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In the present work we study the deterministic spin dynamics of an anisotropic magnetic particle in the presence of a time dependent 
magnetic field using the Landau-Lifshitz equation. In particular, we study the case when the magnetic field is homogeneous with a 
fixed direction perpendicular to the anisotropy direction and consists of a constant and a time-periodic part. We characterize the 
dynamical behavior of the system by monitoring the Lyapunov exponents and by bifurcation diagrams. We focus on the dependence of 
the largest Lyapunov exponent on the magnitude and frequency of the applied magnetic field as well as on the anisotropy parameter of 
the particle. We find rather complicated landscape of sometimes closely intermingled chaotic and non-chaotic areas in parameter 
space with rather fuzzy boundaries in-between. For actual experiments that means the system can exhibit multiple transitions between 
regular and chaotic behavior. 
 

Index Terms— Chaotic dynamics, Lyapunov spectrum, magnetization dynamics, time dependent magnetic field.  
 

I. INTRODUCTION 

 XPERIMENTAL techniques nowadays have accessed the 
nanoscale and allow for remarkable developments of new 

technological applications. Biomedicine or high precision 
instrumentation are based on nanostructures. A significant 
application in material science are magnetic particles and 
clusters for recording media [1]; here, magnetization reversal 
is a fundamental feature of data storage. The detailed study of 
the dynamics of magnetic systems is important and will be 
dealt with here. 
In magnetism nonlinear problems have been widely studied, 
cf. Refs. [2–3]. Models have been used in both, discrete [4–7] 
and continuous magnetic systems [8–9]. Several experiments 
of chaotic behaviors in magnetic systems have been reported 
[10–13]. Typical magnetic samples are yttrium iron garnet 
spheres [10]. It is worth mentioning that, by ferromagnetic 
resonance technique, different types of routes of chaos have 
been found, such as period-doubling cascades, quasi-periodic 
routes to chaos or intermittent routes to chaos. This implies 
that there is no universal mechanism leading chaos in these 
systems, and therefore a theoretical description is highly 
complicated. 

The aim of this paper is to investigate the chaotic dynamics 
of an anisotropic magnetic nanoparticle under the influence of 
a time dependent external magnetic field. The latter is 
assumed to be perpendicular to the anisotropy direction and to 
consist of a constant and a periodic part. We calculate 
numerically the Lyapunov exponents and bifurcation 
diagrams, thus characterizing the dynamical behavior. In 
particular, the maximum Lyapunov exponent is presented in 
the form of two-dimensional maps as function of the relevant 
parameters of the system [14]. In Sec. II, the theoretical model 
is described, the numerical results are provided and discussed 
in Sec. III, and finally in Sec. IV a summary is given. 

II. MODEL 

We consider the dynamics of the magnetization M  of a 
monodomain magnetic particle. The temporal evolution of the 
system can be modeled by the Landau-Lifshitz equation: 

( )| |
| | ,

S

d

dt M

η γγ= − × − × ×M
M Γ M M Γ   (1) 

describing pure rotations, since | |M  is conserved. Here, γ  is 

the gyromagnetic factor, which is associated with the electron 
spin and whose numerical value is approximately given by 

5 1 1
0| | | | 2.21 10e m A sγ γ µ − −= ≈ × , and η  denotes the 

dimensionless phenomenological damping coefficient which is 
a material property with typical values of the order 410−  to 

310−  in garnets and 210−  or larger in cobalt or permalloy [3]. 

For small damping, 2 1η ≪ , the Landau-Lifshitz equation is 

equivalent to the Landau-Lifshitz-Gilbert equation [15]. The 
internal magnetic field, Γ , acting on the magnetization is 
given by ( )ˆ ˆ·β= −Γ H M n n , where H  is the external 

magnetic field and β  measures the anisotropy along the n̂  

axis, which we take as the z-axis in the following. This 
anisotropy is uniaxial and the constant β  depends on the 

specific substance and sample shape [16] and can be positive 
or negative. The external magnetic field H  is taken along the 
anisotropy axis. The field strength has a constant and a 

periodic part ( )( )0 1 ˆcosH H tω= +H x  where the amplitudes 

0 1,H H  and the frequency ω  are constant. 

For zero damping ( 0)η = and without parametric forcing 

( )1 0H =  Eq. (1) is conservative. With dissipation and by the 

periodic injection of energy the magnetic particle is put into an 
out-of-equilibrium situation. Then, the magnetization of the 
particle can exhibit a rather complex behavior, e.g., quasi-
periodicity, bi-stability and chaos [4]. In the latter reference 
the existence of chaos due to the external field has been 
discussed for few parameter values, while in the following we 
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provide a more complete characterization of the chaotic 
regime, in particular its dependence on the constant field 
amplitude 0H , the frequency ω , and the anisotropy 

constantβ , thereby revealing a rather complicated structure in 

parameter space. 

 

 

 
Fig 1: (a) (Color online) The value of the largest positive Lyapunov exponent 
(LLE) is shown in a color-coded gauge as a function of the amplitude 1h  and 

the frequency Ω  of the driving field for 0 0.2h = , 4.8β = , and 0.02η = . 

Frame (b) depicts the zoomed-in white rectangular area shown in (a) and 
frame (c) magnifies the white rectangular area of (b). The resolutions are: (a) 

210−∆Ω =  and 3
1 5 10h −∆ = × ; (b) 32 10−∆Ω = × and 4

1 5 10h −∆ = × ; (c) 

42 10−∆Ω = × and 4
1 2.5 10h −∆ = × . 

III.  NUMERICAL RESULTS 

We analyze the dynamics of Eq. (1) by evaluating the largest 
Lyapunov exponent (LLE) and by bifurcation diagrams. The 
exponential divergence of two initially close trajectories, 
which is characteristic for chaotic dynamics, is quantified by 
(positive) Lyapunov exponents. From the general theory of 
dynamical systems it is known those systems with three 
dynamical degrees of freedom, like the one studied here, 

cannot have more than one positive Lyapunov exponent [17] 
and it is, therefore, sufficient to consider the LLE. Exploring 
the dependence of the LLE on the different parameters of the 
system, one can identify the areas in parameter space, where 
the dynamics is chaotic (LLE positive), and those showing 
regular, periodic or quasiperiodic, dynamics (LLE zero). 
Following an iterative zoom resolution process explained in 
Ref. [14], we investigate the dependence of the dynamics on 
very small variations of the system parameters. This technique 
is generally utilized for studying dynamical systems that 
contain chaotic phases with highly complicated and interesting 
boundary topologies, e.g., curves where networks of stable 
islands of regular oscillations with ever-increasing 
periodicities accumulate systematically. 
In order to integrate the equations of motion we first scale the 
magnetization / sM=m M  by the saturation magnetization 

sM , such that | | 1=m . The time is rendered dimensionless by 

setting st Mτ γ=  using the appropriate Larmor frequency 

1/ sMγ  [3]. Typical experimental values are, e.g. 
61.42 10 /sM A m≈ ×  for cobalt materials, leading to a time 

scale ( )1τ =  in the picosecond range, 3st ps≈ . The present 

technology is able to follow experiments even at the 
femtosecond scale. Indeed, Beaurepaire et al. [18] were the 
first to observe the spin dynamics at a time scale below the 
picosecond scale in nickel [18] and more recently one has 
observed phenomena at a time scale less than 100 fs [19–20]. 
By this scaling, the dimensionless field and frequency are 

/ sM=h H  and ( )/ sMω γΩ = , respectively. To avoid 

numerical artifacts, it is suitable to solve Eq. (1) in the 
Cartesian representation  

( ) ( )2 2 2x
x y z y z x z

dm
h m m m m m m

d
η β η

τ
= + + +  (2) 

( ) ( )2y
x z x y y z x z

dm
h m m m m m m m

d
η β η

τ
= − + + −  (3) 

( ) ( )2 2z
x y x z x y z

dm
h m m m m m m

d
η βη

τ
= − − +  (4) 

There is a simple homogeneous and stationary solution, 
ˆ=m x , with the magnetization parallel to the magnetic 

forcing. Driving the system further away from the stationary 
state, the amplitudes ym  and zm  do not remain small and a 

rather complicated behavior can occur, including periodic, 
quasi-periodic and chaotic dynamics. 

In order to find the chaotic regimes, we have 
integrated Eqs. (2)-(4) via a standard fourth order Runge-Kutta 
integration scheme with a fixed time step 0.01dτ =  

guaranteeing a precision of 810−  for the magnetization field. 
After an initial transient time of 1024τ =  has been discarded, 
the Lyapunov exponents are calculated during a time span of 

32768τ = . The Gram-Schmidt orthogonalization process is 
performed after every 100th time step. The error er  in the 
evaluation of the Lyapunov exponents has been checked by 
using ( ) ( )1 1/ maxer σ λ λ= , where ( )1σ λ  is the standard 

deviation of the maximum positive Lyapunov exponent. It is 
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of the order of 1%, which is sufficiently small for the purpose 
of the present analysis. 

 

 

 
Fig 2: (Color online) The largest Lyapunov exponent (LLE) as a function of 

0h  and 1h  at 2.5Ω = , 4.8β = and 0.02η = . Frame (b) represents a zoom of 

the upper white rectangular area in frame (a), while frame (c) zooms the 
lower-left white rectangular area. The resolutions are: (a) and (b) 

3
0 5 10h −×∆ =  and 3

1 5 10h −×∆ = ; (c) 3
0 10h −∆ = and 3

1 2 10h −×∆ = . 

 
In the following we show how the largest Lyapunov exponent 
(LLE) depends on two of the relevant parameters keeping the 
others at fixed values. These 2-dimensional maps are 
calculated with different, but high resolutions, which are given 
in the respective figure captions. 
First, Fig.(1) (a) shows the color-coded LLE as a function of 
amplitude 1h  and frequency Ω  of the time dependent external 

field. Frame (b) is a zoom of the area denoted by the white 
rectangle in frame (a) and frame (c) zooms the white 
rectangular area of frame (b). There are no chaotic regimes for 
forcing frequencies well above the natural one, 5.5Ω≳ , 

indicating that chaos occurs only in the vicinity of the 
resonance condition. Obviously, chaos requires a sufficiently 
large value of the field amplitude, 0.2xh ≳ , cf. frame(b). 

Interestingly, inside the larger chaotic areas one can observe 
small chaos-free areas exhibiting rather complex boundary 

topologies [14] between chaotic and regular regimes, clearly 
visible in frame (b). Finally, for small frequencies there is a 
kind of complex mesh with chaotic and non-chaotic areas 
interlaced, cf. frame (c). This almost regular pattern continues 
to exist asymptotically down to zero frequency, where the 
LLE is vanishing. 

 

 
Fig 3: (a) Bifurcation diagrams of θ  and φ  as a function of 0h  at 2.5Ω = , 

4.8β = , 0.02η =  and 1 6.5h = . Frames (b) and (c) represent the phase 

portraits for two specific values of 0h : 0 2h =  (b) and 0 2.85h = (c). They are 

depicted in the bifurcation diagrams as a dot and a square, respectively. 
 
Secondly, Fig.(2) shows the color-coded LLE as a function of 
both, the constant and oscillating field amplitude, 0h  and 1h , 

respectively. Here we fix the frequency at 2.5Ω = , where in 
Fig.(1) a rich variety of chaotic regions is present. Actually, in 
this representation the chaotic regions are localized patterns of 
rather characteristic shapes. They only exist above a line 

1 0h ch≃ ( 1c ≈ ) and rapidly fade away for higher fields as can 

be seen in frame (b), which is a zoom of the upper white 
rectangular area in frame (a): The intensity of the LLE 
decreases and the size of the patterns reduces. The chaotic 
areas are not compact, but inside they contain zones with 
regular behavior, cf. frame (c), which zoom the lower-left 
white rectangular area of frame (a). 
Note that, there are other methods of quantifying the non-
periodic behavior of a dynamical system [3,4,7,17]. As an 
example, we calculate bifurcation diagrams using a Poincaré 
section technique [4] of the magnetization angles, given by 

( )cos sin ,sin sin ,cosφ θ φ θ θ=m . In these diagrams, when 

there is a continuum of points in the variable the behavior is 
quasi-periodic or chaotic. The frame (a) of Fig.(3) shows the 
diagram of θ  and φ  as a function 0h  at time interval 
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multiples of 2π Ω , for 1 6.5h =  corresponding to a horizontal 

line in Fig.(2a). We can observe multiple transitions between 
regular to non-periodic regimes and for large field the system 
become regular. The frame (b) and (c) of Fig.(3) shows 3D 
phase portraits for two fixed values of 0h , extracted form the 

bifurcation diagrams, in the chaotic and regular regime, 
respectively. 

 
Fig 4: (Color online) The largest Lyapunov exponent (LLE) as a function of 

1h  and β  at 2.5Ω = , 4.8β = and 0.02η = . The resolutions are: 3
1 10h −∆ =  

and 35 10β −∆ = × . 
 
Finally, Fig.(4) shows the color-coded LLE as a function of 
the forcing field amplitude 1h  and the anisotropy constant β . 

Again, there is a complicated pattern of chaotic regions that 
contain smaller regular regions and whose boundaries are 
rather fuzzy. The minimum field necessary to obtain chaos 
increases with decreasing anisotropy. However, there are still 
huge areas of regular dynamics even for intermediate fields 
irrespective of the anisotropy constant indicating that the 
anisotropy is a necessary, but by far not a sufficient condition 
for chaos occurrence. 

IV.  SUMMARY  

The dynamics of the magnetization of an uniaxial 
anisotropic nanoparticle in the presence of a periodic external 
magnetic field has been studied using the Landau-Lifshitz 
equation. We have determined the parameter regions where a 
positive Lyapunov exponent exists, thereby indicating chaotic 
dynamics. Extensive numerical calculations have been 
performed varying simultaneously two parameters in each 
case. This leads to maps of the chaotic regions as a function of 
these parameters. For a large range of parameters we find a 
host of chaotic regimes intricately intermingled with regular 
ones. Generally, there are no chaotic regions for very small 
and very large field amplitudes, while even for very small 
frequencies chaos is possible. A large anisotropy does not 
necessarily guarantee the existence of chaos.  
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