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a b s t r a c t

We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier
liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit
expressions for the convective thresholds in terms of the parameters of the system in the case of
idealized boundary conditions. We also calculate numerically the convective thresholds for the case of
realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability
thresholds for a diluted magnetic suspension are emphasized.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ferrofluids are stable colloidal suspensions of magnetic nano-
particles dispersed in a carrier liquid. In the absence of an external
magnetic field the magnetic moments of the particles are ran-
domly orientated and there is no net macroscopic magnetization.
In an external field, however, the particles' magnetic moments
easily orient and a large (induced) magnetization is present. There
are two additional features in ferrofluids not found in ordinary
fluids, the Kelvin force and the body couple [1]. In addition, in an
external magnetic field, a ferrofluid exhibits additional rheological
properties such as a field-dependent viscosity, special adhesion
properties, and a non-Newtonian behavior [2]. Convection in
ferrofluids has been a topic of great interest in the last decades.
In addition, heat transfer through magnetic fluids has been of
outstanding technological importance and was therefore also a
leading area of scientific studies [3]. An important application of
ferrofluids lies in the biomedical area where the carrier liquid is
blood [4–8] which is known to have also special rheological
properties [9–11]. In addition, when a magnetic field is applied,
the ferrofluid can exhibit additional rheological properties such as
magneto-viscosity, adhesion properties, and non-Newtonian beha-
vior [12–22]. Hence, a detailed study of viscoelastic magnetic
fluids is quite important and in order.

The first macroscopic description of magnetic fluids was given
by Neuringer and Rosensweig [23]. The convective instability
of a magnetic fluid layer heated from below in the presence of a

uniform vertical magnetic field was discussed later by Finlayson
[24]. Both cases, shear free and rigid horizontal boundaries were
investigated within the linear stability method. Gotoh and Yamada
[25] carried out a similar study by assuming the fluid to be
confined between two magnetic pole pieces. A weakly nonlinear
analysis in a strong external field was considered by Blennerhas-
sett et al. [26]. The generalized Lorenz model for ferrofluid have
been recently done by Laroze et al. [27]. The convective instability
for a rotating layer in a magnetic fluid has been studied by Gupta
and Gupta [28] and by Venkatasubramanian and Kaloni [29]. An
amplitude equation for the stationary convection with idealized
boundary condition was derived in Ref. [30]. The Küppers–Lortz
instability for the case of a rotating magnetic fluid was formulated
by Auernhammer and Brand [31]. Ryskin and Pleiner [32], using
nonequilibrium thermodynamics, have derived a complete set of
equations to describe ferrofluids in an external magnetic field. This
description is made in terms of a binary mixture, where the
magnetophoretic effect, as well as magnetic stresses, has been
taken into account in the static and dynamic parts of the ferrofluid
equations. When the magnetophoretic effect can be neglected, we
have analyzed the thermal convection for rotating ferrofluids. For
idealized boundary condition for the typical conductive state in
the stationary case an analytical expression was found for the
Rayleigh number as a function of control parameters [33].
Recently, the weakly nonlinear analysis for stationary convection
in a rotating magnetic binary mixture was studied [34]. Other
effects, such as the buoyancy-surface tension effects, nonuniform
thermal gradients, and magnetization constitutive equations, have
also been studied in Refs. [35–49].

A popular way to describe the viscoelastic properties of fluids is
the use of a constitutive equation, which relates the stress and
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strain rate tensors. Rheology is the science devoted to generalize
the linear, static Newtonian relation to the various, more compli-
cated cases of non-Newtonian behavior. Very often an Oldroyd
constitutive equation [50] is employed to realistically describe
viscoelastic properties. In this model, the stress tensor is basically
decomposed into both a polymeric-like elastic contribution and a
Newtonian-like solvent contribution. Convection in such “Oldroyd
fluids” has been studied by various authors for different physical
and geometrical cases, e.g. both for free–free or rigid–rigid
boundary condition [51–67]. By heating a fluid layer from below,
as a general result, oscillatory modes can be obtained at onset in
competition to the usual stationary convection states. Which type
of instability, stationary or oscillatory, appears first, depends on
the values of the rheological parameters. Experimental measure-
ments of oscillatory convection in viscoelastic mixtures were
reported by Kolodner [68] in a DNA suspension; and theoretical
studies of the convection thresholds for binary viscoelastic mix-
tures in different types of fluids, can be found in Refs. [69–73].
Recently, studies on convection in viscoelastic magnetic fluid have
been done [74–78].

The aim of this paper is to present the influence of the rotation
and the viscoelasticity on convective cells in a magnetic fluid, in
particular for cases, where the separation ratio and magnetic
separation ratio are not too large and the simple fluid approxima-
tion can be used [32]. To this aim an Oldroyd viscoelastic magnetic
fluid heated from below is considered. The description of the
system involves many parameters whose values have not yet been
determined accurately. Therefore, we are left with some freedom
in fixing the parameter values. In order to be as exhaustive as
possible, we will analyze the linear regime for two different
limiting cases of boundary conditions i.e., the free–free (FF) and
the rigid–rigid (RR) ones. In the first case (FF), one can analytically
calculate the convection threshold as a function of the parameters
of the fluid. In addition, we have further checked that we retrieve
previous results obtained by other authors in simplified situations.
In the case of realistic boundary conditions (RR), an analytical
calculation is not tractable and we numerically solve the linearized
system using a collocation spectral method, in order to determine
the eigenfunctions and eigenvalues and consequently the convec-
tive thresholds. The paper is organized as follows: In Section 2, the
basic hydrodynamic equations for viscoelastic magnetic fluid
convection are presented. In Section 3 the linear stability analysis
of the conduction state is performed. Finally, conclusions are pre-
sented in Section 4.

2. Basic equations

We consider a layer of incompressible magnetic fluid in a
viscoelastic carrier liquid, of thickness d, parallel to the xy-plane,
with very large horizontal extension, in a gravitational field g and
subject to a vertical temperature gradient. The layer is rotating
uniformly about the vertical axis with constant angular velocityϖ.
The magnetic fluid properties can be modeled as electrically
nonconducting superparamagnets. The magnetic field H is
assumed to be oriented in a direction parallel to the ẑ axis. It
would be homogeneous, if the magnetic fluid were absent. Let us
choose the z-axis such that g¼ #gẑ and that the layer has its
interfaces at coordinates z¼ #d=2 and z¼ d=2. A static tempera-
ture difference across the layer is imposed, Tðz¼ #d=2Þ ¼ T0þΔT
and Tðz¼ d=2Þ ¼ T0. The set-up of the problem is drawn in Fig. 1.
Under the Boussinesq approximation, the balance equations read

∇ & v¼ 0; ð1Þ

ρ0dtv¼ #∇pþ∇ & τþρgþM & ∇Hþ2ρ0v 'ϖ; ð2Þ

cv;H
T0

dtTþχTH0 & dtH¼ κ∇2T ; ð3Þ

where dtf ¼ ∂t f þv & ∇f is the total derivative, v¼ fυx;υy;υzg is the
velocity field; p is the effective pressure which contains the static
hydrodynamic pressure, the gradient term of the magnetic force
and the centrifugal contribution; ρ is the mass density; ρ0 is a
reference mass density; τ is the extra stress tensor; M is the
magnetization field; cv;H is the specific heat capacity at constant
volume and magnetic field, T is the temperature, T0 is a reference
temperature; χT is the pyromagnetic coefficient and κ is the
thermal diffusivity.

For the total density we use the following linear state equation
[32]:

ρ¼ ρ0ð1#αTΔTþαHH0 &ΔHÞ ð4Þ

where αT and αH are the thermal and the magnetic expansion
coefficients, respectively. In the following, we denote Δf ¼ f # f 0.
In addition, for the magnetic field H and the magnetic induction B,
we suppose that the system is not conductive, i.e., it is governed by
the static Maxwell equations

∇'H¼ 0; ð5Þ

∇ & B¼ 0: ð6Þ

Furthermore, we assume a linear relationship between these
fields, B¼HþM, and introduce the scalar magnetic potential
H¼ #∇ϕ to fulfill Eq. (5). The magnetization field is assumed to
follow instantaneously the external field M¼MðT ;HÞĤ with the
usual phenomenological equation of state [24]

MðT ;HÞ ¼M0#χTΔTþχHH0 &ΔH: ð7Þ

A constitutive equation relating the extra stress tensor τ and
the shear rate has also to be introduced. In a Newtonian incom-
pressible fluid, the extra stress tensor is related to the strain tensor
via the Newton law, τ ¼ 2νD, where D is the symmetric part of the
velocity field gradient and ν is the kinematic viscosity. For complex
polymeric fluids, a more general constitutive relation between
stress and strain rate τ ¼ τ ðDÞ is necessary to describe the
behavior. This last relation is subject to symmetry restrictions.
One type of constitutive relation that satisfies these symmetry
requirements and that can be further justified by the kinetic
theory of dumbbells has been proposed by Oldroyd [50]. This
family of models, developed in the fifties of the last century,
includes particular cases that are widely used for different kinds of
polymeric solutions. In the general Oldroyd model, the constitu-
tive equation is

ð1þλ1DtÞτ ¼ 2νð1þλ2DtÞD; ð8Þ

where ν is the static viscosity, λ1 is the relaxation time, and λ2 is
the retardation time; and the last two parameters characterize the
viscoelastic time scales. For thermodynamic stability reasons both,
λ1 and λ2 are taken to be positive. The symbol Dt in Eq. (8) denotes
a rotational invariant (“frame-indifferent”) time derivative,

Fig. 1. A vertical cut through the fluid layer; the y-axis points into the xz-plane; the
z-axis is the rotation axis.
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defined as

Dtτ ¼ dtτþτ &W#W & τþaðτ & DþD & τ Þ; ð9Þ

where W is the skew-symmetric part of the velocity field gradient
and a is a phenomenological parameter between #1 and þ1.
For a¼ #1, one gets the lower convected Jeffrey's model (Oldroyd
B), for a¼0 one gets the so-called co-rotational Jeffrey's model, and
a¼1 describes the upper convected Jeffrey's model (Oldroyd A). Let
us comment that the coefficient a is not completely independent of
the other rheological parameters [83]. Some limiting cases are
λ2 ¼ 0 that leads to a Maxwellian fluid, while a Newtonian fluid
requires both, λ1 ¼ 0 and λ2 ¼ 0.

Let us now analyze the boundary conditions (BCs) of the
system. A static temperature difference across the layer is
imposed, Tðz¼ #d=2Þ ¼ T0þΔT and Tðz¼ d=2Þ ¼ T0; as the mag-
netic BCs we use the typical continuity conditions of the Maxwell
equations, i.e., n' ðHin#HexÞ ¼ 0 and n & ðBin#BexÞ ¼ 0, where n is
a unit vector normal to the boundaries. For the velocity field we
analyze two types of BCs, which will be introduced later in the
text. Hence, from Eqs. (1) to (8) and using these boundary
conditions the conductive, convection-free state is given by

vcon ¼ 0; ð10Þ

TconðzÞ ¼ T #βz; ð11Þ

HconðzÞ ¼H0ð1þλβzÞ; ð12Þ

where β¼ ðΔT=dÞ and λ¼ χT=ð1þχHÞ. After some algebra, the
equations for the dimensionless perturbations can be written as

∇ & v¼ 0 ð13Þ

P#1dtv¼ #∇pþ∇ & τþRaΣþ
ffiffiffiffiffi
Ta

p
v ' ẑ ð14Þ

ð1þΓDtÞτ ¼ ð1þΓΛDtÞD ð15Þ

dtðθ#M4∂zϕÞ ¼ ð1#M4Þυzþ∇2θ ð16Þ

ð∂zzþM3∇2
? Þϕ#∂zθ¼ 0 ð17Þ

∇2ϕext ¼ 0 ð18Þ

where fv; τ ;θ;ϕg are the dimensionless perturbations of the
velocity, the extra stress tensor, the temperature, and the
magnetic potential, respectively. We have used the abbreviations
Σ¼Π1ðθ;ϕÞẑþM1θ∇ð∂zϕÞ with Π1 ¼ ð1þM1Þθ#ðM1#M5Þ∂zϕ
and ∇2

? ¼ ∂xxþ∂yy. In Eqs. (13)–(18) the following groups of
dimensionless numbers have been introduced: (a) (pure fluids)
The Rayleigh number, Ra¼ αTgΔTd3=κν, accounting for buoyancy
effects; and the Prandtl number, P ¼ ν=κ, relating viscous and
thermal diffusion time scales. (b) (rotation in pure fluids) The
Taylor number Ta ¼ ð2ϖd2=νÞ2. (c) (magnetic fluids) The strength
of the magnetic force relative to buoyancy is measured by the
parameter M1 ¼ βχ2

TH
2
0=ðρ0gαT ð1þχÞÞ; the nonlinearity of the

magnetization, M3 ¼ ð1þχÞ=ð1þχþχHH
2
0Þ, a measure of the devia-

tion of the magnetization curve from the linear behavior
M0 ¼ χH0; the relative strength of the temperature dependence
of the magnetic susceptibility M4 ¼ χ2

TH
2
0T0=cHð1þχÞ; and the ratio

of magnetic variation of density with respect to thermal buoyancy
M5 ¼ αHχTH

2
0=ðαT ð1þχÞÞ. (d) (viscoelastic fluids) The Deborah

number, Γ ¼ λ1κ=d
2, describing stress relaxation; and the ratio

between retardation and stress relaxation times, Λ¼ λ2=λ1. Since
λ1;2 are positive, so are Γ and Λ. For Γ ¼ 0 one recovers the
Newtonian fluid, while for Λ¼ 0 the Maxwellian fluid is obtained.

Let us comment on the numerical values of the parameters: Ra
and Ta can be changed by several orders of magnitude, while a
typical value for P in viscoelastic fluids is P ( 100#103. The magnetic
numbers have the following order of magnitude: M1 ( 10#4#10,

M3≳1, M4 (M5 ( 10#6 for typical magnetic field strengths
[32,33]. For aqueous suspensions it is suggested that the Deborah
number is about Γ ( 10#3–10#1 [68,79–81], but for other viscoe-
lastic fluids the Deborah number can be of the order of Γ ( 103.
Unfortunately, no experimental data are available for the retarda-
tion time , so we treat Λ as arbitrary in the range ½0;1*. In addition,
the above set of equations is still unnecessarily complicated. We
will simplify it first by neglecting M4, which is a common
simplification in the description of instabilities in ferrofluids [5].
Since M4 is not related to viscoelastic effects, which we are
interested in here, we expect not to loose any reasonable aspect
of the problem under consideration. The same is true for the
coefficient M5. So, we take M4 ¼ 0¼M5 in the following analysis.
Thus, we are left with two magnetic field-dependent effects
characterized by the parameters fM1;M3g. The first one denotes
the influence of the Kelvin force and is expected to have a
dominant influence on the convection behavior. The second
parameter, M3 is different from 1 due to the intrinsic nonlinearity
of the magnetization and is only a weak function of the external
magnetic field. In the next sections we will develop the linear
analysis for both stationary and oscillatory convection.

3. Linear stability analysis

In order to calculate the linear stability, we only need the linear
parts of Eqs. (13)–(17). This is readily done by neglecting the
advective terms v & ∇ and replacing Dt by ∂t. Moreover, the effective
pressure and two components of the velocity field can also be
eliminated by applying the curl ð∇'⋯Þ and double curl ð∇'∇'⋯Þ
to the Navier–Stokes equation and then considering the z-components
of the resulting equations, that is υz and ζ ¼ ð∇' vÞz (i.e., the
vertical components of the velocity and the vorticity). After some
algebra, the linear equations read

P#1∂tΠt∇2υz ¼Ξt∇4υz#
ffiffiffiffiffi
Ta

p
Πt∂zζþRaΠt∇2

?LΣ ð19Þ

P#1∂tΠtζ ¼Ξt∇2ζþ
ffiffiffiffiffi
Ta

p
Πt∂zυz ð20Þ

∂tθ¼ υzþ∇2θ ð21Þ

ð∂zzþM3∇2
? Þϕ#∂zθ¼ 0 ð22Þ

where LΣ ¼ ð1þM1Þθ#M1∂zϕ, Πt ¼ 1þΓ∂t and Ξt ¼ 1þΓΛ∂t .
We remark that Eq. (20) is due to the rotation. In fact, when
Ta-0 the vorticity ζ is completely decoupled from the other
variables. One can define the vector field a¼ ðw; ζ;θ;ϕÞT that
contains the variables relevant for the linear analysis. Using
standard techniques [82], the spatial and temporal dependencies
of a are separated using the normal mode expansion

aðr; tÞ ¼AðzÞ exp ½ik & r? þst*; ð23Þ

with A¼ ðW ; Z;Θ;ΦÞT , where k is the horizontal wavenumber
vector of a perturbation, r? is the horizontal vector position and
s¼ sþ iΩ is the complex eigenvalue with s the growth factor of
the perturbation andΩ its frequency. Using this ansatz, Eqs. (19)–(22)
are reduced to the following coupled ordinary differential equations:

D4W ¼ ξ1D
2W#ξ2Wþξ3DZ

þRaðξ4Θ#ξ5DΦÞ ð24Þ

D2Z ¼ ξ6Z#ξ3DW ð25Þ

D2Θ¼ ξ7Θ#W ð26Þ

D2Φ¼ ξ8ΦþDΘ ð27Þ
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where Dnf ¼ ∂nz f , ξ1 ¼ 2k2þsQ=P, ξ2 ¼ k2ðk2þsQ=PÞ, ξ3 ¼
ffiffiffiffiffi
Ta

p
Q,

ξ4 ¼ k2ð1þM1ÞQ, ξ5 ¼ k2M1Q, ξ6 ¼ k2þsQ=P, ξ7 ¼ k2þs and
ξ8 ¼M3k

2, such that Q¼ ð1þsΓÞ=ð1þsΛΓÞ. In the following two
subsections, we analyze the results of the linear stability analysis for
the FF and RR boundary conditions.

3.1. Idealized boundary conditions (FF)

In order to solve the set of differential equations analytically,
the following boundary conditions

DΦ¼Θ¼DZ ¼D2W ¼W ¼ 0; ð28Þ

are imposed at z¼ 71=2. The z-dependence of the eigenfunctions
of the stability problem can then be described by simple sine and
cosine functions. The eigenvalue problem produces a dispersion
relation

PðsÞ + ∑
5

i ¼ 0
aisi ¼ 0; ð29Þ

where aj are functions of the system parameters

a5 ¼ q2Γ2ϱ ð30Þ

a4 ¼ a5ð2þq2Γð1þ2PΛÞÞ ð31Þ

a3 ¼ 2q2a5ð1þPþPΛÞþP2π2TaΓ2ϱþq2ϱð1þq4Γ2PΛð2þPΛÞÞ
#RaΓ2k2PQ13 ð32Þ

a2 ¼ #RaΓk2PQ13ðΓΛPq2þ2Þ

þq4ϱðΓ2Λ2P2q4þ2Pþ1Þ

þ2ΓPq6ϱðΛþΛPþ1Þ

þπ2ΓP2ϱðΓq2þ2ÞTa ð33Þ

a1 ¼ #k2PQ13ðΓðΛþ1ÞPq2þ1ÞRa
þPq6ϱð2ΓΛPq2þPþ2Þ

þπ2P2ϱð2Γq2þ1ÞTa ð34Þ

a0 ¼ P2q2ðq6ϱ#Rak2Q13Þþπ2P2q2ϱTa ð35Þ

where q2 ¼ k2þπ2 and Q13 ¼ k2M1M3þϱ with ϱ¼M3k
2þπ2.

Notice that a5 and a4 do not depend on Ra, while all other aj are
of the form aj ¼ aIjþaIIj Ra. In addition, Eq. (29) allows for an
analytical expression of the Rayleigh number as a function of fs; kg

Ra¼
ϱq2ðq2þsÞðPq2γþsϵÞ2

k2PϵðsþPq2γþs2ΓÞðk2M1M3þϱÞ

þ
ϱðq2þsÞðϵPπÞ2Ta

k2Pϵðk2M1M3þϱÞðsþPq2γþs2ΓÞ
ð36Þ

where γ ¼ 1þsΛΓ and ϵ¼ 1þsΓ. Let us analyze some particular
cases. First, in the case without rotation, (Ta¼0), the expression of
Pérez et al. [77]

Ra ⟶
Ta ¼ 0

ϱq2ðq2þsÞðPq2γþsϵÞ2

k2PϵðsþPq2γþs2ΓÞðk2M1M3þϱÞ
ð37Þ

is regained. Second, when the magnetic effects are neglected,
(M1 ¼ 0 and M3 ¼ 0), Eq. (36) can be cast into the form

Ra ⟶
M1 ¼ M3 ¼ 0

ðq2þsÞððPπϵÞ2TaþðPq3γþsqϵÞ2Þ
k2PϵðsþPq2γþs2ΓÞ

ð38Þ

the result obtained by Laroze et al. [71]. Third, when the viscoe-
lastic effects are neglected, (Γ ¼ 0 ), Eq. (36) leads to

Ra⟶
Γ ¼ 0

ϱðq2þsÞðq2ðPq2þsÞ2þP2π2TaÞ

k2PðPq2þsÞðk2M1M3þϱÞ
ð39Þ

the case that was studied by Auernhammer and Brand et al. [31].
Finally, an important limit is P-1, when the thermal diffusive
time scale is much larger than the viscous one. This might be
common for highly viscous fluids [82] and many viscoelastic
liquids [50]. In that case one arrives at

Ra⟶
P-1

ϱðq2þsÞðq6γ2þπ2Taϵ2Þ
k2q2γϵðk2M1M3þϱÞ

ð40Þ

In general, there are two different bifurcation cases, a stationary
one with s¼0, and an oscillatory one that occurs when s¼ iΩ with
Ω finite and real. For specific values of the parameters, the critical
Ra values of these two instabilities, Rasc and Raoc, respectively, can
be equal, thus constituting a codimension-2 bifurcation. We first
consider the stationary case.

3.1.1. Stationary bifurcation
In the stationary case (s¼0), we find the marginal stability

relation between the Rayleigh number and the wavenumber of the
perturbation

Ras ¼
ðq6þπ2TaÞϱ

k2ðk2M3ð1þM1Þþπ2Þ
ð41Þ

to be identical to that for a rotating ferrofluid [28,29]. Conse-
quently, when the rotation is neglected, Ras is reduced to

Ras ⟶
Ta ¼ 0

Ra½0*s ¼
q6ϱ

k2ðk2M3ð1þM1Þþπ2Þ
; ð42Þ

which is the classical Finlayson result [24]. Note, that in the
stationary case the viscoelastic effects do not appear at linear
order. The minimum of the marginal curve (42) (∂kRas ¼ 0) gives
the critical wavenumber ksc and, subsequently, the critical Rayleigh
number, Rasc ¼ RasðkscÞ, of the most unstable perturbation. Fig. 2
shows the rotation dependence of the linear threshold for differ-
ent values of the magnetic field, where the field is represented by
M1 (H2. We observe that Rasc increases with increasing Taylor
number, so the rotation rate has a stabilizing effect. In addition,
Rasc decreases for strong fields indicating the destabilizing effect of
a magnetic field.

3.1.2. Hopf bifurcation
We now discuss the oscillatory bifurcation. For a nonzero real

frequency Ω the eigenvalue equation (36) is complex and con-
stitutes two independent conditions. The real part gives the
marginal stability curve Raoðk;ΩÞ, while the imaginary part has
to vanish, since Ra is real. Using this condition we obtain an
explicit equation for Ω

ϕ0þϕ2Ω
2þϕ4Ω

4þϕ6Ω
6 ¼ 0 ð43Þ

where the coefficients fϕig are complicated functions of the
parameters, explicitly given in the Appendix. After switching to

Fig. 2. The critical stationary Rayleigh number, Rasc, as a function of the Taylor
number, Ta for different values of M1, at M3¼1.1.
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the variable Φ¼Ω2, Eq. (43) can be reduced to

ϕ0þϕ2Φþϕ4Φ
2þϕ6Φ

3 ¼ 0; ð44Þ

which has the formal solution

Φk ¼
#1
3ϕ6

ϕ4þukCþ
Δ0

Cuk

" #
; ð45Þ

where kAf1;2;3g, u1 ¼ 1, u2 ¼ ð#1þ i
ffiffiffi
3

p
Þ=2, u3 ¼ ð#1# i

ffiffiffi
3

p
Þ=2,

and C ¼
ffiffi
½

p
3*ðΔ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1#4Δ3
0

q
Þ=2 with Δ0 ¼ϕ2

4#3ϕ6ϕ2 and

Δ1 ¼ 2ϕ3
4#9ϕ6ϕ4ϕ2þ27ϕ2

6ϕ0. Since Eq. (45) describes different
solution branches, the selection of the physical branch depends on
the material parameters. Fig. 3 shows a three-dimensional plot of
the frequency Ω as a function of both viscoelastic parameters Γ
and Λ. There are different branches with different values of Ω.
In the lower branch, for the parameters chosen the frequency
decreases with increasing Λ, and close to the Newtonian case
(Λ¼ 1 and Γ ¼ 0) the instability must be stationary, hence the
frequency is zero. Finally, let us remark that multiple solutions are
typicality found in viscoelastic systems [65,66,73].

The oscillatory Rayleigh number, Rao, as a function ofΩ and the
control parameters is given by

Rao
Ras

¼
k2ðπ2P2Ta#KΩ2Þ

Pðq6þπ2TaÞ

þ
k2K2PðΛðΓK#1Þþ1Þ

PΓðq6þπ2TaÞ

#
k2ðΛ#1ÞK2PðΓK#1Þ

PΓðq6þπ2TaÞðΓ2Ω2þ1Þ

þ
π2k2KP2TaðKð1#PÞ#ΓΩ2Π1Þ

ðq6þπ2TaÞðΓ2Ω4þK2P2þΩ2Π2Þ
ð46Þ

where K ¼ k3þπ2, Π1 ¼ΛðΓKðΛP#1Þþ1Þ#1, and Π2 ¼
ΓKPðΛðΓKΛPþ2Þ#2Þþ1. Since the oscillatory Rayleigh number
is proportional to the stationary Rayleigh number, a codimension-
2 bifurcation can appear, if the right-hand side of Eq. (46) is equal
to one. Since the latter does not depend on the magnetic
contributions, the oscillatory instability is, at the linear level,
a consequence of the rotation or the viscoelasticity, or a mixture
of both effects.

We now discuss some limiting cases. First, for Ta¼0, the
Rayleigh number is reduced to

Rao
Ra½0*s

⟶
Ta ¼ 0

Λþ
1#Λ
q4

q2

Γ
#

q2

ΓΞ½0*
þ

q4

Ξ½0*

" #
#
Ω2

½0*

Pq4
ð47Þ

with Ξ½0* ¼ 1þðΓΩ½0*Þ2 and Ra½0*s given by Eq. (42). In this case the
corresponding frequency, Ω½0*, can be given in closed form

Ω2
½0* ¼

q2PΓð1#ΛÞ#ð1þPÞ

Γ2ð1þPΛÞ
: ð48Þ

For real Ω0 its square has to be positive. Obviously, for Ta¼0 this
cannot be achieved at all for Newtonian fluids and poses a lower
limit on the Deborah number for Oldroyd (and Maxwell) fluids,
ΓZð1þPÞ=ðPq2ð1#ΛÞÞ, which also means Λ must not reach the
value 1. This result was previously derived by Pérez and co-
workers in Ref. [77].

Another limit that allows for an analytical solution is P-1,
where we find

Rao
Ras

⟶
P-1

1
ð1þΓ2Λ2Ω2

½1*ÞΞ½1*

þ
q4Γð1#Λþq2ΓΛð1þΛÞÞΩ2

½1*

Ξ½1*ðq6þπ2TaÞð1þΓ2Λ2Ω2
½1*Þ

þ
q4Λ2Γ3ð1#Λþq2ΓΛÞΩ4

½1*

Ξ½1*ðq6þπ2TaÞð1þΓ2Λ2Ω2
½1*Þ

þ
π2TaΓð#1þΛþq2Γð1þΛÞÞΩ2

½1*

q2Ξ½1*ðq6þπ2TaÞð1þΓ2Λ2Ω2
½1*Þ

þ
π2TaΓ3ð#1þΛþq2ΓΛÞΩ4

½1*

q2Ξ½1*ðq6þπ2TaÞð1þΓ2Λ2Ω2
½1*Þ

ð49Þ

with Ξ½1* ¼ 1þðΓΩ½1*Þ2, such that

Ω2
½1* ¼

q6ðq2Γð1#ΛÞΛ#ð1þΛÞÞ
2Γ2ðπ2Taþq6Λ2Þ

#
π2Tað1þΛþq2Γð1#ΛÞÞ

2Γ2Λðπ2Taþq6Λ2Þ

þ
ð1#ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π4T2

að1þq2ΓÞ2þΨ
q

2Γ2Λðπ2Taþq6Λ2Þ
; ð50Þ

where
Ψ ¼Λ2q12ðΓΛq2þ1Þ2#2π2Λq6TaðΓq2ð#3ΛþΓΛq2#3Þþ1Þ.

To calculate the oscillatory thresholds one first determines the
critical wave number koc that leads to the lowest threshold
(∂kRao ¼ 0) which then gives to the critical Rayleigh number
Raoc ¼ RaoðkocÞ and critical frequency Ωc ¼ΩðkocÞ. For the general
case this has to be done numerically.

Fig. 4 shows the critical oscillatory Rayleigh number, Raoc, as a
function of the retardation to relaxation time ratio, Λ, for different
values of the Deborah number Γ. We observe that for small Λ
(Λo0:1) the value of the critical oscillatory Rayleigh number
increases when Λ increases until it reaches a local maximum,
followed by a slight decrease to a shallow minimum, before it
starts to increase again for all higher values of Λ. The topology of
this curve is the same for all three values of Γ considered, and only
the heights and the positions of the local maxima and minima are
slightly different.

Fig. 5 shows the corresponding critical frequency, Ωc, as a
function of Λ, for different values of Deborah number Γ. For small
Λð≲0:06Þ the frequency increases with Λ. A linear decrease follows,
approximately up to those Λ values, where Raoc shows the shallow
minimum. Beyond that, for Λ≳0:15, the critical frequency decays
exponentially. Similar to the case of the critical Rayleigh number,
the ΩcðΛÞ curves have similar shapes for all Deborah numbers,

Fig. 3. The frequency Ω as a function of both viscoelastic parameters Λ and Γ at
k¼4, P¼10 and Ta¼50.
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considered, although the actual numerical values are considerably
different, at least for Λo0:3. The inset of Fig. 5 shows the
corresponding critical wavenumber, kc. It is almost independent
of Γ and decreases by almost a factor of two before it reaches a
plateau value for Λ40:3.

Fig. 6 shows the critical oscillatory Rayleigh number, Raoc, as a
function of the Taylor number, Ta, for different values of Prandtl
number, P. The function RaocðTaÞ is monotonically increasing
denoting the stabilizing effect of the rotation. A similar behavior
has been found in the stationary case. Increasing Prandtl numbers,
on the other hand, reduces the threshold values, but does not
change the global structure of RaocðTaÞ and is rather small for the
relevant values of P ≳10 [50]. The inset of Fig. 6 shows that the
corresponding critical frequency, Ωc, is rather insensitive to both,
the Prandtl number and the Taylor number.

3.1.3. Codimension-2 bifurcation
There exists a range of parameters where the critical oscillatory

and stationary Rayleigh numbers have the same value, Rasc ¼ Raoc.
This is possible due to the non-Newtonian properties of the fluid
layer. Fig. 7 shows this line separating the stationary instability
regime (above) from the oscillatory one (below) in the Γ#Λ space
for different values of Ta. For Ta≲100 the influence of the rotation
is rather weak, since Raoc and Rasc have a similar Ta dependence.
Nevertheless, for higher values of the rotation rate the oscillatory
regime becomes smaller.

3.2. Realistic boundary conditions (RR)

The use of free–free boundary conditions at the two horizontal
boundaries is a useful mathematical simplification, but does not
reflect the physical reality, generally. The correct boundary condi-
tions for viscous or viscoelastic fluids are

Z ¼W ¼DW ¼Θ¼ 0; ð51Þ

at the two horizontal rigid boundaries. In addition, in the case of a
finite magnetic permeability χb of the rigid boundaries, the scalar
magnetic potential must satisfy

ð1þχbÞDΦ7kΦ¼ 0; ð52Þ

at z¼ 71=2, respectively [24]. Only in the limit χb-1, Eq. (52)
tends to DΦ¼ 0.

In order to solve Eqs. (24)–(26) with these realistic boundary
conditions, we use a spectral collocation method. Spectral meth-
ods ensure an exponential convergence to the solution and are the
best available numerical techniques for solving simple eigenvalue
– eigenfunction problems. Here, we follow the technique of
collocation points on a Chebyschev grid as described by Thre-
fethen [84]. The collocation points (Gauss-Lobatto) are located at
height zj ¼ cos ðjπ=NÞ where the index j runs from j¼N to j¼0.
Note that here the z-variable ranges from #1 to þ1 and one has
therefore to rescale Eqs. (24)–(26) accordingly, because the phy-
sical domain is defined in the range ð#1=2; þ1=2Þ. We use N¼40
collocation points in the vertical direction, for which the equations
and the boundary conditions are expressed. By using the colloca-
tion method, the set of differential equations (24)–(26) is trans-
formed into a set of linear algebraic equations. The eigenfunctions
ðΘðzÞ;ΦðzÞ;WðzÞÞ are transformed into eigenvectors defined at the
collocation points, X¼ ðΘN ;…;W0Þ, such that Ψ j ¼Ψ ðzjÞ. After this
stage of discretization, one is left with a classical generalized
eigenvalue problem, AX¼ RaBX, where Ra and X are the eigen-
value and eigenvector, respectively.

In the case of the oscillatory instability considered here, one
has to make sure that Ra (as being a physical quantity) is a real
number by choosing a correct value for Ω. Therefore, one is left
with a triplet fRa; k;Ωg that defines a marginal stability condition
(for a fixed value of the horizontal wavenumber k). This procedure
is repeated for several values of k leading to the marginal stability

Fig. 4. Raoc as a function of Λ at P¼10, M1 ¼ 10, M3¼1.1 and Ta¼10 for different
values of Γ, from bottom to top, Γ ¼ f5;4;3g ¼ f■; ,;▴g.

Fig. 5. Ωc as a function Λ for different values of Γ. The inset shows the critical wave
number, kc, as a function Λ for different values of Γ. The fixed parameters are the
same as in Fig. 4.

Fig. 6. Raoc as a function of Ta at Γ ¼ 1, Λ¼ 0:2, M1 ¼ 10 and M3¼1.1 for different
values of P, from bottom to top, P ¼ f1;10;102g ¼ f■; ,;▴g. The inset shows Ωc,
correspondingly.

Fig. 7. The codimension-2 bifurcation line, Rasc ¼ Raoc , that separates the station-
ary instability region (above) from the oscillatory one (below) at M1 ¼ 10, M3¼1.1,
and in the limit P-1, for different values of Ta, from top to bottom, Ta¼{0,10, 100,
1000}¼{full, dashed, dash-dotted, dotted} line.
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curve Ra versus k. The minimum of this curve gives Rac and kc, and
the corresponding value for the critical frequency Ωc.

Fig. 8 displays the critical Rayleigh number for different
Deborah numbers, each normalized by its maximum value at
Ta¼100, Rac=Rac;max, as a function of the Taylor number. In all cases
the relative threshold increases with the rotation rate. Viscoelastic
effects have a different influence for small and intermediate values
of Ta, but act similarly for larger values. The transitions can be
stationary or oscillatory. To decide this the critical frequency, Ωc,
has to be calculated. It is displayed as a function of Ta in Fig. 9. For
small Deborah numbers (Γ ( 10#4–10#1) the critical frequency is

zero and the convection is stationary irrespective of the rotation
rate, while for intermediate and strong viscoelasticity (Γ41) the
primary bifurcation is oscillatory for small values of Ta, but switches
to stationary above a critical value of the Taylor number, Ta - 109.

Fig. 10 displays the normalized critical Rayleigh number,
Rac=Rac;max, as a function of the magnetic filed, M1pH2, for
different values of the Taylor number, Ta. In all cases the threshold
decreases with increasing magnetic field as has also been found
for free–free boundary conditions. Finally, let us comment that for
small and intermediate values of Ta the critical frequency increases
with M1, similar to the case without rotation [77], but for very
large values, Ta ( 103, the convection is always stationary.

4. Final remarks

In the present work, Rayleigh–Bénard rotating convection in a
magnetic viscoelastic liquid is studied. The stability thresholds for
both, the stationary and the oscillatory convection, have been
determined. Two different boundary conditions for the velocity
field were analyzed, the so-called free–free and rigid–rigid ones.
For the former the results of Venkatasubramanian and Kaloni [29]
for the stationary convection and of Perez and coworkers [77] for
the oscillatory convection without rotation have been regained. In
addition, we have provided analytical formula for the oscillatory
convection in the small rotation as well as in the large Prandtl
limit. For weakly viscoelastic fluids the critical Rayleigh number
for the oscillatory convection is much higher than that for the
stationary one, while for high Deborah numbers the oscillatory
instability always precedes the stationary one. In this paper, we
have also calculated the range of parameters, for which a
codimension-2 bifurcation appears.

Due to the presence of various destabilizing effects, i.e., buoy-
ancy and magnetic forces, and of additional relaxation channels
due to the Oldroyd model, the discussion of the stability curves
becomes rather intricate. An oscillatory instability, whose critical
frequency is a rapidly varying function of the Deborah number, is
competing with the stationary one. As a result, the codimension-2
bifurcation line, separating those two instabilities, strongly
depends on the structure of the Oldroyd model and its relaxation
times.

In the case of realistic rigid–rigid boundary conditions, the
convection thresholds are calculated numerically by the spectral
method. The technique of collocation points (Gauss-Lobato) as
described in [84] was used. We have observed that the bifurcation
scenario is changed compared to that for ideal free–free boundary
conditions. In particular, we have found that in the realistic case,
for large rotation rates, Ta≳102, the primary bifurcation is sta-
tionary in a wide range of rheological parameters.

Finally, we want to mention that, very often, an external
rotation induces other types of patterns, such as found in the
Küppers–Lortz instability. To study such instabilities a nonlinear
analysis is necessary. A detailed study of the weakly nonlinear
analysis for rotating magnetic viscoelastic fluids is in progress.
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Fig. 8. (Color online) The normalized critical Rayleigh number Rac=Rac;max as a
function of Ta at Λ¼ 0:5, P¼10, M1¼0.1 and M3¼1.1 for different values of Γ, from
bottom to top, Γ ¼ f10#3 ;10#2 ;10#1;1;10g ¼ f■; ,;▴;▾; ng for rigid–rigid boundary
conditions.

Fig. 9. Ωc as a function of Ta for different values of Γ as in Fig. 8.

Fig. 10. Rac=Rac;max as a function of M1 for different values of Ta at Λ¼ 0:5, Γ ¼ 1,
P¼10 and M3¼1.1. The different values of Ta are represented by different symbols
from bottom to top Ta ¼ f0;10;102 ;103g ¼ f■;▴;⋆; ng.
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Appendix A. Coefficients ϕi

The coefficients fϕig of Eq. (43) are

ϕ0 ¼ P2q2½q8PΓð1#ΛÞ#q6ðPþ1Þ
#q2π2ΓPTð1#ΛÞþπ2Tð1#PÞ*; ðA:1Þ

ϕ2 ¼ q10Γ3P3Λ2ð1#ΛÞ
#3q8Γ2P2ðΛ2þ1Þ

þq8Γ2P2Λð4#PðΛþ1ÞÞ
þq6ΓPð1#ΛÞð2Pþ3Þ

þq4ðPðπ2Γ3P2TðΛ#1Þ#1Þ#1Þ

þq2π2ðΓ2P2Tð2#PðΛþ1ÞÞþ2Þ; ðA:2Þ

ϕ4 ¼Γ2½q8Γ2Λ2P2ð1#ΛPÞ
#2q6Λ2P2Γ2

þq6PΓð1#ΛÞð2ΛPþ3Þ
#q4ðPðΓþ1Þþ2Þ

þq2π2P2Γ2Tð1#ΛPÞ*; ðA:3Þ

ϕ6 ¼ #q4Γ4ðΛPþ1Þ: ðA:4Þ
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