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Abstract. The role of density and velocity profiles in the flow of particles through apertures has been recently put on evidence
in a two-dimensional experiment (Phys. Rev. Lett. 108, 248001). For the whole range of apertures studied, both velocity and
density profiles are selfsimilar and the obtained scaling functions allow to derive the relevant scales of the problem. Indeed, by
means of the functionality obtained for these profiles, an exact expression for the mass flow rate was proposed. Such expression
showed a perfect agreement with the experiential data. In this work, we generalize this study to the three dimensional case. We
perform numerical simulations of a 3D silo in which the velocity and volume fraction profiles are determined. Both profiles
shows that the scaling obtained for 2D can be generalized to the 3D case. Finally, the scaling of the mass flow rate with the
outlet radius is discussed.
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INTRODUCTION

The flow of particles through bottlenecks is an ubiquitous
situation in industry. Despite this fact, an established the-
oretical description of the particle mass flow rate through
an orifice, is still lacking. Back in the the sixties, a phe-
nomenological relation was introduced by Berveloo [1]
to quantify the flow rate coming out from and orifice. In
fact, Beverloo’s expression is massively used and it gives
good predictions for the flow rate in certain ranges of out-
let apertures. However, its derivation takes into account
strong empirical arguments such as the existence of an
effective outpouring diameter or a volume fraction at the
exit that equals the bulk value.

Since the introduction of Berberloo’s law, a large num-
ber of minor modifications have been proposed by oth-
er authors [2]. Recently, Mancok et. al. [3] proposed an
alternative expression covering a wider range of outlet
sizes, starting from the diameter of a grain. In this ex-
pression – also empirically motivated – k factor is fixed
to one and a multiplicative exponential factor is consid-
ered. The authors speculated that this factor is related to
a volume fraction reduction near to the outlet. Important-
ly, the outcomes extracted from former works are mainly
sustained in dimensional analysis and not in rigorous the-
oretical calculations at the silo outlet. Certainty this top-
ic has been profusely discussed by many authors [4], but
without any conclusive result about the origin of the col-
lective behavior shown by the material. One of the main
reasons for that is the intrinsic difficulty that the predic-
tion of the velocity profiles implies.

Additionally, the stress propagation inside a silo is also

an open question and the role of the volume fraction
and its relationship with the velocity profile remains
undetermined. Those aspects are particularly important
in the region of the outlet, where a continuity argument
should be applied to calculate the mass flow rate.

Very recently, this framework has been systematically
studied by Janda et. al. [5]. In that work, they experimen-
tally showed that the profiles of the vertical velocity, v,
and volume fraction, φ , just at the exit of a flowing si-
lo display a well defined functionality. The analysis was
performed in a quasi-bidimensional silo where volume
fraction and velocity field are optically accessible. Under
this condition, the authors demonstrated that the profiles
of both magnitudes as a function of the outlet radius R
can be expressed as:

v(r) =
√

2gR
√

1− (r/R)2 (1)

φ(r) = φ∞[1−αe−R/β ]
[
1− (r/R)2

]1/ν
(2)

where g is the gravity acceleration and φ∞, α, β and
ν are fitting parameters with certain physical meaning.
Using both expressions the mass flow rate on the exit
line results in:

W =C′′
√
gφ∞
[
1−αe−R/β

]
R3/2 (3)

whereC” is a constant, which only depends on the expo-
nent ν in Eq. 2.

In the present work, we numerically analyze the same
situation but for circular orifices in the base of a flat
bottomed 3D silo. We demonstrate that both profiles
display the same functionality and, as a consequence,
Eq. 3 can be generalized to the three dimensional case.
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FIGURE 1. Vertical section of the numerical silo. z=0, r=0
corresponds to the center of the orifice of radius R.

NUMERICAL ANALYSIS

We have performed Discrete Element Modeling (DEM)
of a system of monodisperse spheres with radio rp =
1/64 m. To mimic the real experimental scenario, we
generate a granular column from a granular gas of
131072 particles. Once the particles are located at ran-
dom positions, within a cylindrical container with flat
bottom, they settle under the effect of gravity. The par-
ticles are allowed to leave the system through a circular
outlet, which is located at the bottom of the column. The
cylindrical container has a radius Rc = 32× rp and its
walls are considered to have similar mechanical proper-
ties than the particles. Our procedure allow us to contin-
ually control the granular flow through the outlet even so
all micro-mechanical properties of the silo. In the present
work, we examine the behavior of the particle flow in the
outlet by studying the velocity and volume fraction pro-
files. Thus, the radius of the outlet has been varied from
R= 7× rp to R= 13× rp.

In the simulation, each particle i (i = 1...N) has three
translational degrees of freedom and a quaternion for-
malism has been implemented for describing the 3D an-
gular rotations. The interaction between particle i and
particle j, �Fi j, is decomposed as,

�Fi j = FNi j ·�̂n+FTi j ·�̂t, (4)

where FNi j is the component on the normal direction �̂n to

the contact plane. In the same way, FTi j is the component

acting on the tangential direction�̂t. In our approach, the
normal interaction FNi j , is defined by a linear contact.
Moreover, to introduce dissipation, a velocity dependent
viscous damping is assumed. Hence, the total normal
force reads as

FNi j =−kNδ − γNvNrel , (5)

where kN is the spring constant on the normal direction,
γN is the damping coefficient in the normal direction
and vNrel is the normal relative velocity between i and j.
Moreover, the tangential force FTi j also includes an elastic
term and a tangential frictional term accounting for static
friction between the grains. This takes into account the
Coulomb friction constrain as

FTi j = min{−kTξ − γTmr · |vTrel |, μFNi j }, (6)

where γT is the damping coefficient in tangential direc-
tion, vTrel is the tangential component of the relative con-
tact velocity of the overlapping pair. ξ represents the e-
lastic elongation of an imaginary spring with spring con-
stant kT at the contact [6], which increases as dξ (t)/dt =
vTrel as long as there is an overlap between the interact-
ing particles [6, 7]. μ is the friction coefficient of the
particles. The kinematic tangential relative displacement
ξ (t), is updated using a Euler’s algorithm. The equations
of motion are integrated using a Fincham’s leap-frog al-
gorithm (rotational) [9] and a Verlet Velocity algorithm
(translational) [8].

We have modeled hard particles introducing values for
normal and tangential elastic constants, kt

kn
= 2/7 with

kn = 108N/m. The ratio between normal and tangen-
tial damping coefficients is taken as

γn
γt = 3, the densi-

ty of the particle ρ = 7520 kg/m3, while gravity is set
to g = 10 m/s2. These parameters have been chosen to
model the steel beads used in the experiments. The time
step used for these parameters was set asΔt = 10−6s. In
all the examples reported here, we have used this set of
parameters and only the diameter of the outlet has been
changed. Finally, it is important to remark that we have
developed a hybrid (CPU-GPU) DEM algorithm, which
has allowed us to simulate 131072 particles, in reason-
able computing times. Complementary, we have exe-
cuted similar calculations using the Open Source code
LIGGGHTS, using 50000 particles and similar results
came out.

VOLUME FRACTION AND VELOCITY
PROFILES

Velocity and volume fraction profiles have been deter-
mined for four distinct outlet radius R. In order to avoid
transitory regime, the particles are allowed to flow a few
seconds; later on, the profiles have been examined. The
mean vertical velocity as a function of the radial coordi-
nate v(r), was calculated accounting for all the particles
that cross a plane defined by the bottom wall. At same lo-
cation, the volume fraction was numerically determined.
The procedure was the following: we have numerically
calculated the overlap volume between each particle and
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FIGURE 2. a) Velocity profiles (averaged in the azimuthal direction) obtained for different outlet radius. (b) The same data

collapsed by the scale factors introduced in Eq. 1. The continuous line is the correspond to −
√

1− (r/R)2. Inset: Velocity at the
center of the orifice, v(0), as a function of the outlet radius R. The dashed line display

√
2gR.

a rectangular prism of height h= 2× rp. The base of the
prism is located at the outlet of the silo and it has been
discretized with accuracy Δx= Δy= 1

26 rp . In each case,
at least twenty configurations were averaged and the sys-
temwas sampled every 0.1 seconds. Finally, we have tak-
en into account the cylindrical symmetry, reporting the
radial dependence of the mean volume fraction φ(r).

Figure 2.a shows the profiles obtained for the outlets
analyzed. Clearly, all the profiles display the same func-
tionality. Similar to Ref.[5], all the data points can be
collapsed into a single curve by normalizing the radial
coordinate with the outlet radius and the velocity with
the velocity at the centre of the orifice, v(0). Remark-
ably, for each radius, the maximum velocity differs less
than 10% than the velocity predicted by the scale factor
Eq. 1 (see inset Fig. 2.b). Moreover, Fig. 2.b. illustrates

that the scaling function

√
1− ( rR )

2 reproduces very well

the collapsed data. The scale factor
√
2gR can be justi-

fied assuming the existence of a region, above the ori-
fice, below which the grains fall freely under the gravity.
This hypothetical region scales with the outlet aperture
R and it was early introduced by Hagen [10] and late-
ly developed by Brown & Richards [11] under the name
of “free fall arch". Following the original idea of Hagen,
the scaled expression (Eq. 1)is compatible with the ex-
istence of a hypothetical parabolic dome, beyond which
the beads fall only under the gravity action (see Ref. [5]
for a detailed explanation of this idea). Finally, averaging
Eq. 1 along the outlet, the scaling for the average veloc-
ity with R1/2 is obtained. It is important to remark that
this factor is usually introduced in the literature without
a formal explanation.

The volume fraction profiles φ(r) along the exit have
also been examined (Fig. 3.a). In this case, two salient
features must be remarked: (a) the packing decreases
close to the edges with a well defined functionality and,
(b) the mean value for the volume fraction is clearly

lower than the bulk density, φbulk = 0.64. These features
were reported by using an elegant experimental setup
at the early seventies by Van Zuilichem et. al. [12] but
this work has been scarcely considered until now. In
addition, it is obvious that φ(r) is not null even near
the limit of the orifice. As in the case of the velocity,
the volume fraction profiles are self-similar and can be
rescaled by the volume fraction at the center of the
outlet, φ(0). The collapsed data are plotted in Fig. 3.b

where the agreement with
φ(r)
φ(0) = 4

√
1− (r/R)2 is noted.

However, the scaled expression fails for points very close
to the border of the orifice, which is partially related
with the finite size of the bottom wall. Nevertheless,
the error introduced by this part of the profile on the
calculus of the averaged volume fraction is lower than
1%. Let us now focus on the dependency of φ(0) on R.
Fig. 3.a shows that the maximum value of the volume
fraction depends on the radius of the orifice. Further
calculations are needed to confirm the volume fraction
asymptotic growth, which has been predicted for the two-
dimensional case (see exponential prefactor of Eq. 2).
However, the tendency of these values versus R is clearly
nonlinear (as reported in [12]) and, of course, should
converge asymptotically to a finite value.

DISCUSSION

Our numerical results show the self-similar shape of the
velocity and density profiles in 3D silos. Their corre-
sponding scale functions do not include an explicit func-
tionality with r implying relevant consequences in the
calculus of the mass flow rate. Indeed, Eulerian descrip-
tion of the mass conservation law implies that the formal
expression for the mean mass flow rate can be calculat-
ed from the spatial integral of < φ(r)v(r) >, where the
brackets indicate a volume-time averaging process [13].
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FIGURE 3. (a) Packing fraction profiles for different outlet sizes. (b) Collapsed volume fraction profiles corresponding to the
data displayed in (a). The continuous line is the scaling function introduced in the text.

Although deep inside of the silo both profiles are strong-
ly coupled, just in the region of the orifice, is reason-
able to assume that both magnitudes describe uncorre-
lated fluctuation at temporal scales larger than the time
required for a particle to freely fall its own diameter.
Hence, the mean mass flow rate can be calculated as:
W =< φ(r) >< v(r) > A, where A is the area of the
orifice. As the scale function used to collapse both pro-
files does not depend explicitly on the variable r, both
averages will depend on an expressions like [1− ( rR )

2]
1
ν .

There, we have used ν = 4 (ν = 2) to collapse the pack-
ing (velocity) profile (Figs. 2.b and 3.b). Independently
of the exact value of these exponents, the spatial inte-
gral of this kind of function gives a multiplicative con-
stant times the radius of the orifice. Therefore, the final
expression for W will include factors related with the
profile shapes times R5/2. This result is in complete a-
greement with the exact expression obtained for the two
dimensional case (Eq. 3) putting on evidence the impor-
tance of considering the spatial dependence of the veloc-
ity and volume fraction to calculate the mass flow rate.
Moreover, due to the revolution symmetry of both pro-
files the extension to the 3D case is trivial and the pre-
dicted flow fits very well the experimental data [3]. Im-
portantly, the calculus does not include any consideration
about an effective exit size or hydraulic diameter, repre-
sented by the k parameter [1]. Instead, the details of the
flow for any orifice radius are described by the volume
fraction dependence [5]. Finally, let us remark that the
self-similarity of both profiles predicts the validity of the
flow expression even for large outlet apertures, where in-
tuitively we tend to assume a plug profile for the velocity
field.
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