is defined as e,=AT,/AT,,.,—

1 with AT,

=21 K. Diagrams (a)—(e) correspond to the mixed ST/ALT pattern, diagram (f) corresponds to the beating regime ST/ZZ at the threshold

(82 0).

at this stage, the system is being “contaminated” (i.e., plane
Couette flow [42]). Once irregular clusters are equally dis-
tributed over the spatiotemporal diagram, the average size of
these irregular clusters is L.~30 mm. The spatial and tem-
poral correlation lengths of the stationary mode decay in this
regime. This is the cause for considering ST/ALT as a spa-
tiotemporal chaos regime.

From this point onward, o;,, decreases until it achieves a
practically constant value of approximately 0.14. This is due
to the fact that we are settling the system close to and below
the following instability with the formation of a unique ALT
domain of great spatiotemporal coherence and with station-
ary fronts (v,~0.01 mm/s). This behavior corresponds to
the right branch in Fig. 10(a). We have checked the same
behavior below the following bifurcation with a smaller step.
Regarding these results there is a growth of the “phase co-
herence” which is supposed to play a similar role as the
invasion rate when it increases in the left branch. In this left
branch, as we increase the control parameter more oscillators
are synchronized nearby w, according to an irregular cluster-
ing dynamics.

The theoretical approach to this clustering process is close
to the diffusion-induced inhomogeneity proposed by Daido
and Nakanishi [56] except for the global coupling, if we
suppose that hotspots are being locally coupled by diffusion
and convection. The growth of phase coherence is supposed
to trigger the clustering process until the “phase synchroni-
zation” spreads over the whole array of oscillators, when
there are two stationary clusters (ST/ZZ regime).

C. Supercritical bifurcation to the stationary clusters’ regime

For even higher temperatures the system becomes un-
stable toward the beating regime. In this ST/ZZ pattern, stud-
ied along two ascending sequences by steps of 0.5 and 1 K,

two domains saturate to a fixed width value of L.~ 80 mm.
The ALT pattern inside has become unstable because of the
emerging unstable modes. These are two new traveling
modes, M., which are very close to the previous existing
ones, M,.. From Figs. 6(a) and 6(b) we extract, in the
ST/ZZ regime, the envelope frequencies: ok=~0.04 mm™'
and dw=0.10 s~'. These results are in agreement with the
spatiotemporal periodicities of the demodulated signals
shown in Figs. 11(a)-11(d), the spatial periodicity of the
beats is of 157 mm (=2L,), and the time periodicity is of
124 s (=62 s of maximum amplitude, brightness periodicity
of zig-zags). The beating dynamics of the ST/ZZ pattern de-
pends on the competition between the unstable modes M.

A
0.4 I Al Several irregular clusters :
i ALT 5
0:85 __ A unique cluster of 1 __
great spatiotemporal
—~ 03H coherence % -
[22] L N : 4
= 5 |
c - -
§ 025 b _ |
. i e=0 g, — g LA
£ o2 St : £ .
& 3 b
— 0.15+ Several domains One domain 3 |
<> with fluctuating fronts with stationary | |
- 01r fronts (N
S 1 ST/ALT ST/ALT o |
0.05—5—1 e = .
0

0050 0.05 0.1 0.5 o|.28'0.|25' 03035 04 045 05
1

FIG. 9. Evolution of the amplitude of the fundamental traveling

mode M,_ along an ascending sequence of &;=AT,/AT,.;—1 in-

side the bifurcated domains. Vertical dashed lines separate different

regimes and the solid line corresponds to the averaged amplitudes.

The inset is a sketch of the diagram of bifurcation from the station-
ary ST regime to the ST/ALT regime.
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FIG. 10. (a) Invasion rate of the traveling mode M,_ close to and above the bifurcation to the mixed ST/ALT pattern for two different
sequences by steps AT=1 and 0.5 K. The reduced control parameter is £, =AT,/AT,.;—1. Solid lines are a guide to the eye; (b) invasion rate
determined by the modes M,_ and M,_ which represent the beating regime with u=1/e and along an ascending sequence. The reduced
control parameter is e,=AT,/AT,.,—1. Vertical dashed lines separate different regimes at threshold values: AT,.;=21 K, AT,.,=31 K,

AT, ;=345 K.

and M., their amplitudes and the spatiotemporal frequency
band (k, dw). The invasion rate is approximately constant
0y =0.18 [Fig. 10(b)].

Above the threshold (g,=0) this regime is strongly non-
linear and beyond this instability, the pattern loses the spatial
frequency splitting. Above AT,.;~34.5K (g,=0.11), the
temporal frequency splitting still remains in the new ST/DW
pattern [Figs. 7(a) and 7(b)]. In this ST/DW pattern, a unique
and wider domain in DW exists whose 1D fronts, as we
increase AT, convert into a chain of dislocations [i.e., Figs.
12(a) and 12(b)]. Besides, the stationary mode M, drifts as
has already been observed in other systems for high control
parameter values [57]. Inside this DW domain, we observe
an increasing number of temporal beats (their period dimin-
ishes) the further the system is from the threshold. This is in
agreement with the results in Fig. 6(b) where the distance dw

FIG. 11. A sequence of demodulated diagrams S\.o(x, 1) selecting
the pair M,,_, M,_ for increasing AT, in the ST/ZZ régime: (a) 31 K
(£,=0), (b) 31.5 K (£,=0.02), (c) 32 K (£,=0.03), (d) 33.5 K (&,
=0.08). Dark and bright regions correspond to the minimum and
maximum values of the amplitude.

becomes larger. Further above &,=0.29 a different dynamics
due to the increasing number of dislocations is responsible
for a variable a;,, [Fig. 10(b)]. In Fig. 7(a) we notice that the
evolution of the rate of the amplitudes |A._|/|A,_| increases
continuously, from 2 to 7, until the onset of the ST/DW
regime, where the nonlinear coupling between modes does
not generate the spatial splitting of the oscillatory modes.

The continuous growth of the modulus of the amplitude
of the critical mode M,_ has been checked analyzing both the
whole diagram Syo(x,t) and the ZZ domain [Fig. 7(a)]. This
continuous evolution of the modulus of the critical ampli-
tudes |A,.| agrees with a supercritical bifurcation. On the
other hand, from results in Fig. 6 it follows that the phase
velocity v,=w/k along the whole cascade grows linearly
with the vertical temperature gradient.

The supercritical transition to ST/ZZ is the beginning of a
phase synchronization transition nearby the stationary cluster
phase determined by the critical frequency w,. This phase
transition has to be completed far from the threshold £,=0
[58]. According to subcriticality (the subcritical ST branch is
imposing bistability), from the analysis of the correlation
length as an attenuation length of the new pattern (ST/ZZ)
inside the original one (ST), we get (£)=25 mm. This sub-
critical length cannot be determined with fluctuating bound-
aries. Nevertheless, for the mixed ST/ALT pattern the role of

E.ai{
: : < 1 -

I {. \ .- ‘ ‘
N

i KON p

FIG. 12. (a) Spatiotemporal diagram S, (x,7) at AT,=42 K

(£,=0.32) (b) the corresponding diagram for the phase gradient of

the mode M,. Spatiotemporal grain boundaries are observed as
chains of dislocations.
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FIG. 13. (a) Bifurcation diagram |A| vs & where e=AT,/0.1 K —1 is the reduced control parameter defined from the threshold of the
instability to ST while &(AT,,,), e(AT,.,), and £(AT,.3) are the reduced control parameter at the thresholds of the subsequent instabilities;
(b) sketch of the dynamics of the localized domains for the same increasing control parameter &, the order parameter is |A| for the

corresponding critical modes.

O, has contributed to the interpretation of a sort of diverg-
ing correlation length that follows the inhomogeneous
growth of the phase synchronization over the whole array of
oscillators [Fig. 10(a)]. Regarding the supercriticality of the
critical modes in the ST/ZZ regime M_.(k,, * w,), the cor-
relation length ¢ at the threshold should diverge, according to
this its comprehension goes beyond the point of view of
critical phenomena regarding the attenuation of critical am-
plitudes.

IV. FURTHER REMARKS AND CONCLUSIONS

For a thermoconvective fluid layer, we have reported a
route to spatiotemporal chaos for a system of high dimen-
sionality with N=80 coupled oscillators. Synchronized in-
teractions between hotspots define domains with the same
oscillatory pattern and with specific 1D fronts. These 1D
fronts can be of the fluctuating type, for irregular clusters
(with weak coupling between oscillators), which take part in
a process of inhomogeneous growth of the phase coherence.
For higher control parameter values a new type of clusters
emerges with stronger coupling between oscillators: 1D
fronts are stationary in this phase synchronization transition
to ST/ZZ. Bifurcations to the mixed ST/ALT (irregular clus-
ters) and ST/ZZ (stationary clusters) patterns are global in-
stabilities where synchronized clusters have different coher-
ent widths expressed in terms of L.. We have shown that the
size of the clusters at the beating regime is given by the
wavelength of the spatial phase envelope and comes from a
spatial frequency splitting.

In order to follow the whole sequence of bifurcations pre-
sented here, if the primary instability from PC towards the
stationary ST pattern is produced at AT,=0.1 K, we may
define the reduced control parameter e=AT,/0.1 K —1. The
bifurcation diagram in Fig. 13(a) shows the cascade of bifur-
cations in the transition to spatiotemporal chaos for this ex-
tended 1D array of convective oscillators. Using the ampli-
tude of the critical modes, as the most convenient order
parameter, we show how the system undergoes a supercriti-
cal bifurcation to the beating regime ST/ZZ. There is a sub-
critical width in the ST/ZZ pattern determined by L. which is
compatible with the existence of a supercritical bifurcation
of the unstable traveling modes M ... This instability appears
from a mixed ST/ALT pattern of localized clusters which are
inhomogeneously spread. Oscillators belonging to this spa-

tiotemporal chaos regime are synchronized in w,, but often
these irregular clusters collapse, similarly to an aging clus-
tering dynamics for weak coupling. The growth of phase
coherence accounts for the clustering process until the en-
semble of N-coupled oscillators becomes phase synchronized
in w, far from the threshold of this beating regime ST/ZZ
(AT,,) [58]. Beyond this ST/ZZ pattern, the system keeps
only temporal beats in the ST/DW pattern. We have sketched
the evolution of the clustering process in Fig. 13(b), where
the order parameter is the module of the amplitude |A| of the
critical traveling modes. The dynamics in the ST/ZZ regime
depends on the competition between the split traveling
modes.

The existence of localized domains in the beating regimes
(ST/ZZ and ST/DW) approaches the statistical model for
chaos of Hohenberg and Shraiman [7] in extended 1D sys-
tems, when the scales of energy supply and dissipation are of
the same order: the depth of the fluid layer d (being d<<L,).
Under these conditions, at d=3 mm our system exhibits two
spatiotemporal coherent domains of width L.<L,, L.>§,
where £ has been defined as a correlation length of the sys-
tem and has been measured as an attenuation length of the
new ST/ZZ pattern inside the surrounding pattern ST ({(&)
~30 mm and £<L)). In this context, the domains of width
L. are correlated surfaces in space and time. Nevertheless, if
we keep in mind the whole dynamics (from the mixed ST/
ALT pattern to the beating regime) and look for a physical
explanation of these kinds of transition phenomena, we are
pushed to understand synchronization transitions in a con-
vective system. For a given ensemble of N-limit cycle oscil-
lators distributed on a 1D array of extension L,, depending
on the type of diffusive coupling, the interaction range be-
tween oscillators, y, can be (i) local [between neighboring
oscillators, y=L,/(N—1)] leading to spatiotemporal chaos;
(ii) global (all-to-all, y=L,) leading to collective synchroni-
zation phenomena; and (iii) nonlocal [further than the nearest
neighbors, L,/(N-1)<y<L,] leading to the existence of
coherent patterns. Cooperative phenomena are present in
both secondary bifurcations. The interaction between
hotspots corresponds to a diffusive coupling between nearest
neighbors which, as far as we increase the control parameter,
becomes stronger due to nonlinearities. A phase dynamics
may be suitable for the weak nonlinear regime at the mixed
ST/ALT pattern (this work is in progress). Moreover, a phase
description can be extended to the beating regime with non-
local coupling [58], despite its strongly nonlinear character,

046201-9



M. A. MIRANDA AND J. BURGUETE

except for the defect mediated turbulence displayed in the
ST/DW regime. Regarding the Kuramoto model [14] for a
weakly nonlinear system of N interacting oscillators (i
=1,...,N) with their raw phases, ¢,, which include the con-
tributions from the fundamental and the harmonic modes, the
most suitable model might approach the following phase
equation for a local (nonlocal) coupling:

N
bi=Fiw)+ 2 Hi{(OT(di = b)), (1)
j=1

where F; is a function of the fundamental frequencies of the
oscillators: Fi(w,) in the mixed ST/ALT regime, and
F{w,,®,) in the beating regimes. H,(t) accounts for the
time-dependent adjacency matrix whose elements are non-
Zero, H,‘j(t)z 1, for each connected pair of oscillators, while
Hl-j(t):O otherwise. In our system, this connection defines
the topology of the network which happens to be linked to
the dynamics (i.e., beats [58], collapsing and spreading phe-
nomena). In fact, H;(¢) is providing the range of interaction,
meanwhile I';; represents the magnitude of the coupling
strength between connected oscillators. Near the threshold,
I';; usually takes the easiest description [59]: I';;=sin(¢;

PHYSICAL REVIEW E 79, 046201 (2009)

—¢>j), but in order to follow the dynamics further, a more
complex I';; function might be numerically tested, holding
the effect of nonlinearities which are responsible for a stron-
ger coupling strength.

Concerning coherent phenomena from an experimental
point of view in extended systems, we should emphasize the
dynamical features which are also shared with other systems
in the route to weak turbulence: (i) the existence of critical
domains with saturated widths (stationary clusters in the
ST/ZZ regime of size L.), (ii) the existence of a cascade of
bifurcations toward a regime (ST/ZZ) where the fundamental
traveling modes split in both space and time, and (iii) the
existence of localized patterns which are strongly nonlinear
(ST/DW). We expect that these results may provide a new
insight into spatiotemporal chaos and complex systems.
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