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Phase-2 re-entry is thought to underlie many causes of idiopathic ventricular arrhythmias as, for instance,
those occurring in Brugada syndrome. In this paper, we study under which circumstances a region of depo-
larized tissue can re-excite adjacent regions that exhibit shorter action potential duration �APD�, eventually
inducing reentry. For this purpose, we use a simplified ionic model that reproduces well the ventricular action
potential. With the help of this model, we analyze the conditions that lead to very short action potentials �APs�,
as well as possible mechanisms for re-excitation in a cable. We then study the induction of re-entrant waves
�spiral waves� in simulations of AP propagation in the heart ventricles. We show that re-excitation takes place
via a slow pulse produced by calcium current that propagates into the region of short APs until it encounters
excitable tissue. We calculate analytically the speed of the slow pulse, and also give an estimate of the minimal
tissue size necessary for allowing reexcitation to take place.
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I. INTRODUCTION

Cardiac arrhythmias and sudden cardiac death are among
the most common causes of death in the industrialized world
and predictions by the World Health Organization �WHO�
are pointing towards a more dramatic situation for the 21st
century �1�. Despite decades of theoretical and experimental
research on the mechanisms responsible of cardiac arrhyth-
mias, the causes of lethal arrhythmias are still incompletely
understood.

A normal heart pumps blood throughout the body by
means of an electrically synchronized contraction. This con-
traction is initiated by a change in the transmembrane poten-
tial of cardiac cells, starting at the sinoatrial node, whose
self-excitatory cells act as the pacemakers of the heart. Sub-
sequently, the electric wave spreads along the atria and the
ventricles, and its activity can be monitored in an electrocar-
diogram �ECG�. During normal rhythm �sinusal rhythm�,
thus, the heart beats regularly. In some situations, however,
failures in regular wave propagation can cause the formation
of reentrant waves �also called rotors�, creating regions
where excitation propagates in closed loops, with a period
two or three times faster than normal. This corresponds to
monomorphic or polymorphic tachycardia, depending if
there is a single or multiple sources of reentrant waves. Al-
though very often tachycardia terminates spontaneously, it
may in some occasions degenerate into ventricular fibrilla-
tion �VF�. The latter being a life-threatening cardiac disorder,
where rotors are created and destroyed continuously, and
synchronous excitation of the heart is lost. In this situation,
the ability of the heart to pump blood decreases dramatically,
and death occurs in a few minutes, unless a successful
defibrillatory shock is provided.

In patients with structurally normal hearts polymorphic
ventricular tachycardia �VT� and ventricular fibrillation �VF�
account for 4% to 12% of the total sudden deaths each year.
The formation of rotors is often due to the existence of

dispersion of action potential �AP� repolarization in a region
of cardiac muscle, which provides the substrate for reentry
via, for instance, conduction block under rapid pacing, or
phase-2 reexcitations. In this latter mechanism, the AP dome
is lost at some regions of tissue, but not at others, that can
therefore reexcitate the already repolarized tissue �2�. Often,
the loss of dome results from the interplay between the fast
sodium current INa responsible of the depolarization of the
cell �phase 0 of the AP�, and the transient outward current Ito,
that creates the notch of the action potential �phase 1� �3,4�.
If, as a result of the competition of these two currents, the
transmembrane voltage remains below the threshold value
for activation of the L-type calcium current ICaL, then the
dome of the AP is lost. This is particularly relevant in the
right ventricle �RV�, where Ito has been shown to be stronger
�5�. Phase-2 reentry due to regions with loss of dome has
been observed in situations resembling ischemia �6�, or un-
der conditions of elevated extracellular calcium with rapid
pacing �7�. Another prominent example is Brugada syndrome
�8�. This is a genetic disease that produces well-recognized
changes in the electrocardiogram, characterized by an eleva-
tion of the ST-segment terminating in a negative T wave in
the right precordial leads. Since its discovery in 1992, Bru-
gada syndrome has been linked to more than 90 different
mutations �9�, including genes affecting the Na+ and Ca2+

channels �10,11�. Particularly, between 10% and 30% of the
cases of Brugada syndrome are related to mutations in the
SCN5A gene �12,13�, which encodes the �-subunit of the
voltage-gated sodium channel Nav1.5 �14�. These mutations
have been shown to result in loss of function of the sodium
channel, giving rise to either reduced Na+ channel conduc-
tance or a change in the voltage dependence and dynamics of
INa activation, inactivation, or reactivation �15�. The exact
mechanism linking this genetic defect to the genesis of reen-
trant waves is, as yet, not completely understood. The sub-
strate for reentry most probably appears when the action po-
tential dome is lost at some epicardial sites but not at others,
thus resulting in dispersion of repolarization within the epi-
cardium. The origin of this effect may lie in the heteroge-
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neous distribution of transient outward current �Ito� conduc-
tance, which is known to vary transmurally from epicardium
to endocardium, but has also been observed to change along
the epicardium, from apex to base, and from apex to septum
�16,17�. In fact, an epicardial dispersion of repolarization
leading to VT via phase-2 reentry has been observed in iso-
lated canine ventricular myocytes with an Ito activator �18�.
This link has been recently reinforced by the discovery that
mutations in a gene affecting the strength of Ito current are
related to cases of Brugada Syndrome �19�.

Theoretical studies show that an inhomogeneous distribu-
tion of Ito can give rise to very disparate values of action
potential duration �APD� in neighboring cells, leading to re-
excitation �20–22�. This takes place via phase 2 reentry
�7,15�, where electrotonic currents from a depolarized region
of tissue �during calcium current entrance, or phase-2 of the
AP� are enough to provoke the firing of an AP in an adjacent
area. All together, this explanation of the arrhythmogenic
substrate in Brugada syndrome is known as the “repolariza-
tion disorder hypothesis.” Simulations with the Luo-Rudy
dynamic �LRd� model in a cable with a discontinuity of tran-
sient outward current conductance, gto, have shown that INa
is never triggered at the exact same point of the fiber where
the discontinuity is located �22�. At the discontinuity point,
rather, the recovery of the dome in the region with lower gto
produces a gradient of transmembrane voltage. Spatially, this
results in a front in voltage that propagates slowly into the
region of high gto, most probably due to the activation of the
L-type calcium current ICaL. This proceeds until the front
reaches a point where the sodium gates have had enough
time to recover, producing an influx of INa and a fast depo-
larization pulse.

Motivated by these computational results, in this work we
study in detail under which circumstances does phase-2 re-
entry occur. We perform the analysis using a simplified car-
diac model �23� that allows us to gain further insight into the
mechanisms of reexcitation. In the next section we describe
this simplified ionic model and how the numerical simula-
tions are performed. In Sec. III, we study the mechanism of
reexcitation. We start analyzing the conditions under which
the APs lose the dome. This knowledge is later used to select
the parameters for the simulations in a cable. We show that
reexcitation is due to the existence of a slow pulse that
propagates into the region of short APs until it triggers the
fast pulse, similarly to the observations previously done in a
realistic cardiac model �22�. The results from the numerical
simulations are compared with theoretical predictions based
on an analytical calculation of the slow pulse. Finally,
phase-2 reentry and its corresponding ECG is studied in
simulations of AP propagation in a geometrical model of the
rabbit’s ventricles with a gradient of Ito conductance. The last
two sections are devoted to the discussion and the conclu-
sions.

II. MODEL EQUATIONS FOR THE ACTION
POTENTIAL PROPAGATION

Simulations of the propagation of the action potential
�AP� throughout the heart are based on the standard mon-
odomain propagation model �24,25�,

�Ṽ

�t
= � · �D � Ṽ� −

Ĩion

Cm
+

Ĩstim

Cm
, �1�

where � is the nabla operator, Ṽ is the membrane potential
�with commonly used “cardiac” units: mV�, Cm is the mem-

brane capacitance ��1 �F cm−2�, D=� / �S̃Cm� is the aniso-
tropic conductivity �sometimes called diffusion� tensor
�units: cm2 ms−1�, � is the electrical conductivity �units:

m�−1 cm−1� and S̃�S /V is the cell surface to volume ratio
�units: cm−1�. For the three-dimensional simulations, one
must also take into account the inhomogeneous and aniso-
tropic behavior of the diffusion parameter �26�. The values
for the longitudinal diffusion D� =10−3 cm2 /ms and trans-
verse diffusion D�=6.75�10−5 cm2 /ms are taken from the
paper by Aguel et al. �27� and reflect the fact that the con-
duction velocity is more than three times larger along the
fibers than in their transverse plane �i.e., transverse isotropic
diffusion tensor�. The simulations in a one-dimensional cable
are carried out by replacing the spatial derivative term

� · �D� Ṽ� by its one-dimensional counterpart D�xx
2 Ṽ in Eq.

�1�. In this case, the diffusion parameter is set to the value for
longitudinal diffusion D�. We discretize Eq. �1� using a
simple forward explicit Euler method with dx=0.015 cm
and dt=0.01 ms.

In the present paper, cardiac excitation and propagation
are simulated using a simple five-variable model �23�. This is
a modification of the three-variable ionic model proposed by
Fenton and Karma in 1998 �28�. We decompose the total

membrane current into four components, i.e., Ĩion= Ĩ fi+ Ĩsi

+ Ĩso+ Ĩto, where the sum contains a fast inward current Ĩ fi
�Na+ current plus the fast part of the Ca2+ current, in realistic

cardiac models�; a slow inward current, Ĩsi �correspondingly,

Ca2+ current�; a slow outward time-independent current, Ĩso;

and a fast transient outward current, Ĩto, these last two corre-
sponding to the sum of several K+ currents in detailed mod-

els. The fast transient outward current Ĩto is the newly added
current with respect to the previous three-variable model pro-
posed by Fenton and Karma �28�. Note that it is important to
take it into consideration if one is interested in describing the

Brugada syndrome. Indeed, the Ĩto current is responsible for
counteracting the effect of the sodium entry into the myo-
cytes. In the Brugada syndrome, due to the weakness of so-

dium fluxes, the entrance of Ĩto is often enough to result in a
loss of dome of the action potential.

The explicit expressions of these currents in terms of the
activation and deactivation gates are given in Appendix A. In
the following, in order to alleviate the mathematical notation,
we will rewrite Eq. �1� in dimensionless form by defining

the membrane dimensionless voltage V= �Ṽ− Ṽres� /�Ṽ,

which varies roughly between zero to 1.5 and where Ṽres

=−83 mV is the resting potential and �Ṽ=85.7 mV is an
arbitrary potential difference. We also define the scaled cur-

rents Ifi= Ĩ fi / �Cm�Ṽ� �and similar expressions for the others
currents, Iso; Ito; Isi, which have all dimension of inverse time
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and units are ms−1�. In Fig. 1�a� we compare the fit of the
five-variable model with the experimental epicardial AP
given in the Ref. �29�. The corresponding parameters are
given in Appendix A �Table I�. In the following we will refer
to these parameters as wild type �WT�. The fitting technique
is based on a standard nonlinear optimization routine from
Matlab based on the Levenberg-Marquardt algorithm �30�
where one minimizes at each iteration step the mean qua-
dratic error between the experimental data and the output of
the model.

III. MECHANISMS FOR REEXCITATION IN CARDIAC
TISSUE PRESENTING DISPERSION OF APD

In Figure 1�b�, we show that a large Ito conductance can
drastically reduce the effect of the slow inward �calcium�
current Isi. In the Brugada syndrome this is exacerbated by a
reduction of the depolarization current, caused by a rapid
inactivation of the membrane sodium channels, leading to a
decrease of the inward current at the initiation of the action
potential. In the epicardium tissue, where the potassium me-
diated transient outward current is large, this may result in
the disappearance of the characteristic dome of the action
potential. If this loss is not homogeneous, dispersion of re-
polarization ensues. This is a strong proarrhythmic situation.
Indeed, the region without dome becomes newly excitable by
the neighboring regions that have not yet repolarized, creat-
ing the right ingredient for initiating phase 2 reentry and
inducing tachycardia and fibrillation �31�.

The origin of a heterogeneity in repolarization is not com-
pletely clear. It could be due to a gradient in Ito, since it has
been observed that the expression of the fast �Itof� and slow
�Itos� components of this current change from apex to base,
or from apex to septum �16,34,35�. In Brugada syndrome, it
could also be due to a heterogeneous distribution in the
strength of the mutation affecting the INa current, although,
to our knowledge, there is no clear evidence of this point.
Whichever is the source of heterogeneity, we claim that the
mechanism for phase-2 reentry will remain the same, as long
as the L-type calcium current is not affected.

In the following, we will consider first the conditions for
the loss of dome in a single cell. Then, study a cable with a
gradient in the transient outward current conductance gto,
and the ensuing dispersion of repolarization. We will show
that this heterogeneity is almost independent of the strength
of the gradient. We then consider a spatial variation in gto
�and also in �h−

� in the form of a Boltzmann gradient �as in
Ref. �21�� and study the mechanism for reexcitation in this
situation.

A. Loss of dome and dispersion of repolarization

1. Loss of the AP dome in a single cell (0D simulations)

The appearance or not of a dome depends on the value of
the transmembrane potential at the end of the phase-1 of the
action potential. Therefore, three parameters are the most
important: the strength gfi and the inactivation time �h−

of the
fast inward current Ifi, and the strength of the transient out-
ward current gto. Another important parameter is related with
the slow inward current Isi �or ICaL in more realistic models�,
through its conductance gsi. As shown in Fig. 2, the dome
can be lost either by decreasing gfi or �h−

for fixed gto, or by
increasing gto for fixed gfi or �h−

. In any of these cases, the
transition from dome to domeless AP is always very sharp. In
contrast, the parameter gsi has a different effect. When gsi is
low, the AP is short, and increases gradually as gsi is in-
creased, with a narrow band of domeless APs at higher val-
ues of gto. For large values of gsi �see Fig. 2�f��, the region of
short APDs disappears, and there is a direct transition from
no AP to long APDs.

0 100 200 300 400
time (ms)

0

0.5

1

1.5
vo

lta
ge

(a
rb

.u
ni

ts
) Model

Experimental

0 100 200 300 400
time (ms)

0

0.5

1

1.5

a) b)

FIG. 1. �a� Comparison between the five-variable model and an
experimental action potential in ventricular tissue, in a cell paced
with a stimulation period of 1 s. �b� Action potentials for the stan-
dard, or wild-type �WT�, parameters �dotted line� and modified pa-
rameters showing a shortening of the APD obtained by increasing
the transient outward current conductance gto: gto=2.45�gto

WT �dot-

dashed line�; gto=2.46�gto
WT �dashed line�; gto=2.56�gto

WT �solid
line�.

TABLE I. Values of the parameters in the model �shown with
three significant digits�. They are determined using a routine that
fits the model to the experimental AP values in �29�.

Parameters Numerical values Units

�h+
39.2 ms

�h−
3.47 ms

� f+
40.0 ms

� f−
180 ms

�r+
9.13 ms

�r−
6.93 ms

�s+
39.2 ms

�s−
3.47 ms

gfi 3.47 ms−1

Vfi 1.60

gso 0.0240 ms−1

gsi 0.0529 ms−1

	1 9.89

	2 4.44

V1 0.250

V2 1.26

gto 3.49 ms−1

Vc 0.130

Vr 0.200
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2. Dispersion of repolarization due to a gradient in gto

(1D simulations)

Optical mapping has been used to obtain maps of AP
duration on the ventricles, emphasizing the relation between
dispersion of repolarization and phase-2 reentry �31�. The
underlying cause of this heterogeneous distribution of APD
remains less clear. From the results of the previous section
�Sec. III A 1�, one expects that small changes of electro-
physiological properties should be enough to provoke notice-
able dispersion of repolarization. To clarify this point, we
have performed simulations in a cable with a gradient of gto,
and measured the resulting APD at all locations in the fiber.
As can be seen in Fig. 3, there exists always a localized
discontinuity in APD, that is furthermore almost independent
of the strength of the gradient. This is in agreement with the
results of Sec. III A 1 where simulations in single cell al-
ready showed that a minute change in gto can result in a large
variation of APD �see Fig. 2�.

B. Reexcitation in a cable

1. Reexcitation

Up to this point, we have studied the conditions for the
appearance of dispersion of repolarization. However, to ob-
tain phase-2 reentry, reexcitation of the repolarized region
must occur. We now study this point in a cable paced at one
end. We will consider changes of the electrophysiological
properties modeled by a Boltzmann gradient of the type:

gto = gto
min +

gto
max − gto

min

1 + exp��x − L/2�/s�
, or

gto = gto
max −

gto
max − gto

min

1 + exp��x − L/2�/s�
�2�

and equivalent expressions for other electrophysiological
quantities. The parameter s is related with the strength of the
gradient. Unless otherwise stated we will take s=0.05 cm.

FIG. 2. �Color online� Values of the APD as a function of several parameters of our model. Black regions means no AP, blue intermediate
regions depict domeless AP, and red regions correspond to normal AP. We show in the upper row �a, b, and c� the results for normal
epicardium, while in the lower row �d, e, and f� we have introduced the following changes: �d� and �f� �h−

=2.31 ms=�h−

WT /1.5, �e�
gfi=2.5 ms−1=gfi

WT /1.39.
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FIG. 3. Value of the APD at all spatial locations in a fiber of length L=3 cm. All points in the cable are stimulated at once. The spatial
distribution of the parameter gto follows a ramp given by gto=4.5 ms−1+G�L /2−x�. Here we show the influence of the gradient �slope� G.
The ramp connects to the constant values: gto=5.5 ms−1 at the left side of the cable and to gto=3.5 ms−1 at the right side of the cable.
Note that for the smallest gradient in �b� �G=0.07 ms−1 cm−1�, we have taken gto=5.16 ms−1+G�L /2−x�, so that it could fit in the same
figure as with the other gradient parameter. The difference between �a� and �b� lies in the fact that in �a� we take gsi=gsi

WT, while in �b�
gsi=1.08�gsi

WT.
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The two expressions correspond to a gradient that decreases
or increases with x. In Fig. 4 we illustrate several cases in
which reexcitation �in the form of backward reexcitation BR
or forward reexcitation FR� can be induced, for different
values of the parameter gsi. Dispersion of repolarization is
obtained by applying a gradient in gto values to the fiber
following the expression of the Eq. �2�, except in the last
panels �see Figs. 4�g� and 4�h��, where we rather set a change
of Ifi inactivation time �h−

. Typically, as the pulse travels
from the region with large �small� gto to the region of small
�large� gto, it recovers �loses� the dome �Figs. 4�a� and 4�b��.
For larger values of gsi �Figs. 4�c� and 4�d�� the dome may

propagate back into the region of large gto, resulting in a
delayed dome �an early afterdepolarization phenomenon-
EAD�. Depending on the values of the Isi current, diffusion
and inactivation time, this delayed dome can, in fact,
produce reexcitation �Ifi entrance�, as it is displayed in Figs.
4�c� and 4�d�, or even multiple reexcitations, as shown in
Figs. 4�e� and 4�f�. Pacing from one end of the cable �here
from the lower end�, the reexcitation can be either antidro-
mic �BR, see Figs. 4�d� and 4�f�� or orthodromic �FR, see
Figs. 4�c� and 4�e��, depending on which side of the cable
has the largest value of gto. The same situation happens when
gto is constant along tissue, but the dispersion of APD is
caused by a gradient in the fast inward current inactivation
time �h−

, as it could be the case in the Brugada syndrome
�Figs. 4�g� and 4�h��.

2. Effect of a change in the gradient

In the previous subsection we have shown that, increasing
gsi beyond a critical value, it is possible to obtain reexcitation
when we impose a gradient of electrophysiological proper-
ties. Now we want to address the question of how dependent
is the critical value of gsi on the strength of the gradient. For
that, we have considered a pulse propagating in a gradient of
decreasing values of gto, and calculated the critical value of
gsi as a function of s �Fig. 5�. The resulting curve seems to fit
very well by an expression of the form gsi=gsi

� +a0 ln�1
+s /a1�, where gsi

� is the critical value of gsi for reexcitation
with a discontinuous jump in gto. Thus, the gradient imposes
a logarithmic correction to the critical value of gsi. Interest-
ingly, this fit suggests that even for very small gradients,
there is always a value of gsi that gives rise to reexcitation.

3. Analysis of the slow calcium pulse

Since reexcitation occurs during the phase 2 of the action
potential, the responsible of the front diffusing to the loss-
dome region must be the slow inward �calcium� current Isi.
In fact, by increasing the parameter gsi, one observes a range
of values for which a slow pulse propagates, and produces
reexcitations periodically, as it is shown in Fig. 6�a�. To fur-
ther confirm that the slow pulse observed in Fig. 6 is indeed
due solely to Isi, we run a simulation �Fig. 6�b�� in which we
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FIG. 4. �Color online� Space-time plots showing the evolution
of a pulse in a 1D fiber with a gradient of Ito conductance, or Ifi

inactivation times. The length of the cable is L=7.5 cm, and the
total simulation time is 1 s. Depending on the conductance of the
slow inward current gsi the system may present no reexcitation �a�
and �b�, or multiple reexcitations �FR or BR�, with or without re-
covering the dome. The values of the parameters are for �a� and �b�
gsi=0.9�gsi

WT; in �c� and �d�, gsi=gsi
WT; in �e� and �f�, gsi=1.08

�gsi
WT. For �a� to �f�, one sets gto

min=3.5 and gto
max=5.5 ms−1 in the

two sides of the cable and �h−
=�h−

WT /1.5. In panels �g� and �h�,
one sets gsi=1.1�gsi

WT and gto=4.5 ms−1, with �h−

max=3.47 and
�h−

min=1.735 ms−1 in each side of the spatial domain.
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FIG. 5. Critical value of gsi necessary to obtain reexcitation as a
function of the strength of the gradient in gto. We take gto=3.5
+2 / �1+exp��x−L /2� /s��. In the simulations with a shallow gradi-
ent the length of the system is increased as to reach values of gto

within 1% of the maximum and minimum.
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set Ifi and Ito equal to zero for some time �t
600 ms�, after
which we turn on all the currents �t�600 ms�. The slow
pulse is unperturbed for t�600 ms but fast pulses are peri-
odically emitted from it.

Interestingly enough, for Ifi= Ito=0, the shape and the
speed of the slow pulse can be calculated analytically �see
the detail of these calculations in the Appendix B�. Using
Eqs. �B17� and �B18� we show that, as a function of the
strength of the calcium conductance gsi, the slow pulse ap-
pears trough a saddle-node bifurcation which is typical in
excitable media �see Fig. 7�a��. The position of the saddle-
node bifurcation depends on the parameter f0, which physi-
ologically corresponds to the level at which the gate of cal-
cium has recovered after the emission of a fast pulse. When
Ifi and Ito are turned on, the pulse shape is not exactly time

invariant and rather oscillates with the same frequency as the
frequency of reexcitations. This kind of structure is known as
a “traveling breather” in the dynamicist community �32�. To
further check that, in fact, this slow pulse still corresponds to
the Isi induced pulse calculated in Appendix B, we have com-
pared the shape of the pulses in Fig. 6�b� for gsi=1.15
�gsi

WT. All in all, the comparison between the analytical cal-
culations and the numerical calculations is quite good. In the
cases, as in Figs. 4�c� or 4�d� where the pulse exists only
transiently, one must be seeing a saddle-node remnant that
attracts the solution for some time �33�. Although the deter-
mination of this time is important in order to calculate how
far the transient pulse can propagate, and therefore, what is
the likelihood of obtaining a reexcitation, such analytical cal-
culation goes beyond the scope of the present paper.
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FIG. 6. �Color online� �a� Pulse with multiple BR, obtained with the parameters gsi=1.07�gsi
WT, �h−

=�h−

WT /1.5, and the rest of parameters
are those given in Table I of Appendix A. The gradient in gto is centered at xd=27 cm with gto

max=6.2 ms−1 and gto
min=3.5 ms−1. In �b�,

simulation with Ifi and Ito initially turned off. The system size is L=15 cm and gto=6.2 ms−1, gsi=1.07�gsi
WT, �h−

=�h−

WT /1.5 in the whole
domain. After an initial excitation �at time t=0�, one sees the propagation of a slow pulse due solely to the slow inward current Isi. At time
t=600 ms, indicated by the vertical line, the currents Ifi and Ito are turned on, after which periodic reexcitations appear. Note that the slow
pulse remains practically unperturbed for t�600 ms.

1 1.5 2
gsi (1/ms)

0

5

10

15

20

c
(c

m
/s

)

f0=1

f0=0.85

Numeric

a)

4 6 8 10
x (cm)

0

1

2

V
(a

rb
.u

ni
ts

)

Numeric
Analytic Lower
Analytic Upper

b)

FIG. 7. �a� Velocity of the slow pulse as a function of the slow inward current conductance gsi. Note that here gsi stands for gsi�gsi
WT and

the rest of parameters are those given in Table I of Appendix A. These curves are obtained from the analytical theory �see Appendix B� by
solving Eqs. �B17� and �B18�. For each value of gsi there are two possible values of csi corresponding to a stable �high csi� and to an unstable
�low csi� branch. The slow pulse solution disappears through a saddle-node bifurcation as gsi is decreased below the critical value �gsi

�0.91�. The speed csi depends also on the state of recovery of the gate f �inactivation gate of Isi� on the tissue ahead the slow pulse. For
comparison sake, the triangles correspond to the velocity obtained from numerical simulations where none of the simplifying assumptions of
the analytical theory are taken �see Appendix B�. In �b�, we compare the analytical �lower and upper branch� and the numerical slow pulse
profile for parameter gsi=1.15�gsi

WT. The agreement for the shape is not as good as the agreement with the velocity due to some of the
simplifying assumptions of the theory.
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4. Kinematic description of the reexcitation phenomenon

To obtain a better understanding of the reexcitation, we
reproduce in Fig. 8 the same simulation as in Fig. 6, but
showing several snapshots of the spatial distribution of volt-
age and the gate h related to the Ifi inactivation current. We
confirm that Ifi is not triggered exactly at the point of the
fiber, xd, where the maximum gradient of gto is located. At
that point, rather, the recovery of the dome in the region with
lower gto produces a gradient of transmembrane voltage that
activates Isi in the region �x
xd�. Spatially, this results in
a retrograde front in voltage that propagates slowly into the
region of high gto �x
xd�. The slow propagation of this ret-
rograde front is accompanied by the periodic emission of fast
pulses �see the thin pulses propagating towards x=0 in Fig.
6�. The exact timing of the emission of the fast pulse from
the slow pulse is given by the recovery of the gate variable h
over a certain threshold value �h�h��. Thus, to obtain a
reexcitation, the following condition must be fulfilled: that
the system sustains a calcium Isi induced pulse, sufficiently
long-lived to reach a point in the tissue where the fast �so-
dium� current has had enough time to recover and therefore
produces a new fast pulse.

For the case where the slow pulse is stable the emission of
the fast pulse is periodic. By using a kinematic argument, we
can evaluate the time treex �or distance xreex� between two

consecutive fast reexcitations. During the time treex, the slow
pulse has traveled a distance xreex= treexcsi, at the speed csi.
The fast pulse, in turn, needs a time tfi=xreex /cfi to travel the
same distance xreex �see Fig. 9�a��. The total time between
emission will thus be treex= tfi+T, where T is the time be-
tween two consecutive reexcitations at a given fixed point in
space �see Fig. 9�b��. Then, we have:

T = xreex� 1

csi
−

1

cfi
	 = DI + APDs, �3�

where APDs is the duration of the short APD of the fast pulse
that is emitted in the region of high gto. The velocity of the
fast pulse, cfi, can be estimated following a simplified calcu-
lation similar to the one in Ref. �36�, resulting in a velocity
cfi about one order of magnitude larger than csi. During the
time interval T the fast inward current gate has decreased,
due to the emission of the short sodium pulse, and then in-
creased again, during the recovery time DI �see Fig. 9�b��.
Therefore, we have for the inactivation gate h,

h1 = 1 − �1 − h0e−APDs/�h−�e−DI/�h+. �4�

Assuming that h1=h0=h� is the critical value of h necessary
to initiate a fast inward �sodium� induced reexcitation, then
we have

DI = �h+
ln

1 − h�e−APDs/�h−

1 − h�

. �5�

For the values of the parameters that we are con-
sidering e−APDs/�h− 
0, and we safely approximate DI

−�h+

ln�1−h��. Therefore, the distance between reexcita-
tions is given by:

xreex 

csi

1 − csi/cfi
�APDs − �h+

ln�1 − h��� . �6�

Note that this is also the minimal size that the tissue must
have in order to produce a reexcitation, provided that it is
orthodromic �or forward excitation FR�. For typical values
displayed in Fig. 9, APDs=16.5 ms, h�=0.83, Eq. �6� gives
xreex
0.6 cm. In the case of a backward reexcitation �BR�,
the minimal distance necessary to observe a reexcitation is
smaller than the typical distance between reexcitations, be-
cause the first retrograde pulse will encounter tissue that has
had more time to recover �see Fig. 6�. A simple argument
similar to the one presented before shows that the distance
xref

1 at which the first reflection is obtained is given by
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csi

1 + csi/cfi
�APDs − �h+

ln�1 − h��� . �7�

which is different from the general expression for the dis-
tance between reexcitations in Eq. �6�.

5. Numerical estimates for the minimal size for reexcitation

The expressions provided in the previous section only
give a first approximation of the minimum system size
needed to induce reexcitations. Furthermore, in general, the
slow pulse is not stable and we have to rely on numerical
simulations in order to determine this minimum system size.
For that, we numerically study a one-dimensional system �a
fiber� with a large value of gto, so the AP loses the dome,
except in a central region where a lower value of gto is set in
order that the dome is recovered there �see Fig. 10�. The fiber
is paced at one end at a constant frequency of 1 Hz. By
varying the extension of the central region we are able to
determine the minimal size of the spike-and-dome region
necessary to obtain a reexcitation �see Fig. 11�a�� or a reflec-

tion �see Fig. 11�b��. The main result is that the smaller is the
value of gsi, the larger is the extension of the central region
needed to produce reexcitation. Another result is that below
some critical value of the gsi parameter, no reexcitation can
be obtained. Interestingly enough, for high values of gsi, a
quite small central region is enough to produce reexcitations
�see Figs. 11�a� and 11�b��. In the second part of the numeri-
cal experiment, we take the minimum central region deter-
mined in the first part and measure the distance at which the
FR and BR take place further apart from the central region.
This second part provides the information about the exten-
sion of the region adjacent to the central region �with large
gto� needed in order to get BR or FR �see Fig. 11�c� and
11�d��. The total size of the tissue needed for the mechanism
of BR or FR would therefore be the sum of the former two
distances determined in part one and part two of the above
numerical experiment �i.e., the central region plus the dis-
tance from the edge of the central region to the point where
the fast pulse is actually emitted�. As expected, there exists a
value of gsi below which reexcitations do not occur. Clearly,
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FIG. 10. �Color online� �a� Simulation of AP propagation in a cable with heterogeneous distribution of gto. The cable is stimulated at x=0
at time t=0. In the central region, delimited by the two Boltzmann gradients of Eq. �2�, gto is set to gto

min=3.5 ms−1, and in the rest of the
cable gto

max=5.5 ms−1. The other parameters are those given in Table I, except that �h−
=�h−

WT /1.5, and gsi=1.07�gsi
WT. The slow pulse

propagates from the spike-and-dome central region to the periphery “domeless” area, resulting in backward reexcitation �BR, indicated by
the lower arrow� and forward reexcitation �FR, indicated by the upper arrow�. In �b�, the time evolution of the membrane potential is shown
at several spatial locations.
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the reason is that the slow pulse goes unstable before reach-
ing regions where the fast inward current gate has had
enough time to recover. Furthermore, as explained above, the
minimal critical size for FR is slightly larger than for BR
�compare Eqs. �6� and �7��.

C. Three-dimensional simulations in the heart ventricles
and ECG calculations

Reexcitations produce extrasystoles that, in two and three
dimensions can give rise to reentry and the generation of
rotors. The occurrence of those will also depend on the geo-
metrical arrangement of the dome and dome-less regions,
this is, how the dispersion of repolarization is geometrically
distributed. Let us now illustrate in a computer model of the
rabbit heart ventricles the possibility of reexcitation in three-
dimensional realistic geometry. The details of the numerical
scheme can be found in the paper by Bragard et al. �37�. The
geometry of the ventricles is the one for the rabbit heart �26�,
including the anisotropy of the conductivity tensor at every
point of the numerical domain. The numerical grid is com-
posed by cubic voxels of 0.02 cm size and the time step of
the explicit scheme is set to dt=0.02 ms. In addition to the
geometry and the fiber anisotropy, one also has to include the
stimulation of the AP through Purkinje fibers �38� into the
numerical model. These fibers are located in the inter-
ventricular septum. In the simulations, we will present the
reconstructed ECG that results from the time sequence of the
depolarization of the ventricular tissue. Here, the ECG has
been reconstructed using the heart dipole technique �39�.
This method consists in adding all the microscopic dipoles
�created at the depolarization fronts� into a single vector
which is called the heart dipole vector. The next step is to
project the heart vector on some standard directions in order
to compute the different standard derivations of the ECG.

Previous physiological studies have shown that the pres-
ence of a more prominent Ito in male and/or upper right
ventricular �RV� epicardium may be origin of the Brugada
phenotype �40,41�. Following these observations, we have
set a linear gradient of gto in the heart ventricles. In order
to do so, we set the gto parameter at its maximum value at a
reference point in the upper ventricle with coordinates
�124,64,120� and the gto parameter in the rest of the heart
is linearly lowered by a value proportional to the distance
to this reference point �see Fig. 12�. We have performed
three simulations with gto parameter in the range: �a�
gto� �3.5–4.5� ms−1; �b� gto� �3.5–5.5� ms−1; �c� gto
� �3.5–6.5� ms−1. The values of other parameters, gsi
=1.08�gsi

WT and �h=�h
WT /1.5, were selected in order to favor

the occurrence of reexcitations.
For the three simulations, the total time is 400 ms. In each

case, only one excitation through the Purkinje fibers is sent
to the ventricles at time t=0. Only in the “severe” situation
�referred to �c� case�, one observes re-entry and emergence
of a disorganized electric state as shown in Fig. 13. Hence
showing that a large enough gradient of gto is sufficient to
induce reexcitation in the same fashion as the reexcitation
described in the one-dimensional simulation of a paced cable
with gto gradients. In the other two situations where the

gradients of gto were lower, the initial excitation is followed
by a depolarization and then successive repolarization of
the entire ventricles without any reexcitation. This electrical
organized activity is well captured in the corresponding
ECGs shown in Fig. 14. As indicated previously, these ECGs
are calculated using the approximation of the heart vector
dipole in a spherical geometry for the torso, following Ref.
�39�.

IV. DISCUSSION

Phase-2 reentry is a basic mechanism for the transition to
VT and VF in the heart. In this respect, a good understanding
of the relevant ingredients that participate in its appearance
may contribute to the development of treatments to prevent
it. As discussed in the paper, reexcitation due to phase-2
reentry needs two conditions to be met: first, that a hetero-
geneous loss of dome is produced in tissue and, second, that
the spike-and-dome regions are able to reexcitate the loss-
dome areas. The complication with respect to treatment is
that, conditions that diminish the probability of losing the
dome may also increase the probability of reexcitation. For
instance, drugs that increase the strength of ICaL may even-
tually help recovering the dome, and decrease dispersion of
repolarization, but until this occurs, they increase the prob-
ability that a reexcitation occurs �see, for instance, Fig. 7 in
Ref. �22��. This happens because an increase in gCaL stabi-
lizes the slow calcium pulse �see Fig. 7�, that then is able to
reexcitate adjacent tissue. Thus, drugs that decrease Ito would
seem more suitable candidates to avoid dispersion of repo-
larization while maintaining a low probability of reexcita-
tion, as they do not change �much� the stability of the slow
pulse.

Two more results of our calculations are worth mention-
ing:

�i� Provided the system is in a state close to the loss of
dome, very small changes, or gradients, of electrophysiologi-
cal properties are enough to result in big dispersion of repo-
larization. Increasing Ito �for instance, with an activator, as in
Ref. �18��, there will always be a critical value at which
strong dispersion of repolarization within the epicardium will
occur, since small gradients of gto are always present. Thus,

FIG. 12. �Color online� Structure of the two ventricles where the
three-dimensional �3D� simulations were performed. The color
scale �online� shows the normalized linear gradient of gto from the
minimum value �0� to its maximal value �1� that is reached at the
reference point of coordinates �124,64,120�.
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a small change in one parameter can result in a large disper-
sion of repolarization in tissue, which in turn can give rise to
reexcitations and, eventually, reentry.

�ii� The minimum tissue size necessary for reexcitation
may be very small. Depending on parameters, sizes of the
order of 0.5–1 cm could be enough for reexcitation �Fig. 11�.
Thus, the original reexcitation giving rise to VT �or VF�
could occur transmurally, although dispersion of repolariza-
tion in the epicardium is necessary to allow the subsequent
reentry, since the transmural wall thickness is not enough to
maintain a spiral.

V. CONCLUSIONS

In this paper we have used a simplified five-variable
model of the action potential to study the occurrence of re-
excitations in a tissue with dispersion of repolarization. We
have focused on the case where it appears as a result of a
heterogeneous distribution of fast outward current Ito �to-
gether with modified sodium recovery kinetics�, but similar
results would be obtained if this heterogeneity was created
by a variation of other suitable electrophysiological param-
eter, as for instance the fast inward �sodium� inactivation
time. The origin of reexcitation is based on the existence
�often transiently� of a slow pulse that propagates into the
region of short APs until it reaches excitable tissue. In more
realistic models this slow pulse is maintained by an influx of
calcium through L-type calcium channels �21,22�. One inter-
esting thing to notice is that the region of APs with dome can

be very small, and still give rise to reexcitations. For this
simplified model we have obtained an estimate of the mini-
mal tissue size necessary to obtain a reexcitation, or a reflec-
tion, which is crucially dependent on the gsi parameter �see
Fig. 11�.

Finally, we would like to emphasize the utility of consid-
ering simplified descriptions of the cardiac dynamics that,
although they cannot provide complete description of the
molecular mechanisms involved in the origin of channelo-
paties, they provide very valuable tools to study wave dy-
namics, and the origin of wave instabilities.
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APPENDIX A: DEFINITION AND PARAMETER
VALUES FOR THE FIVE-VARIABLE MODEL

In dimensionless form the cable equation is

�V

�t
= � · �D � V� − Iion, �A1�

with

Iion = Ifi + Isi + Iso + Ito �A2�

and

Ifi = − gfihm��Vfi − V� , �A3�

Isi = − gsid�f f�� , �A4�

Ito = gtorsV , �A5�

Iso = gsok�. �A6�

The gates follow standard kinetics

ḣ = �h��V� − h�/�h�V� , �A7�

ḟ = �f��V� − f�/� f�V� , �A8�

ṙ = �r��V� − r�/�r�V� , �A9�

ṡ = �s��V� − s�/�s�V� , �A10�

with the steady-state values of the gates and the time con-
stants given by

FIG. 13. �Color online� Two different view-
points of the membrane potential V distribu-
tion taken at time t=120 ms after the simu-
lation starts in the case of parameter gto

� �3.5–6.5� ms−1. Re-entrant activity is clearly
visible in the upper RV due to the contrast of the
Ito between the RVup region and the rest of the
heart.
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FIG. 14. Computed ECGs from the 3D simulations for the pa-
rameters gsi=1.08�gsi

WT, �h=�h
WT /1.5, and gto varying linearly in

the following ranges: �a� gto� �3.5–4.5� ms−1 �solid line�; �b� gto

� �3.5–5.5� ms−1 �dashed line�; �c� gto� �3.5–6.5� ms−1 �dot-
dashed line�. The lead shown here is the standard ECG first lead I
�42�. Note that at time t=120 ms, one clearly distinguishes the
reexcitation shown in Fig. 12 in the corresponding ECG �dot-
dashed line�.
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m� = �V − Vc��V − Vc� ,

h� = f� = s� = �Vc − V� ,

d� = �V − Vc��1 + tanh�	1�V − V1���/2,

f�� = �1 − tanh�	2�V − V2���/2,

k� = �V − Vc� + V/Vc�Vc − V� ,

r� = �V − Vr� ,

�h = �h−
+ ��h+

− �h−
��Vc − V� ,

� f = � f−
+ �� f+

− � f−
��Vc − V� ,

�r = �r−
+ ��r+

− �r−
��V − Vr� ,

�s = �s−
+ ��s+

− �s−
��Vc − V� ,

The values of the different parameters of the model are given
in Table I and they correspond to the experimental epicardial
action potential described in Ref. �29�.

APPENDIX B: EXISTENCE AND PROPERTIES
OF THE SLOW CALCIUM PULSE

The analytical analysis starts with the one-dimensional
cable equation in dimensionless form

�V

�t
= ��D � V� − Iion, �B1�

where we assume that the currents Ifi and Ito, responsible for
phases 0 and 1 of the AP, do not contribute to the existence
and propagation of the slow pulse. To simplify the calcula-
tion we will also assume that �1+tanh�	1�V−V1��� /2

�V−V1�, and that �1−tanh�	2�V−V2��� /2
�V2−V�.
Although it is not necessary, to even further simplify the
calculations, we will also assume that the threshold for the
slow outward current is the same as the threshold for the
opening of Isi �i.e., that Vc=V1�. Then, the equation for the
transmembrane voltage can be expressed as

�V

�t
= D

�2V

�x2 + gsif�t��V − V1��V2 − V�

− gso�V − V1� − gso
V

V1
�V1 − V� �B2�

or by separating Eq. �B2� according to the values of the
voltage

�V

�t
= D

�2V

�x2 − gso
V

V1
V 
 V1, �B3�

�V

�t
= D

�2V

�x2 + gsif�t� − gso V1 � V � V2, �B4�

�V

�t
= D

�2V

�x2 − gso V � V2. �B5�

A last simplification done in the present analysis is to solve
only Eqs. �B3� and �B4� and not Eq. �B5�. As can be seen in
Figs. 7�a� and 7�b�, this last simplification will not affect the
pulse velocity but rather affect the pulse shape �especially far
from the bifurcation�. A better comparison of the pulse shape
would need to take also into account Eq. �B5� in the calcu-
lations but then the algebra becomes rather cumbersome.

Let us assume that the calcium pulse is moving from left
to right with a constant velocity of value csi, and let us work
in the moving frame coordinate �=x−csit. Using this change
of variable, we then separate the space ��� into three regions
according to the values of the transmembrane voltage, i.e.,
region I, from �=0 to �=+�; region II, from �=−�0 to �
=0; and region III from �=−� to �=−�0. Let us fix �=−�0
and �=0, the positions where the transmembrane voltage
takes the value V�0�=V�−�0�=V1.

Equation �B3�, which is valid for regions I and III, can be
expressed as a function of the variable � in the moving frame
as

− csi
�V

��
= D

�2V

��2 − gso
V

V1
, �B6�

with the boundary conditions V=0 at �=+� and �=−�.
For region II, Eq. �B4� must be solved,

− csi
�V

��
= D

�2V

��2 + gsif��� − gso, �B7�

where

f��� = f0�V�e�/csi�f , �B8�

and � f takes the value � f−
. By solving the above ordinary

differential equations in the three regions and by imposing
the corresponding boundary conditions, we readily obtain the
following expressions for the transmembrane voltage:

V��� = V1e�2� Region I, �B9�

V��� = A3 + A4e−csi�/D +
gso

csi
� −

gsif0� f

1 + D/csi
2 � f

e�/csi�f Region II,

�B10�

V��� = V1e�1��+�0� Region III, �B11�

with the spatial growth rates

�2 =
csi

2D
�− 1 +�1 +

4Dgso

csi
2 V1

 � 0, �B12�

�1 =
csi

2D
�− 1 −�1 +

4Dgso

csi
2 V1

 
 0. �B13�

The remaining constants A3 and A4 are determined by match-
ing the voltage and its first derivative between region I and
region II at �=0. One gets
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A4 =
DP2

csi
, �B14�

A3 = − A4 + V1 +
gsif0� f

1 + D/csi
2 � f

, �B15�

where one has defined an intermediate variable P2 in order to
alleviate the notation,

P2 =
gso

csi
−

gsif0

csi�1 + D/csi
2 � f�

− �2V1. �B16�

Then, by matching the voltage and its first derivative be-
tween regions II and III at �=−�0, the values of the pulse
speed csi and the pulse width �0 are determined by solving

numerically the two following transcendental equations:

gso

csi
− �1V1 − ecsi�0/DP2 − e−�0/csi�f

gsif0

csi�1 + D/csi
2 � f�

= 0,

�B17�

D

csi
�P2ecsi�0/D + �2V1� −

gso�0

csi
−

Dgso

csi
2 + gsif0� f

−
gsif0� f

1 + D/csi
2 � f

e−�0/csi�f = 0. �B18�

The results of the analysis are summarized in Figs. 7�a� and
7�b�. The analysis of stability of the slow pulse solution is
beyond the scope of the present paper.
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