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We report both theoretical and numerical results on convection for a magnetic fluid
under rotation in a viscoelastic carrier liquid. The viscoelastic properties are given by the
Oldroyd model. We focus on the stationary convection for idealized boundary conditions.
Close to the first bifurcation, the coefficients of the corresponding amplitude equation are
determined. The effect of the Kelvin force and of the rotation on instability thresholds
for a diluted suspension are also emphasized.

Introduction. Magnetic fluids are formed by a stable colloidal suspension
of magnetic particles dispersed in a carrier liquid. The first studies on the con-
vective instability for a rotating layer in a magnetic fluid have been reported by
Gupta and Gupta [1] and by Venkatasubramanian and Kaloni [2]. An amplitude
equation for the stationary convection with idealized boundary condition was de-
rived in Ref. [3]. The Küppers-Lortz instability for the case of a rotating magnetic
fluid was formulated by Auernhammer and Brand [4]. The thermal convection
for rotating binary ferrofluids with idealized boundary condition has been investi-
gated in Ref. [5]. In the stationary case an analytical expression was found for the
Rayleigh number as function of the control parameters. In addition, the weakly
nonlinear analysis for stationary convection in a rotating magnetic binary mixture
was studied in Ref. [6].

Viscoelastic properties of fluids can be described by a constitutive equation,
which relates the stress and strain rate tensors. Finding this relation, which should
generalize the linear dependence characteristic of Newtonian fluids, is the main
purpose of the science of rheology. The simplest constitutive equation capable of
describing realistically the viscoelastic properties is given by the so-called Oldroyd
model [7]. Convection in viscoelastic fluids has been studied by Parmentier et
al. [8]. Recently, studies on stationary and oscillatory convection in viscoelastic
magnetic fluid have been done [9–11]. Other important features of magnetic fluids,
in both experimental and theoretical situations are discussed at length in Refs.
[12, 13]

The aim of this paper is to present, as a preliminary result, the influence
of the rotation in convective cells in viscoelastic magnetic fluids considering the
case where the separation ratio and magnetic separation ratio are not too large
such that the simple fluid approximation can be used and we do not need to



include a description in terms of a binary liquid [14]. To this aim an Oldroyd
viscoelastic magnetic fluids heated from below is considered. The description of the
system involves many parameters whose values have not yet all been determined
accurately. Therefore, we are left with some freedom in fixing the parameter
values. Close to the bifurcation the weakly nonlinear analysis can be performed
and an amplitude equation can be derived. For idealized boundary condition, we
determine analytically the coefficients of the corresponding amplitude equation in
the stationary bifurcation case. Finally, the nature of the bifurcation is discussed.

Model Equations. We consider a layer (thickness d) of incompressible
magnetic fluid in a viscoelastic carrier liquid, with very large horizontal extension
(xy-plane) in a vertical gravitational field g and subject to a vertical temperature
gradient. The layer is rotating uniformly around the vertical axis, ẑ, with uniform
angular velocity $. The magnetic fluid properties can be modeled as electrically
nonconducting superparamagnets. The magnetic field H is assumed to be oriented
also in the vertical direction. The magnetic field would be homogeneous, if the
magnetic fluid were absent. Let us choose the z-axis such that g = −gẑ and let us
assume that the layer has its interfaces at coordinates z = −d/2 and z = d/2. A
static temperature difference across the layer is imposed, T (z = −d/2) = T0 +4T
and T (z = d/2) = T0. Under the Boussinesq approximation, the equations for the
dimensionless perturbations of the conductive state and the Maxwell equations
read as

∇ · v = 0 , (1)

P−1dtv = −∇p+∇ · τ + T 1/2
a v× ẑ +RaΣ , (2)

(1 + ΓDt)τ = (1 + ΓΛDt)D , (3)

dt(θ −M4∂zφ) = (1−M4)υz +∇2θ , (4)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 , (5)

∇2φext = 0 , (6)

where v = {υx, υy, υz} is the velocity field, p is the effective pressure which con-
tains also the centrifugal contribution, τ is the stress tensor, θ is the temperature
perturbation and φ denotes the magnetic potential. Here Σ = [(1 +M1)θ− (M1−
M5)∂zφ]ẑ + M1θ∇(∂zφ) and ∇2

⊥ = ∂xx + ∂yy denotes the horizontal Laplacian
operator. The time derivatives, dtf = ∂tf + v · ∇f indicates the total deriva-
tive and Dt denotes an invariant (”frame-indifferent”) time derivative, defined as
Dtτ = dtτ + τ ·W −W · τ + a(τ ·D +D · τ ), where W and D are the skew-
symmetric part and the symmetric part of the velocity field gradient, respectively;
a is a phenomenological parameter that lies in the range −1 to +1. For a = −1,
one gets the lower convected Jeffrey‘s model (Oldroyd B), for a = 0 one gets the
so-called corotational Jeffrey‘s model, and a = 1 describes the upper convected Jef-
frey‘s model (Oldroyd A). Let us comment that the coefficient a is not completely
independent of the other rheological parameters [15].

Importantly, in Eqs. (1)− (6), the following groups of dimensionless numbers
have been introduced: (a) (pure fluids) The Rayleigh number, Ra = αT g4Td3/κν,
accounting for buoyancy effects and the Prandtl number, P = ν/κ, relating vis-
cous and thermal diffusion time scales. (b) (rotation in pure fluids) The Taylor
number Ta = (2$d2/ν)2. (c) (magnetic fluid) The strength of the magnetic force
relative to buoyancy is measured by the parameter M1 = βχ2

TH
2
0/(ρ0gαT (1 +χ));

the nonlinearity of the magnetization, M3 = 1 − (χHH
2
0 )/(1 + χ), a measure of

the deviation of the magnetization curve from the linear behavior M0 = χH0;
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the relative strength of the temperature dependence of the magnetic susceptibility
M4 = χ2

TH
2
0T0/cH(1 + χ); and the ratio of magnetic variation of density with

respect to thermal buoyancy M5 = αHχTH
2
0/(αT (1 + χ)). (d)(viscoelastic fluid)

The Deborah number, Γ = λ1κ̄/d
2, and the ratio between retardation and stress

relaxation times, Λ = λ2/λ1. Since λ1,2 are both positive, it means that Γ and
Λ are consequently also both positive. For Γ = 0 one recovers the Newtonian
fluid while for Λ = 0 one describes a Maxwellian fluid. Let us comment on the
numerical values of the parameters; the parameters Ra and Ta can be changed
by several orders of magnitude, while a typical value for P in viscoelastic fluid
is P ∼ 100 − 103. The magnetic numbers have the following order of magni-
tude: M1 ∼ 10−4 − 10, M3 & 1, M4 ∼ M5 ∼ 10−6 for typical magnetic field
strengths [5,14]. For aqueous suspensions it is commonly accepted that the Debo-
rah number is about Γ ∼ 10−3−10−1 [16], but for other kinds of viscoelastic fluids
the Deborah number can be as high as Γ ∼ 103. Unfortunately, no experimental
data are available for either the retardation or the stress relaxation times, so we
treat Λ as an arbitrary parameter in the range [0, 1]. In addition, the above set of
equations is still unnecessarily complicated. We will simplify it first by neglecting
M4, which is a common simplification in the description of instabilities in ferroflu-
ids [14]. Since M4 is not related to viscoelastic effects, which we are interested
in here, we expect not to loose any reasonable aspect of the problem under con-
sideration. The same is true for the coefficient M5. So, the values of {M4,M5}
in the following analysis are taken as zero. Thus, we are left with two magnetic
field dependent effects characterized by the parameters {M1,M3}. The first one
denotes the influence of the Kelvin force and is expected to have the dominant
influence on the convection behavior. The second parameter, M3, is different from
1 due to the intrinsic nonlinearity of the magnetization and is only a weak function
of the external magnetic field.

For the sake of simplicity, the analysis is limited to two-dimensional motion
[17]. Therefore, we can use a description of the velocity field (υx, υz) in terms
of a stream function ψ(x, z, t). Due to its symmetry properties, the extra stress
tensor has only three independent coefficients, namely: τxx, τzz, τzx = τxz. Instead
of these individual components, the following three scalar quantities are usually
considered in rheology: the trace U = τxx + τzz, the normal stress difference
S = τxx − τzz and the in-plane shear stress τ = τzz. Using the aforementioned
assumptions, Eqs. (1)− (6) can be written in a compact form as

Lu + N (u p u) = 0 (7)

being u = (ψ, τ, U, S, θ, φ)T , and {L,N } stands for the linear and the nonlinear
operators of the corresponding equations, respectively. We impose the following
idealized boundary conditions ψ = D2ψ = θ = Dφ = τ = DS = U = 0 at
z = ±1/2; with Dnf = ∂n

z f . In the next section, we present a weakly nonlinear
analysis of the system (7) in the case of a stationary bifurcation.

Weakly Nonlinear Analysis. Since the linear instability threshold of the
conducting state in the stationary case is independent of the viscoelastic properties
[9, 10], we will only recall here the main results of the linear analysis [1, 2]. The
Rayleigh number obtained as the eigenvalue of the linear part of system (7) is
given by [2]:

Ra =
(k2M3 + π2)(π2Ta + q6)
k2 [π2(1 + k2M3(1 +M1)]

, (8)
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where q2 = k2 +π2 is the augmented dimensionless wavenumber. The minimum of
the marginal curve (∂kRa = 0) gives the critical wavenumber kc and the associated
critical Rayleigh number, Rac. In the present case the threshold value increases
monotonically when Ta increases, therefore the rotation of the liquid layer has a
stabilizing effect on the convection threshold. In addition, one observes from Eq.
(8) that the threshold value decreases for an increase of either M1 or M3. This
indicates the destabilizing effect of a magnetic field on the convection threshold.

A nonlinear analysis is needed to determine the type of convective motion
which is expected to develop beyond the linear instability threshold. The study
of the evolution of the convective pattern can be done by means of a multiple
scale analysis [4]. We will assume that a convective cell of small amplitude is
imposed on the basic flow. For values of the control parameter Ra, close to its
threshold value Rac, the bifurcation parameter will be ε2 = (Ra−Rac)/Rac. We
expand all functions in terms of ε and assume that all variations of the linearized
solutions can be incorporated into a single amplitude function A. If this amplitude
is of size ε (i.e. O (ε)) then the interaction of the convective cell with itself forces
a second harmonic and a mean state of correction of size O

(
ε2
)
, which in turn

drives an O
(
ε3
)

correction to the fundamental component of the imposed roll.
A solvability criterion for this last correction yields an equation for the complex
amplitude A(X,T ) of the imposed disturbance. This is a Ginzburg-Landau (GL)
type equation. In the case of free-free boundary conditions, the z-dependence is
contained entirely in the sine and cosine functions. Therefore, our expansion is
u→ ε

(
u0 + εu1 + ε2u2 + Θ

(
ε3
))

, and consequently L→ L0+εL1+ε2L2+Θ
(
ε3
)

and N = εN 0 + ε2N 1 + Θ
(
ε3
)
, where the expansions in the derivatives are

∂x → ∂x+ε∂X and ∂t → ε2∂T , becauseA is a function of the slow time scale T = ε2t
and the slow spatial scale X = εx. Inserting these expansions in Eq. (7), for each
power of ε, one obtains a hierarchy of equations: L0u0 = 0, L0u1 + L1u0 = N 0

and L0u2 +L1u1 +L2u0 = N 1. These relationships must be solved subsequently
and at each order one has to fulfill the solvability condition

〈
u†0 | r.h.s.

〉
= 0,

where u†0 is the solution of the linear adjoint problem
(
L+u† = 0

)
. The notation

r.h.s is for the corresponding right hand side of the perturbation and < ◦ >
denotes the inner product which is defined as a suitable volume integration. The
solvability condition at O

(
ε3
)

leads to an equation for the amplitude A that is
written as

τ0
∂A

∂T
= ξ20

∂2A

∂X2
+ ε2A− g |A|2A . (9)

Equation (9) is the GL equation and describes the variation on the slow time
and spatial scales of the convective pattern. The coefficients τ0 and ξ20 are the
growth rate of the amplitude and the curvature of the marginal stability curve,
respectively; and they can be calculated straightforwardly from the linear the-
ory analysis [10]. In Eq. (9), g is known as the nonlinear coefficient and for
g > 0 we get a forward bifurcation (supercritical bifurcation), for g < 0 we get
a backward bifurcation (subcritical bifurcation), and at g = 0 we get tricritical
bifurcation point, which is the transition point between a subcritical and a su-
percritical bifurcation. The coefficients of this equation can be calculated using
a standard procedure well detailed in Ref. [4]. For idealized boundary conditions
after straightforward calculations, the explicit expressions of these coefficients can
be written as

τ0 =
(1 + P )q6 + (−1 + P )π2Ta

Pq2 (q6 + π2Ta)
+

Γ
(
q6 − π2Ta

)
(−1 + Λ)

q6 + π2Ta
, (10)

4



ξ20 =
2q4c

q6c + π2Ta
− M1M3π

2

(M3k2
c + π2) ((1 +M1)M3k2

c + π2)
, (11)

g =
π2q2c

(
M3(1 + 2M1)k2

c + π2
)

2 (q2c (1 +M1)M3 + π2)
− π2q2cTa

2P 2kc(q6c + π2Ta)

+
a2(1− Λ)Γ2

q4c

(
9q16c + 8π2k2

c (π2 − q2c )4 + 144π4k4
c

)
− (1− Λ)Γ2

q4c

(
9q8c (π2 − q2c )4 + 4π2k2

cq
8
c + 64π4k4

c

)
.

(12)

It is interesting to note that, if we set Λ = 1 and Γ = 0, Eq. (12) reduces
to the rotating Newtonian liquid case and we retrieve the coefficients found in
reference [3]. Another limiting case is given when we set Ta = 0 in Eq. (12),
where the viscoelastic limit described in reference [10] is retrieved.

Figure 1: (Color online) Normalized cubic coefficient term, g/gN , as a function
of Ta (left) and Λ (right), for different values of M1. In both cases the fixed
parameters are M3 = 1.1, P = 7, Γ = 0.01 and a = 1. Also, we have set in the
left graph Λ = 0.9 and in the right graph Ta = 10. The different values of M1 are
represented by different symbols M1 = {10, 5, 1} = {�,N, •}.

The main results are displayed in Fig.1, where we have plotted the normalized
nonlinear coefficient as a function of the different parameters. Note that the nor-
malization is done with respect to the case of a Newtonian fluid. Figure 1 shows
g/gN as a function of Ta and Λ for three realistic values of M1. From Fig.1(left),
we see that g/gN increases logarithmically with Ta and decreases when M1 is in-
creased. From Fig.1(right), we see that g/gN decreases when the ratio between
retardation and relaxation times, Λ, increases. For the selected fixed parameters,
one sees that the decaying behavior in Fig.1(right) is almost independent of the
magnetic field (M1 ∼ H2). In the Maxwell case (Λ = 0) g/gN reaches its maximum
value. From the present results, we therefore conclude that there is a competition
between the rotation, the magnetic and the viscoelastic effects. In fact, due to this
competition a supercritical-subcritical transition (i.e. g = 0) can occur for some
parameter values. Typically, without rotation, in viscoelastic magnetic fluids it
occurs for models like the corotational Jeffrey’s model because in this case the
parameter a is close to zero [9].

Final Remarks. In this paper, we have presented the derivation of the am-
plitude equation of the convective roll patterns that arise in a rotating viscoelastic
magnetic fluid layer heated from below. The viscoelastic properties are modeled
through the Oldroyd constitutive equation. In the present paper, we focus on the
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stationary bifurcation that is more commonly observed in ferrofluids [14]. The
kinetic coefficients of the Ginzburg-Landau equation have been calculated ana-
lytically. The rotation of the layer has a stabilizing effect while the magnetic
field is destabilizing. The nonlinear coefficient term g increases logarithmically as
a function of the rotation rate and it decreases for strong magnetic fields. The
determination of the amplitude equation in the case of an oscillatory instability
and in the case of a co-dimension two bifurcation is still in progress and will be
presented elsewhere.
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