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Molecular Dynamics Simulation of Spherical Particles

R.C. Hidalgo*, T. Kanzaki', F. Alonso-Marroquin** and S. Luding*

*Department of Physics and Applied Mathematics, University of Navarra, Pamplona, Navarra, Spain
YGilogiq Internet Services S.L. Girona, Spain
**School of Civil Engineering, The University of Sydney, Sydney NSW 2006, Australia
*Multi Scale Mechanics, CTW, UTwente, P. O. Box 217, 7500 AE Enschede, Netherlands

Abstract. General-purpose computation on Graphics Processing Units (GPU) on personal computers has recently become
an attractive alternative to parallel computing on clusters and supercomputers. We present the GPU-implementation of an
accurate molecular dynamics algorithm for a system of spheres. The new hybrid CPU-GPU implementation takes into
account all the degrees of freedom, including the quaternion representation of 3D rotations. For additional versatility, the
contact interaction between particles is defined using a force law of enhanced generality, which accounts for the elastic and
dissipative interactions, and the hard-sphere interaction parameters are translated to the soft-sphere parameter set. We prove
that the algorithm complies with the statistical mechanical laws by examining the homogeneous cooling of a granular gas with
rotation. The results are in excellent agreement with well established mean-field theories for low-density hard sphere systems.
This GPU technique dramatically reduces user waiting time, compared with a traditional CPU implementation.
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INTRODUCTION

In the last years, rapid advances in computer sim-
ulations have led to many new developments in mod-
eling particulate systems. Molecular dynamics simula-
tion (MD) is widely accepted as an effective method in
addressing physical and engineering problems concern-
ing dense granular media [1]. The main disadvantages
of molecular dynamics algorithms implemented on cen-
tral processing units (CPU) are the maximum number of
particles and the expensive computing time of the simu-
lation.

Graphics processing units (GPU) are designed to
rapidly manipulate and alter memory. Their highly par-
allel structure makes them more effective than general-
purpose CPUs for algorithms where processing of large
blocks of data is done in parallel. Thus, general-purpose
computation on (desktop) graphics hardware (GPGPU)
[2, 3, 4] has become a serious alternative for parallel
computing on clusters or supercomputers.

Compute Unified Device Architecture (CUDA) is a
parallel computing platform, which has been recently
introduced by NVIDIA [2, 3]. This platform notably
improves the computing performance by exploiting the
power of the GPUs. The open source NVIDIA GPU
Computing package provides several code samples that
help to get started on the path of writing software with
CUDA C/C++, OpenCL or DirectCompute. Specifical-
ly, the example particles-CUDA is a simple algorithm,
which includes discrete elements that move and collide

within an uniform grid data structure. However, this im-
plementation is by no means optimal and there are many
possible further optimizations to this algorithm.

MD IMPLEMENTATION OF SPHERES
ON GPUS INCLUDING ROTATION

We have developed a new hybrid CPU-GPU Discrete
Element based on the CUDA-particles example. The first
step was to replace the Euler’s integrator by a Velocity
Verlet integration method. This modification notably im-
proved the numerical output of the algorithm and it guar-
anties that the total mechanical energy of the system al-
ways oscillates around a constant value that corresponds
to the exactly solved system. The same goes for other
conservative quantities like linear or angular momentum
that are, at least nearly, preserved using this symplectic
integrator. The original collision rule was replaced by a
generalized contact law that is more realistic than the lin-
ear spring contact. Rotational degrees of freedoms were
included and are activatd by a tangential force that de-
pends on history. Accordingly, a neighbor list and a con-
tact list have been also implemented.

The application developed, as most of the GPGPU
software, has an heterogeneous architecture. This means
that some pieces of code run in the CPU and others in
the GPU. The flowchart of the MD method is presented
in Figure 1. The first steps of the program consist in the
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FIGURE 1.

Flowchart of the granular gas simulation. Operations in gray run on the CPU, subroutines in blue run on the GPU

and the ones in oranges run partially in CPU and GPU, and, in most cases, they require data-interchange between CPU and GPU.

initialization of the CUDA -enabled device, the allocation
of the necessary memory —in both CPU and GPU- and
loading configuration parameters of the granular gas. Ini-
tially, the particles are homogeneously distributed in the
simulation space with a random velocity for translation-
al and rotational degrees of freedom (this is done on the
host and then the particles’ information is sent to the G-
PU device). With the goal to avoid effects of the initial
configuration, the dissipation due to particle-particle in-
teraction is disabled, and a number of iterations whith
very low dissipation is performed. After that, the energy
loss is enabled again and the main loop of the program
starts, calling in each iteration the Update System subrou-
tine, and with a periodic (lower) frequency printing out
the particles information. When the simulation finishes
the resources reserved are released and the program ends.
In the Update System routine is where the MD processes
occur. Initially, following the Velocity Verlet integration
method, the particles’ velocity in the mid-point is calcu-
lated and with it the positions are updated. Then, with the
aim of minimize the time used by the collisions method,
the list with the particles that are neighbors to each oth-
er is refreshed. Next, the collisions between particles are
computed, calculating the forces and torques that each
particle experiences and the list of contacts is updated.
Finally the last step of the Verlet and the leap-frog inte-
grator are performed.

As we mentioned above, to define the normal inter-
action F/jv , we use a linear elastic force, depending on
the overlap distance & of the particles. To introduce dis-
sipation, a velocity dependent viscous damping is as-
sumed. Hence, the total normal force reads as F/IV =
—kN 5 — A vIr\;[ where kV is the spring constant in
the normal direction, 7" is the damping coefficient in
the normal direction and v%l is the normal relative ve-
locity between i and j. The tangential force FiJT~ also
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contains an elastic term and a tangential frictional ter-
m accounting also for static friction between the grain-
s. Taking into account Coulomb’s friction law it read-
sas Fj =min{—k"-& —y" -, |, uF)} where " is
the damping coefficient in tangential direction, VrTez is the
tangential component of the relative contact velocity of
the overlapping pair, U is the friction coefficient of the
particles, & represents the elastic elongation of an imag-
inary spring with spring constant k" at the contact [5],
which increases as d&(t)/dt = vl as long as there is
a non-sliding overlap between the interacting particles
[5, 6, 7]. The tangential spring is chosen to be orthogo-
nal to the normal vector [8]. Finally, we solve Newton’s
equation of motion for all particles. A quaternion for-
malism is used to describe the rotation of the particles.
Finally, the equations of motion are integrated using a
Fincham’s leap-frog algorithm (rotational) [9] and a Ver-
let Velocity algorithm (translational) [10].

Validation The numerical accuracy of the algorithm
has been validated by comparing our results with a mean
field model. Specifically, we have examined the homo-
geneous cooling of rough and dissipative spherical parti-
cles. Luding et al [12] and Herbst et al [13] have found
that translational 7 and rotational R kinetic energy of
granular gas of rough particles, in homogeneous cooling
state, is governed by the following system of equations

4 _AT3/? 4+ BT'/?R )
drt
dp — BTE_cTVR 2)
drt

with the constants A, B and C, whose values depend
on the space dimensionality D and the energy dissipa-

1—¢2 2
72 +n(1-n),B="1 and C =

1 (1 - g) where ) = g(1+¢,)/(2q+2) (in3D g =2/5)

tion rates as, A =
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FIGURE 2. Evolution of the translational and rotational kinetic energy vs time. a) e, = ¢;
=0.8atr=2x10%s (red), t = 5 x 1025 (green) and t = 9 x 1025 (black).

the speed distribution obtained for e, = ¢;

and e, and e; are the restitution coefficients on the nor-
mal and tangential direction respectively. The mean time

between collisions G = 8(2a)?%,/Zg(2a), is used to

rescale real time scale accordingly to T = 2GT'/2(0)z.
The strength of the dissipation can also be included in-
to the characteristic time 7 = %(1 —2)GT'/2(0)r [14].
To compare the numerical output of our code with the
theoretical predictions (Equations 2), we have to find e-
quivalent dissipation parameters (7,, % and k;) that cor-
respond with specific values of the normal e, and tan-
gential ¢, restitution coefficients. In the simplest approx-
imation, the normal interaction force between two con-
tacting particles is a linear spring f7; = kV§ and a ve-
locity depending viscous damping force f3;, . = }/,,3 [11].
Examining the contact evolution one gets a well known
differential equation of the damped harmonic oscillator
[11]

S+2né+ w38 =0 3)

Here wy = \/k/my; is the oscillation frequency of an e-
lastic oscillator and 1) is the effective viscosity, obtained
as Y, = 2nmyp where myy = mymy/(m; + my) is the re-
duced mass. Solving Eq.(3) one can find that the effec-
tive restitution coefficient, e, = exp(—7nn /) where is
the oscillation frequency of the damped oscillator. Com-
bining the equations the following expression is obtained

%12\/(4k wmi2) [((F50)* + 1)

On the other hand, describing the tangential force
between to contacting particles, one can also consider
a tangential spring f!, = k'8, and a velocity dependent
viscous damping f. = = %6, [11]. For simplicity sake
here we examined the case y; = 0; for which an analytic
expression, relating k; and k,,, can be derived,

2
K — knq (arccos(fe,)) @
1+¢q T

where g = 2/5 stands for the 3D case [11].
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=0.6b) e, = ¢; =0.8. In c) we present

Numerical Results. For validation, we have numeri-
cally studied the free cooling kinetics of a dilute system
of N = 4096 spheres confined within a square box with
| = 2m, resulting in a volume fraction of V; = 0.008.
Initially, the particles are homogeneously distributed in
the space and their translational and rotational veloci-
ties follow Gaussian distributions. To avoid memory ef-
fects from the initial conditions, we allow the system to
execute several collisions before starting to analyze the
particles’ temporal evolution. To compare the algorithm
performance with the mean field model [12], system of
particles with two different restitution coefficient where
studied, e, = ¢, = 0.6 and e, = ¢, = 0.8. The values
k, = 108N /m and a density p = 2000kg/m> were used.
The corresponding dissipative parameters have been cal-
culated using the equations for the normal damping co-
efficient 7y, and for the stiffness of the tangential spring
k;. The time step was set to df = 107 %s.

Figure 2 shows the evolution of the translational 7 and
rotational R kinetic energies are. Note that in every case
the time scale have been rescaled using the correspond-

ing characteristic time, resulting in T = 2GT,1/ 2(O)t. As
we start from an equilibrium state and the dissipation
is low, the system evolves into a homogeneous cooling
state. For comparison we also show the corresponding
analytic result of Eq. (2) for the same restitution coeffi-
cients. The excellent agreement archived for both cases
validates the numerical performance of our algorithm.
During the cooling process the velocity statistic-
s was also examined. Low dissipative particles cool
down uniformly over a wide range of time. Thus, al-
1 the temporal dependences enter through the mean
values of the translational and rotational temperature.
Such a picture is consistent with the results shown in
Fig. 2c. (e, = ¢; = 0.8) where the speed distribution,

D(c) and (¢ =

al times. In all cases, the speed distribution remains
close to a Maxwell-Boltzmann speed distribution D(c¢) =

vi+vi+v?) is presented at sever-
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FIGURE 3. Cundall number against N for different simula-
tions. In black color a version that run only on the CPU. In red
and blue hybrids versions.

3/2
4n (ml’%”)) / 2e 1w where Vmp(t) is the most prob-
able velocity. For the rotational degrees of freedom we
have obtained similar results (data not shown).

Computational Performance Benchmarks. In any pro-
gram that runs in parallel the execution time depend-
s, in conjunction with the hardware, on the number of
tasks running simultaneously. We compared the runtime
difference between typical MD-algorithms and hybrid
CPU-GPU MD-algorithms. A 3D mono-disperse gran-
ular gas was used as model example. The first version
of the code was a hybrid CPU-GPU algorithm, which
uses the GPU to calculate the interaction between par-
ticles, whilst the second version fully runs on the CPU.
The performance of a particle simulation code is mea-
sured by the Cundall number defined as C = Ny N/Tcpy
where Nr is the number of time steps, N is the number
of particles and T¢py is the duration of the simulation in
real-time. The CPU version benchmark was performed in
a personal computer running Debian GNU/Linux 6.0.2,
with a processor Intel® Core™ 2 Quad Q6600 at 2.40
GHz. In the case of the GPU version, the benchmark was
performed in the same PC with an NVIDIA® GeForce®
GT 430 graphic card, and in an Apple MacBook Pro®
with a processor Intel® Core™ 2 Duo at 2.53GHz and
a graphic card NVIDIA® GeForce® 9400M. In all cas-
es the mean value for 10 different executions —1000000
iterations each one— are presented. The results obtained
are shown in Figure 3. Note that when the number of
particles is relatively small (from N =4 to N = 2048)
the Cundall Number is approximately constant, denoting
a very similar performance for all cases. As the system
size gets larger, however, the performances of the hybrid
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CPU-GPU algorithm are notably enhanced with respect
to the ones only running on the CPU. Furthermore, us-
ing and NVIDIA GeForce GT 430 graphic card the sim-
ulations executed with the hybrid CPU-GPU algorithm
run faster by more than one order of magnitude than on
the CPU. It is important to remark, that today there is
a new generation of NVIDIA products, which are based
on Fermi and Kepler architecture and are optimized for
scientific applications. The performance of the hybrid al-
gorithm, on this novel hardware, should be even better.

In summary, we have described the implementation
of an accurate molecular dynamics algorithm for mono-
disperse systems of spheres with rotation, using GPUs.
Simulations in GPU are notably faster than traditional
CPU methods, the results agree with mean-field theories
for low-dense granular systems.
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