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One-dimensional cluster array at the three-phase contact line in diluted colloids
subjected to ac electric fields
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Colloidal particles provide an efficient means of building multiple scale structured materials from colloidal
dispersions. In this Brief Report we account for experimental evidence on the formation of a colloidal cluster
array at a three-phase contact line. We study the influence of low frequency external alternating electric fields
on a diluted colloidal dispersion opened to the air. We focus on the cluster formation and their evolution in
the meniscus by measuring characteristic times and lengths. We observe that the clusters are separated by a
well-defined length and that, in our experimental conditions, they survive between 5 and 15 min. These new
results could be of technological relevance in building tailored colloidal structures in nonpatterned substrates.
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Nonequilibrium transitions by external forces in colloidal
systems have gained attention among research groups [1-7]
lately. Normally, these kind of transitions are more complex
in nature because their interrelated parameters are affected
by the external forces. These transitions occur when the state
of the system becomes unstable, as the control parameters
are varied and usually lead to pattern formation [8,9]. Flow
dynamics plays an important role in the evolution of the system
by transporting colloidal particles in the transitions [10]. The
dynamic response of the colloidal dispersion to the applied
external fields describes the basic functionality of the system
and their inter-relative behavior (between clusters, and be-
tween clusters and substrates). Previous works [11-13] study
the influence of external fields on bulk colloidal dispersions.
Here we focus our attention in the meniscus of a colloid with a
free surface rather than in the bulk dispersion. Due to minimal
evaporation in our setup, the contact line does not recede
significantly during the measurement time. Consequently, the
cluster formation is not related to a fingering instability in
the contact line [14-16]. Also, we explore the effect of weak
external ac electric fields in this region. Upon comparison
with the surface and other kinds of instabilities [17,18], the
one which we obtain is mainly comprised of two phenomena:
(a) electrokinetic and (b) electrowetting [19,20]. The possible
effect from electrokinetic phenomena (mainly electrophoresis)
on the dispersion is the formation of a concentration gradient
(maintaining a high concentration of particles near the contact
line which is greater than the initial concentration). On the
other hand, ac electrowetting induces local flows in the
meniscus which may form clusters. Both contributions set a
threshold for the forcing in order to obtain clusters. In this
work, we investigate the effect of external weak alternating
electric fields on a diluted colloidal dispersion. Under these
conditions, the interparticle interactions may play a critical
role in transport properties [21-23]. We focus on a region of the
parameter space where clusters form. We study three relevant
aspects: (i) the response of the clusters to the applied field;
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(ii) the evolution of the system by measuring the time required
for the cluster formation; and (iii) the one-dimensional spatial
distribution of the clusters and their evolution in time. The
aim of this work is to gain insight regarding the mechanisms
involved in colloidal cluster formation and their evolution.

The experimental setup and the cell are shown in Fig. 1.
The substrates used for all the experiments are of standard
glass (of size 1.1 x 17 x 18 mm?) in which one of the sides
(17 x 18 mm?) is coated with a thin conductive layer of indium
tin oxide (ITO). They are placed vertically in a Teflon cell
(Fig. 1, right). The substrates are placed in such a way that the
conductive side is in contact with the suspension. The thickness
of the colloidal suspension between the two substrates is 1 mm.
To apply electric fields, we place two ceramic spacers (one
side of each ceramic spacer is made conductive) between
the substrates. Rubber O-rings are used to ensure that the
cell along with the substrates and spacers are held tightly.
All the experiments are performed at room temperature. We
use a colloidal dispersion of spherical polystyrene particles of
diameter 1.3 um (polydispersity is 0.039). These particles are
suspended in water and their surface charge is -7 £C/cm?. The
dispersion was acquired from Dr. Paulke at Fraunhofer-IAP,
Germany. We dilute this stock dispersion to 0.5% (w/w)
concentration using ultrapure water.

The substrates are cleaned with nitrogen blow and they
are mounted in the cell. A subset of the substrates was
prepared with more hydrophilic character in order to evaluate
the influence of the equilibrium contact angle on the cluster
formation. Electric fields (ac) of square wave form are applied
perpendicularly to the conducting substrates. We apply low
voltage (of the order of 1 Vpp/mm) and low frequency (of
the order of 1 Hz). We observe the region near the contact
line using a microscope with an objective of magnification
10X. This microscope is attached to a complementary metal
oxide semiconductor (CMOS) camera for capturing sequential
frames (Fig. 2). The location of the contact line corresponds to
the transition between the dark region (colloidal suspension)
at the bottom and the white region (bare substrate) at the top.
The area of observation corresponds to the central part of the
contact line region with a field of view of 0.6 mm. However,
the observed phenomenology is common to the whole contact
line (far from boundaries).
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FIG. 1. (Color online) Sketch of the experimental setup (left) and
of the cell (right).

After the dispersion is loaded into the cell (Fig. 2(a)), we
apply the electric field and images of the system are saved
sequentially. Due to the electrophoretic effect, the particles
rhythmically get closer to the contact line. They are trapped
in the meniscus and start to accumulate (Figs. 2(b) and 2(c)).
After some time, the clusters start to initiate (Fig. 2(d)) and they
continue to grow (Figs. 2(e) and 2(f)) until they stabilize their
size. During the growing stage, clusters change their shape at
the same frequency as the applied field. Finally, the clusters
will age or dissociate (Fig. 2(g)). (See clip A in [24].)

In order to obtain an initial picture about the system, we
observe the response of particles to the applied field. From the
stored frames, we construct a space time diagram from which
their frequency is obtained. We measured the response of the
particles to the external forcing in two cases: (i) by keeping
the frequency constant (1 Hz) and varying the amplitude and
(ii) by keeping the amplitude constant (1.8 Vpp) and varying
the frequency. We checked that for the range of applied
amplitudes (from 1.8 to 2.4 Vpp) at a constant frequency of
1 Hz, the measured frequencies of the particles coincide with

FIG. 2. Snapshots of the contact line region (front view) at
1.8 Vpp and 0.8 Hz. The bright regions are particles or clusters.
The frames are captured at intervals of 1 min and the scale bar is
50 pum. The stages (A—G) are explained in the text.
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FIG. 3. (Color online) Frequency response of the clusters to the
applied field. The dashed line is indicative of the applied frequencies.

the applied one (1.00 £ 0.06 Hz). In both cases (i) and (ii),
we confirm that in our experimental conditions, the particles
follow the applied field adiabatically.

Concerning the response of clusters to the applied field,
we define a horizontal line in the cluster region for all the
experimental frames. Along this line the brightness is captured
in such a way that the intensity varies when the clusters move
and/or they change their intrinsic brightness. We construct
the corresponding space-time diagram followed by a two-
dimensional fast Fourier transformation (FFT) which gives a
frequency related to the clusters (Fig. 3). In the case of applied
low frequencies (0.6—1.8 Hz), the clusters follow the forcing
condition whereas the response is of higher values at applied
high frequencies (2.0-3.0 Hz). To study further the behavior
of clusters and their relevant parameters (in correlating their
formation with the applied field), we measured the temporal
scale at which they form or evolve. To estimate this, we
measured the threshold time (z.) which we define as the
time beyond which the clusters start to age or dissociate.
The nondimensional threshold time (f7.) as a function of
applied frequencies (f) is shown in Fig. 4 and it increases
proportionally to the increasing applied frequencies. In our
experimental conditions, we did not observe any dependence
of ft. with the strength of the applied field (data not shown).

The clusters are spatially distributed and they are separated
by a length L. We measured the characteristic length at the
threshold time ¢, (Fig. 5). The characteristic length X defines
the mean spatial distance between the clusters calculated
through the spatial auto-correlation function. If we consider
for one applied amplitude (e.g., 2.4 Vpp in Fig. 5), the
characteristic length evolves as we increase the frequency. For
one particular frequency (e.g., at 1.0 Hz), a relative maximum
in characteristic length is observed.

On applying the electric field, the electrophoretic effect
supplies particles to the meniscus much more efficiently than
the Brownian motion does. As it is stated above, surface forces
trap particles in the meniscus. Secondly, ac electrowetting [19]
generates a flow [25,26] near the contact line (due to the
increase and decrease in the contact angle) that may become
unstable, leading to a transverse modulation which would
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FIG. 4. Nondimensional threshold time (ff.) as a function of
applied frequency. Box plots merge data for different strengths of
the applied field. For each frequency, the mean nondimensional
threshold time is represented by a filled circle. The lines are
fits to a proportional law (solid corresponds to 7. = 574 s and dashed to
t. =1122 s). Inset corresponds to experiments performed with more
hydrophilic substrates.

be responsible for the cluster formation. These effects are
sketched in Fig. 6.

Initially, when the electric field is turned on, the particles
get accumulated like a band near the contact line (Figs. 2(b)
and 2(c)). At later stages these particles initiate the formation
of clusters and they evolve. Similarly, as in the case of the
response of particles, the clusters follow the force at lower
order of applied frequency (Fig. 3, from 0.6 to 1.8 Hz) by
moving up and down as a whole (perpendicularly to the applied
field). Thus, the clusters can follow the variations in the contact
angle, as it is observed in the experiments, but contrarily, the
measured frequencies of the clusters are higher for high applied
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FIG. 5. (Color online) Characteristic length (1) at the threshold
time (7.) as a function of applied frequency. The arrows outline the
sequence of the maxima occurring while increasing the strength of the
field. The dashed line arrows correspond to the 2.2-2.4 Vpp transition
(see text).
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FIG. 6. (Color online) Microscopic sketch of the region near the
contact line. Left: lateral view. Effect due to electrowetting has been
enhanced for better view. Right: front view. Local flows are indicated
by red (curved) arrows, and the corresponding transverse modulation
in the contact angle is shown by the color (shade) gradient near the
contact line.

frequencies. For these frequencies, the rapid variations in the
contact angle make these clusters unable to follow and they do
not move, due to their inertia. However, the particles rearrange
inside the clusters. This could lead to high frequency variations
in the measured light intensity without global movement of the
clusters (see clip B in [24]).

The long temporal scale behavior of the system can be
characterized by measuring the time at which the clusters
evolve significantly. The proportional increase in the nondi-
mensional time (Fig. 4) indicates that this global evolution of
the system (time required for the clusters to age or dissociate)
is weakly dependent on the forcing condition. The measured
higher nondimensional time in Fig. 4 (inset) is due to the
character of the substrate (less hydrophobic), and the aging is
due to a global scale flow which disassembles the clusters (see
clip A in [24]).

An instability of the flows (induced by the ac electrowet-
ting) gives rise to transverse local flows and to a modulation of
the varying contact angle (Fig. 6, right). These local flows are
advection-like closed flows. We define the recurrence time as
the time taken by a volume element to complete a cycle. The
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FIG. 7. (Color online) Correlation between applied amplitude

and formation of clusters for a relative maximum in characteristic
length X. The dashed line is a guide to the eye.
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characteristic length of these closed flows corresponds to the
mean distance between clusters (1). The characteristic length
changes as we increase the applied frequency (see arrows in
Fig. 5). For a certain frequency, a relative maximum in the
characteristic length is observed. This frequency depends on
the recurrence time and thus on the strength of the local flows.
To have this condition (relative maximum in characteristic
length) for increasing applied frequencies, the amplitude has to
be increased (Fig. 7). The recurrence time is limited in order to
have aregular flow. Consequently, for a high applied amplitude
(e.g., 2.4 Vpp) the relative maximum in characteristic length
is obtained at a lower applied frequency that corresponds to
a multiple of the expected recurrence time (see dashed line
arrows in Fig. 5, and Fig. 7). This may indicate that the
instability is parametric [27].

In conclusion, the applied alternating field generates flows
near the contact line and clusters are formed. The clusters
are separated by a well-defined characteristic length (1). The
clusters are located in the meniscus and they survive in our
experimental conditions between 5 and 15 min. The response
of the contact angle depends on the applied frequencies and it

PHYSICAL REVIEW E 83, 047301 (2011)

is measured through the frequency response of the clusters.
Also, the applied field controls the flows in the meniscus
(through variation of the contact angle). These results will be
complemented in further work with the characterization of the
instability (thresholds and type of bifurcation) and of the phase
space. It is crucial to understand the underlying fluid dynamics
in order to control the periodicity of the cluster array, which
is very relevant in applications where colloidal multiscale
structures are needed. For this, both new experiments and
models are required. Our experimental setup and conditions
allow construction of this kind of colloidal deposit at low cost
and in a straightforward manner. Although we have determined
that electroosmosis [28,29] does not play an important role in
this experiment, more research is needed to address this issue
quantitatively.
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