Rotating convection in a viscoelastic magnetic fluid

L.M. Pérez a, D. Laroze b,⁎, P. Díaz c, J. Martinez-Mardones d, H.L. Mancini a

a Departamento de Física y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona, Spain
b Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
c Instituto de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco, Chile
d Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4039, Valparaíso, Chile

ARTICLE INFO

Article history:
Received 3 January 2014
Received in revised form
5 April 2014
Available online 15 April 2014

Keywords:
Thermal convection
Magnetic fluid
Viscoelastic fluid

ABSTRACT

We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ferrofluids are stable colloidal suspensions of magnetic nanoparticles dispersed in a carrier liquid. In the absence of an external magnetic field the magnetic moments of the particles are randomly orientated and there is no net macroscopic magnetization. In an external field, however, the particles’ magnetic moments easily orient and a large (induced) magnetization is present. There are two additional features in ferrofluids not found in ordinary fluids, the Kelvin force and the body couple [1]. In addition, in an external magnetic field, a ferrofluid exhibits additional rheological properties such as a field-dependent viscosity, special adhesion properties, and a non-Newtonian behavior [2]. Convection in ferrofluids has been a topic of great interest in the last decades. In addition, heat transfer through magnetic fluids has been of outstanding technological importance and was therefore also a leading area of scientific studies [3]. An important application of ferrofluids lies in the biomedical area where the carrier liquid is blood [4–8] which is known to have also special rheological properties [9–11]. In addition, when a magnetic field is applied, the ferrofluid can exhibit additional rheological properties such as magneto-viscosity, adhesion properties, and non-Newtonian behavior [12–22]. Hence, a detailed study of viscoelastic magnetic fluids is quite important and in order.

The first macroscopic description of magnetic fluids was given by Neuringer and Rosensweig [23]. The convective instability of a magnetic fluid layer heated from below in the presence of a uniform vertical magnetic field was discussed later by Finlayson [24]. Both cases, shear free and rigid horizontal boundaries were investigated within the linear stability method. Gotoh and Yamada [25] carried out a similar study by assuming the fluid to be confined between two magnetic pole pieces. A weakly nonlinear analysis in a strong external field was considered by Blennerhassett et al. [26]. The generalized Lorenz model for ferrofluid have been recently done by Laroze et al. [27]. The convective instability for a rotating layer in a magnetic fluid has been studied by Gupta and Gupta [28] and by Venkatasubramanian and Kaloni [29]. An amplitude equation for the stationary convection with idealized boundary condition was derived in Ref. [30]. The Küppers–Lortz instability for the case of a rotating magnetic fluid was formulated by Auernhammer and Brand [31]. Ryskin and Pleiner [32], using nonequilibrium thermodynamics, have derived a complete set of equations to describe ferrofluids in an external magnetic field. This description is made in terms of a binary mixture, where the magnetophoretic effect, as well as magnetic stresses, has been taken into account in the static and dynamic parts of the ferrofluid equations. When the magnetophoretic effect can be neglected, we have analyzed the thermal convection for rotating ferrofluids. For idealized boundary condition for the typical conductive state in the stationary case an analytical expression was found for the Rayleigh number as a function of control parameters [33]. Recently, the weakly nonlinear analysis for stationary convection in a rotating magnetic binary mixture was studied [34]. Other effects, such as the buoyancy-surface tension effects, nonuniform thermal gradients, and magnetization constitutive equations, have also been studied in Refs. [35–49].

A popular way to describe the viscoelastic properties of fluids is the use of a constitutive equation, which relates the stress and
strain rate tensors. Rheology is the science devoted to generalize
the linear, static Newtonian relation to the various, more compli-
cated cases of non-Newtonian behavior. Very often an Oldroyd
constitutive equation [50] is employed to realistically describe
viscoelastic properties. In this model, the stress tensor is basically
decomposed into both a polymeric-like elastic contribution and a
Newtonian-like solvent contribution. Convection in such “Oldroyd
fluids” has been studied by various authors for different physical
and geometrical cases, e.g. both for free–free or rigid–rigid
boundary condition [51–67]. By heating a fluid layer from below,
as a general result, oscillatory modes can be obtained at onset in
competition to the usual stationary convection states. Which type
of instability, stationary or oscillatory, appears first, depends on
the values of the rheological parameters. Experimental measure-
ments of oscillatory convection in viscoelastic mixtures were
reported by Kolodner [68] in a DNA suspension; and theoretical
studies of the convection thresholds for binary viscoelastic mix-
tures in different types of fluids, can be found in Refs. [69–73].
Recently, studies on convection in viscoelastic magnetic
fluid have been done [74–78].

The aim of this paper is to present the influence of the rotation
and the viscoelasticity on convective cells in a magnetic fluid, in
particular for cases, where the separation ratio and magnetic
separation ratio are not too large and the simple fluid approxima-
tion can be used [32]. To this aim an Oldroyd viscoelastic magnetic
fluid heated from below is considered. The description of the
system involves many parameters whose values have not yet been
determined accurately. Therefore, we are left with some freedom
in fixing the parameter values. In order to be as exhaustive as
possible, we will analyze the linear regime for two different
limiting cases of boundary conditions i.e., the free–free (FF) and
the rigid–rigid (RR) ones. In the first case (FF), one can analyti-
cally calculate the convection threshold as a function of the param-
eters of the fluid. In addition, we have further checked that we retrieve
previous results obtained by other authors in simplified situations.
In the case of realistic boundary conditions (RR), an analytical
calculation is not tractable and we numerically solve the linearized
system using a collocation spectral method, in order to determine
the eigenfunctions and eigenvalues and consequently the convec-
tive thresholds. The paper is organized as follows: In Section 2,
the basic hydrodynamic equations for viscoelastic magnetic fluid
convection are presented. In Section 3 the linear stability analysis
of the conduction state is performed. Finally, conclusions are pre-
sented in Section 4.

2. Basic equations

We consider a layer of incompressible magnetic fluid in a
viscoelastic carrier liquid, of thickness d, parallel to the xy-plane,
with very large horizontal extension, in a gravitational field g and
subject to a vertical temperature gradient. The layer is rotating
uniformly about the vertical axis with constant angular velocity ω.
The magnetic fluid properties can be modeled as electrically
nonconducting superparamagnets. The magnetic field H is
assumed to be oriented in a direction parallel to the z axis. It
would be homogeneous, if the magnetic field were absent. Let us
choose the z-axis such that g = −g^z and that the layer has its
interfaces at coordinates z = −d/2 and z = d/2. A static tempera-
ture difference across the layer is imposed, T(2) = T(0) + ∆T
and T(d/2) = T0. The set-up of the problem is drawn in Fig. 1.
Under the Boussinesq approximation, the balance equations read
\[\rho_0 \partial_t \mathbf{d} + \nabla \cdot \mathbf{d} = -\nabla p + \nabla \cdot \mathbf{D} + \rho_0 \mathbf{g} + \nabla \mathbf{H} + 2\rho_0 \mathbf{D} \times \mathbf{σ}, \]
\[\partial_t \mathbf{D} \cdot \mathbf{v} = 0. \]
\[\frac{c_v}{T_0} d \mathbf{d} + \chi_f \mathbf{H}_0 \cdot d \mathbf{d} = c_v \mathbf{v}^2 T, \] (3)
where d/f = ∂f/ + ∇f · is the total derivative, v = (v_x, v_y, v_z) is the
velocity field; p is the effective pressure which contains the static
hydrodynamic pressure, the gradient term of the magnetic force
and the centrifugal contribution; ρ is the mass density; ρ_H is a
reference mass density; f is the extra stress tensor; M is the
magnetization field; c_v is the specific heat capacity at constant
volume and magnetic field, T is the temperature, T0 is a reference
temperature; \(\chi_f \) is the pyromagnetic coefficient and \(\sigma \) is the
thermal diffusivity.

For the total density we use the following linear state equation
[32]:
\[\rho = \rho_0 (1 - \alpha_T \Delta T + \alpha_T \mathbf{H} \cdot \Delta \mathbf{H}), \] (4)
where \(\alpha_T \) and \(\alpha_H \) are the thermal and the magnetic expansion
coefficients, respectively. In the following, we denote \(\Delta f = f - f_0 \).
In addition, for the magnetic field \(\mathbf{H} \) and the magnetic induction \(\mathbf{B} \),
we suppose that the system is not conductive, i.e., it is governed by
the static Maxwell equations
\[\nabla \times \mathbf{H} = 0. \] (5)
\[\nabla \cdot \mathbf{B} = 0. \] (6)
Furthermore, we assume a linear relationship between these
fields, \(\mathbf{B} = \mathbf{H} + \mathbf{M} \), and introduce the scalar magnetic potential
\(\mathbf{H} = -\nabla \phi \) to fulfill Eq. (5). The magnetization field is assumed to
follow instantaneously the external field \(\mathbf{M} = \mathbf{M}(T, H) \mathbf{H} \) with the
usual phenomenological equation of state [24]
\[M(T, H) = M_0 - \chi_f \Delta T + \chi_H H_0 \cdot \Delta \mathbf{H}. \] (7)
A constitutive equation relating the extra stress tensor \(\mathbf{σ} \) and
the shear rate has also to be introduced. In a Newtonian incom-
pressible fluid, the extra stress tensor is related to the strain tensor
via the Newton law, \(\mathbf{σ} = 2\nu \mathbf{D} \), where \(\mathbf{D} \) is the symmetric part of
the velocity field gradient and \(\nu \) is the kinematic viscosity. For complex
polymeric fluids, a more general constitutive relation between
stress and strain rate \(\mathbf{σ} = \mathbf{σ}(\mathbf{D}) \) is necessary to describe the
behavior. This last relation is subject to symmetry restrictions.
One type of constitutive relation that satisfies these symmetry
requirements and that can be further justified by the kinetic
theory of dumbbells has been proposed by Oldroyd [50]. This
family of models, developed in the fifties of the last century,
includes particular cases that are widely used for different kinds of
polymeric solutions. In the general Oldroyd model, the constitu-
tive equation is
\[(1 + \lambda_1 D_{t1}) \mathbf{σ} = 2\nu(1 + \lambda_2 D_{t2}) \mathbf{D}, \] (8)
where \(\nu \) is the static viscosity, \(\lambda_1 \) is the relaxation time, and \(\lambda_2 \) is the
retardation time; and the last two parameters characterize the
viscoelastic time scales. For thermodynamic stability reasons both,
\(\lambda_1 \) and \(\lambda_2 \) are taken to be positive. The symbol \(D_{t} \) in Eq. (8) denotes a
rotational invariant (“frame-indifferent”) time derivative,
The Rayleigh number, Ra, is a phenomenological parameter between -1 and $+1$. For $a = -1$, one gets the lower convected Jeffreys model (Oldroyd-B), for $a = 0$ one gets the so-called co-rotational Jeffreys model, and $a = 1$ describes the upper convected Jeffreys model (Oldroyd-A). Let us comment that the coefficient a is not completely independent of the other rheological parameters [83]. Some limiting cases are $\lambda_2 = 0$ that leads to a Maxwellian fluid, while a Newtonian fluid requires both, $\alpha_1 = 0$ and $\lambda_2 = 0$.

Let us now analyze the boundary conditions (BCs) of the system. A static temperature difference across the layer is imposed, $T(z = -d/2) = T_0 + \Delta T$ and $T(z = d/2) = T_0$; as the magnetic BCs we use the typical continuity conditions of the Maxwell equations, i.e., $\mathbf{n} \times (\mathbf{H}_0 - \mathbf{H}_n = 0)$ and $\mathbf{n} \cdot (\mathbf{B}_0 - \mathbf{B}_n) = 0$, where \mathbf{n} is a unit normal vector to the boundaries. For the velocity field we analyze two types of BCs, which will be introduced later in the text. Hence, from Eqs. (1) to (8) and using these boundary conditions the conductive, convection-free state is given by

$$\mathbf{v}_{\text{con}} = 0,$$

$$T_{\text{con}}(z) = T - \beta z,$$

$$\mathbf{H}_{\text{con}}(z) = \mathbf{H}_0(1 + \lambda \beta z),$$

where $\beta = (\Delta T/\delta)$ and $\lambda = \chi_1/(1 + \chi_2)$. After some algebra, the equations for the dimensionless perturbations can be written as

$$\nabla \cdot \mathbf{v} = 0$$

$$P^{-1} \partial_t \mathbf{v} = -\nabla p + \nabla \cdot \mathbf{R} a \mathbf{\Sigma} + \sqrt{T_a} \mathbf{v} \times \mathbf{z}$$

$$\left(1 + \Gamma D_t\right) \mathbf{v} = \left(1 + \Gamma D_t\right) \mathbf{D}$$

$$d_t (\theta - M_4 a) \mathbf{\phi} = (1 - M_4 a) \mathbf{v} + \nabla^2 \mathbf{\phi}$$

$$\nabla^2 \mathbf{\phi}_{\text{con}} = 0$$

where $(\mathbf{v}, \mathbf{\tau}, \theta, \mathbf{\phi})$ are the dimensionless perturbations of the velocity, the extra stress tensor, the temperature, and the magnetic potential, respectively. We have used the abbreviations $\mathbf{\Sigma} = \Pi_t (\theta, \mathbf{\phi}) \mathbf{z} + M_4 a \mathbf{\nabla} \mathbf{v} (\mathbf{\phi})$, with $\Pi_t = (1 + M_4 a) \theta - (1 - M_4 a) \mathbf{v}$ and $\mathbf{v} = \partial_x + \partial_y$. In Eqs. (13)–(18) the following groups of dimensionless numbers have been introduced: (a) (pure fluids) The Rayleigh number $Ra = \alpha_0 g \Delta T d^3/\kappa$, accounting for buoyancy effects; and the Prandtl number $Pr = \nu/\kappa$, relating viscous and thermal diffusion time scales. (b) (rotation in pure fluids) The Taylor number $T_a = (2 \pi d^2/\nu)^2$. (c) (magnetic fluids) The strength of the magnetic force relative to buoyancy is measured by the parameter $M_4 = \beta \chi_1 H_0^2/\rho_b \gamma \alpha_t (1 + \chi_2)$; the nonlinearity of the magnetization, $M_4 = (1 + \chi_2)/(1 + \chi_2 \mu_0 H_0^2)$, a measure of the deviation of the magnetization curve from the linear behavior $M_4 = \chi_1 H_0^2/\alpha_t (1 + \chi_2)$; and the ratio of magnetic variation of density with respect to thermal buoyancy $M_3 = \alpha_0 \gamma \chi_1 H_0^2/\alpha_t (1 + \chi_2)$. (d) (viscous fluids) The Deborah number $\Gamma_a = \lambda_2 \mathbf{n}/d$, describing stress relaxation; and the ratio between retardation and stress relaxation times, $\Lambda = \lambda_2 / \lambda_1$. Since $\lambda_{1,2}$ are positive, so are Γ and Λ. For $\Gamma = 0$ one recovers the Newtonian fluid, while for $\Lambda = 0$ the Maxwellian fluid is obtained.

Let us comment on the numerical values of the parameters: Ra and T_a can be changed by several orders of magnitude, while a typical value for P in viscous fluids is $P \sim 10^0 - 10^3$. The magnetic numbers have the following order of magnitude: $M_1 \sim 10^{-2} - 10$, $M_2 \sim 1$, $M_4 \sim M_5 \sim 10^{-6}$ for typical magnetic field strengths $\mu_0 H_0 > 10^{-5}$. For aqueous suspensions it is suggested that the Deborah number is about $\Gamma \sim 10^{-3} - 10^{-1}$ [68,79–81], but for other viscoelastic fluids the Deborah number can be of the order of $\Gamma \sim 10^1$. Unfortunately, no experimental data are available for the retardation time; so we treat Λ as arbitrary in the range [0, 1]. In addition, the above set of equations is still unnecessarily complicated. We will simplify it first by neglecting M_4, which is a common simplification in the description of instabilities in ferrofluids [5]. Since M_4 is not related to viscoelastic effects, which we are interested in here, we expect not to lose any reasonable aspect of the problem under consideration. The same is true for the coefficient M_2. So, we take $M_4 = 0 = M_2$ in the following analysis. Thus, we are left with two magnetic field-dependent effects characterized by the parameters (M_1, M_3). The first one denotes the influence of the Kelvin force and is expected to have a dominant influence on the convection behavior. The second parameter, M_3, is different from 1 due to the intrinsic nonlinearity of the magnetization and is only a weak function of the external magnetic field. In the next sections we will develop the linear analysis for both stationary and oscillatory convection.

3. Linear stability analysis

In order to calculate the linear stability, we only need the linear parts of Eqs. (13)–(17). This is readily done by neglecting the advective terms $\mathbf{v} \cdot \nabla$ and replacing D_t by ∂_t. Moreover, the effective pressure and two components of the velocity field can also be eliminated by applying the curl ($\nabla \times \cdots$) and double curl ($\nabla \times (\nabla \times \cdots)$) to the Navier–Stokes equation and then considering the z-components of the resulting equations, that is ∂_z and $\zeta = (\nabla \times \mathbf{v})_z$ (i.e., the vertical components of the velocity and the vorticity). After some algebra, the linear equations read

$$P^{-1} \partial_t \Pi_t \mathbf{v} \mathbf{L} = \mathbf{R}_a \mathbf{L}_t \mathbf{v} - \sqrt{T_a} \mathbf{D}_t \mathbf{v} \times \mathbf{z}$$

$$P^{-1} \partial_t \mathbf{L}_t \zeta = \mathbf{R}_a \mathbf{L}_t \zeta + \mathbf{R}_a \mathbf{L}_t \mathbf{D}_t \mathbf{L}_t \zeta$$

$$\partial_t \mathbf{v} = \nabla^2 \mathbf{\phi}$$

$$\mathbf{D}_t \mathbf{L}_t \zeta = \mathbf{R}_a \mathbf{L}_t \mathbf{D}_t \mathbf{L}_t \zeta$$

where $\mathbf{L}_t = (1 + M_3 a) \mathbf{v} - (1 + M_3 a) \mathbf{\phi}$. We remark that Eq. (20) is due to the rotation. In fact, when $T_a \to 0$ the vorticity ζ is completely decoupled from the other variables. One can define the vector field $\mathbf{a} = (w, \zeta, \theta, \phi)^T$ that contains the variables relevant for the linear analysis. Using standard techniques [82], the spatial and temporal dependencies of \mathbf{a} are separated using the normal mode expansion

$$\mathbf{a}(r, t) = \mathbf{a}(x) \exp \{i(k \cdot r - \omega t + st)\},$$

with $\mathbf{a} = (W, Z, \Theta, \Phi)^T$, where k is the horizontal wavenumber and $s = \sigma + i \Omega$ is the complex growth factor of the perturbation and Ω its frequency. Using this ansatz, Eqs. (19)–(22) are reduced to the following coupled ordinary differential equations:

$$D_t^2 W = \xi_2 \mathbf{L}_t^2 W - \xi_1 \mathbf{L}_t W + \xi_3 \mathbf{L}_t DZ$$

$$+ \mathbf{R}_a (\xi_2 \mathbf{L}_t - \xi_3 \mathbf{D}_t)$$

$$D_t^2 Z = \xi_5 \mathbf{L}_t^2 Z - \xi_6 \mathbf{L}_t DW$$

$$D_t^2 \Theta = \xi_7 \mathbf{L}_t^2 \Theta - W$$

$$D_t^2 \Phi = \xi_8 \mathbf{L}_t^2 \Phi + D \Theta$$

$$[27]$$
where $D^3f = \partial^3 f / \partial^3 x$, $\xi_1 = 2k^3 + sQ/P$, $\xi_2 = k^2(k^2 + sQ/P)$, $\xi_3 = \sqrt{\bar{\Gamma}_{\bar{\Omega}}}$, $\xi_4 = k^2(1 + M_1)Q$, $\xi_5 = k^2M_2Q$, $\xi_6 = k^2 + sQ/P$, $\xi_7 = k^2 + s$ and $\xi_8 = M_3k^2$, such that $Q = (1 + s\bar{\Gamma})/(1 + s\bar{\Omega})$. In the following two subsections, we analyze the results of the linear stability analysis for the FF and RR boundary conditions.

3.1. Idealized boundary conditions (FF)

In order to solve the set of differential equations analytically, the following boundary conditions

$$D\Phi = \Theta = DZ = D^3W = W = 0,$$

are imposed at $z = \pm 1/2$. The z-dependence of the eigenfunctions of the stability problem can then be described by simple sine and cosine functions. The eigenvalue problem produces a dispersion relation

$$\mathcal{P}(s) = \sum_{i=0}^{5} a_i s^i = 0,$$

where a_i are functions of the system parameters

$$a_0 = q^2 \Gamma S \quad Q$$

$$a_1 = a_2(2 + q^2 \Gamma (1 + 2PA))$$

$$a_2 = -Ra \Gamma k^2 \Gamma \Gamma Q_{11}^{(1)} (\Gamma \Gamma \Gamma p^2 + 2) + q^2 \pi (\Gamma \Gamma \Gamma p^2 + 2) + 2 \Gamma \Gamma \Gamma p^2 Q_{11}^{(1)} (\Gamma \Gamma \Gamma \Gamma + 1)

$$

$$+ \pi^2 \Gamma \Gamma \Gamma \Gamma^2 Q_{11}^{(1)} (\Gamma \Gamma \Gamma q^2 + 2) \Gamma$$

$$+ a_3(2q^2 \Gamma (1 + PA)) - Ra \Gamma^2 k^2 \Gamma \Gamma Q_{11}^{(1)}$$

$$a_3 = 2q^2 \Gamma (1 + PA) + P^2 \pi^2 \Gamma \Gamma^2 Q_{11}^{(1)} q^2 + q^2 \pi (1 + q^2 \Gamma^2 P^2 (2 + PA))$$

In general, there are two different bifurcation cases, a stationary one with $s = 0$, and an oscillatory one that occurs when $s = i\Omega$ with Ω finite and real. For specific values of the parameters, the critical Ra values of these two instabilities, Ra_{ic} and Ra_{osc}, respectively, can be equal, thus constituting a codimension-2 bifurcation. We first consider the stationary case.

3.1.1. Stationary bifurcation

In the stationary case ($s = 0$), we find the marginal stability relation between the Rayleigh number and the wavenumber of the perturbation

$$Ra_{s} = \frac{(q^2 + \pi^2 T)q}{k^2 (k^2 M_1 + (1 + M_1))}$$

$$Ra_{t} = \frac{q^2}{k^2 (k^2 M_1 + (1 + M_1))}$$

which is the classical Finlayson result [24]. Note, that in the stationary case the viscoelastic effects do not appear at linear order. The minimum of the marginal curve [42] $(a_{Ra_{s}} = 0)$ gives the critical wavenumber k_{ic} and, subsequently, the critical Rayleigh number, $Ra_{ic} = Ra(k_{ic})$, of the most unstable perturbation. Fig. 2 shows the rotation dependence of the linear threshold for different values of the magnetic field, where the field is represented by $M_1 \sim H_s$. We observe that Ra_{ic} increases with increasing Taylor number, so the rotation rate has a stabilizing effect. In addition, Ra_{ic} decreases for strong fields indicating the destabilizing effect of a magnetic field.

3.1.2. Hopf bifurcation

We now discuss the oscillatory bifurcation. For a nonzero real frequency Ω the eigenvalue equation [36] is complex and constitutes two independent conditions. The real part gives the imaginary component of the magnetic field, where the field is represented by $M_1 \sim H_s$. We observe that Ra_{osc} increases with increasing Taylor number, so the rotation rate has a stabilizing effect. In addition, Ra_{osc} decreases for strong fields indicating the destabilizing effect of a magnetic field.

![Fig. 2](image-url) The critical stationary Rayleigh number, Ra_{sc}, as a function of the Taylor number, T, for different values of M_1, at $M_3 = 1$.1.
the variable $\Phi = \dot{Q}^2$, Eq. (43) can be reduced to

$$\dot{\Phi}_0 + \Phi_2 P = \Phi_4 q^2 + \Phi_5 \Phi_3 = 0,$$

(44)

which has the formal solution

$$\Phi_k = -\frac{1}{\Phi_0}(\phi_1 + \phi_0),$$

(45)

where $k \in \{1, 2, 3\}$, $u_1 = 1$, $u_2 = (-1 + \sqrt{3})/2$, $u_3 = (-1 - \sqrt{3})/2$, and $C = \sqrt{3}(\phi_4 + \phi_3)/2$ with $\phi_0 = \phi_0^2 - \phi_0^2$ and $\phi_1^2 = 2\phi_1^2 - 9\phi_1^2\phi_3 + 27\phi_1^2\phi_0^2$. Since Eq. (45) describes different solution branches, the selection of the physical branch depends on the material parameters. Fig. 3 shows a three-dimensional plot of the frequency Ω as a function of both viscoelastic parameters Λ and Γ. There are different branches with different values of Ω. In the lower branch, for the parameters chosen the frequency decreases with increasing Λ and close to the Newtonian case ($\Lambda = 1$ and $\Gamma = 0$) the instability must be stationary, hence the frequency is zero. Finally, let us remark that multiple solutions are typically found in viscoelastic systems [65,66,73].

The oscillatory Rayleigh number, Ra_0, as a function of Ω and the control parameter is given by

$$\frac{Ra_0}{k^2} = \frac{k^2 P (\Lambda (\Gamma K - 1) + 1) + \kappa^2 K^2 (\Lambda (\Gamma K - 1) + 1)}{P^T (q^2 + \pi^2 T_0) + \lambda^2 K^2 (\Lambda (\Gamma K - 1) + 1)} + \frac{k^2 (\Lambda - 1) K^2 (\Gamma K - 1)}{P T (q^2 + \pi^2 T_0) + \lambda^2 K^2 (\Gamma K - 1)} + \frac{\kappa^2 K^2 (\Lambda (\Gamma K - 1) + 1)}{P^T (q^2 + \pi^2 T_0) + \lambda^2 K^2 (\Gamma K - 1)},$$

(46)

where $K = k^2 + \pi^2$, $\Pi_1 = \Lambda (\Gamma K (\Gamma K - 1) - 1) + 1$, and $\Pi_2 = \Gamma K (\Gamma K - 1) - 1$. Since the oscillatory Rayleigh number is proportional to the stationary Rayleigh number, a codimension-2 bifurcation can appear, if the right-hand side of Eq. (46) is equal to one. Since the latter does not depend on the magnetic contributions, the oscillatory instability is, at the linear level, the result of the rotation or the viscoelasticity, or a mixture of both effects.

We now discuss some limiting cases. First, for $T_0 = 0$, the Rayleigh number is reduced to

$$\frac{Ra_0}{Rd_{00}(\Gamma)} = 1 + \frac{1 - \Lambda}{q^2 \Gamma} (\frac{\Gamma}{\Pi_0} + \frac{\Theta_{00}}{\nu^2})$$

(47)

with $\Theta_{00} = 1 + (\Gamma \Omega^0)^2$ and $Rd_0(\Gamma)$ given by Eq. (42). In this case the corresponding frequency, Ω_0, can be given in closed form

$$\Omega_0^2 = \frac{q^2 P (1 - \Lambda) (1 - P)}{\Gamma (1 + P \Lambda)}$$

(48)

For real Ω_α its square has to be positive. Obviously, for $T_0 = 0$ this cannot be achieved at all for Newtonian fluids and poses a lower limit on the Deborah number for Oldroyd (and Maxwell) fluids, $\Gamma \geq (1 + P)/(q^2 (1 - \Lambda))$, which also means Λ must not reach the value 1. This result was previously derived by Pérez and co-workers in Ref. [77].

Another limit that allows for an analytical solution is $P \to \infty$, where we find

$$\frac{Ra_0}{Rd_{00}^\infty} = 1 + \frac{1 - \Lambda}{q^2 \Gamma} (\frac{\Gamma}{\Pi_0} + \frac{\Theta_{00}^\infty}{\nu^2})$$

(49)

with $\Theta_{00}^\infty = 1 + (\Gamma \Omega^0)^2$, such that

$$\Omega_0^2 = \frac{q^2 (q^2 - 1) (1 - \Lambda)}{2T^2 (q^2 T_0^2 + q^2 \Lambda)}$$

(50)

$$+ \frac{q^2 T_0^2 (1 + \Lambda - q^2 \Gamma (1 - \Lambda))}{2T^2 (q^2 T_0^2 + q^2 \Lambda)} + \frac{(1 - \Lambda) \sqrt{q^2 T_0^2 (1 + q^2 \Gamma)^2 + \Psi}}{2T^2 (q^2 T_0^2 + q^2 \Lambda)},$$

where

$$\Psi = A^2 q^2 (\Gamma \Lambda q^2 + 1)^2 - 2q^2 \Lambda q^2 T_0 (\Gamma q^2 (3 \Lambda + \Gamma \Lambda q^2 - 3) + 1).$$

To calculate the oscillatory thresholds one first determines the critical wave number k_{oc} that leads to the lowest threshold ($\partial_{k} R_{a_{0}} = 0$) which then gives to the critical Rayleigh number $R_{a_{0}}(k_{\text{oc}})$ and critical frequency $\Omega_{c} = \Omega(k_{\text{oc}})$. For the general case this has to be done numerically.

Fig. 4 shows the critical oscillatory Rayleigh number, Ra_0, as a function of Λ, for different values of the Deborah number Γ. We observe that for small Λ ($\Lambda < 0.1$) the value of the critical oscillatory Rayleigh number increases when Λ increases until it reaches a local maximum, followed by a slight decrease to a shallow minimum, before it starts to increase again for all higher values of Λ. The topology of this curve is the same for all three values of Γ considered, and only the heights and the positions of the local maxima and minima are slightly different.

Fig. 5 shows the corresponding critical frequency, Ω_c, as a function of Λ, for different values of Deborah number Γ. For small Λ ($\Lambda < 0.06$) the frequency increases with Λ. A linear decrease follows, approximately up to those Λ values, where Ra_0 shows the shallow minimum. Beyond that, for $\Lambda > 0.15$, the critical frequency decays exponentially. Similar to the case of the critical Rayleigh number, the $\Omega_c(A)$ curves have similar shapes for all Deborah numbers,
considered, although the actual numerical values are considerably different, at least for \(\Lambda < 0.3 \). The inset of Fig. 5 shows the corresponding critical wavenumber, \(k_c \). It is almost independent of \(\Gamma \) and decreases by almost a factor of two before it reaches a plateau value for \(\Lambda > 0.3 \).

Fig. 6 shows the critical oscillatory Rayleigh number, \(R_{ac} \), as a function of the Taylor number, \(T_a \), for different values of Prandtl number, \(P \). The function \(R_{ac}(T_a) \) is monotonically increasing denoting the stabilizing effect of the rotation. A similar behavior has been found in the stationary case. Increasing Prandtl numbers, on the other hand, reduces the threshold values, but does not change the global structure of \(R_{ac}(T_a) \) and is rather small for the relevant values of \(P \geq 10 \) [50]. The inset of Fig. 6 shows that the corresponding critical frequency, \(\Omega_c \), is rather insensitive to both, the Prandtl number and the Taylor number.

3.1.3. Codimension-2 bifurcation

There exists a range of parameters where the critical oscillatory and stationary Rayleigh numbers have the same value, \(R_{ac} = R_{as} \). This is possible due to the non-Newtonian properties of the fluid layer. Fig. 7 shows this line separating the stationary instability regime (above) from the oscillatory one (below) in the \(\Gamma - \Lambda \) space for different values of \(T_a \). For \(T_a \leq 100 \) the influence of the rotation is rather weak, since \(R_{ac} \) and \(R_{as} \) have a similar \(T_a \) dependence. Nevertheless, for higher values of the rotation rate the oscillatory regime becomes smaller.

3.2. Realistic boundary conditions (RR)

The use of free–free boundary conditions at the two horizontal boundaries is a useful mathematical simplification, but does not reflect the physical reality, generally. The correct boundary conditions for viscous or viscoelastic fluids are

\[Z = W = DW = \Theta = 0, \quad (51) \]

Fig. 4. \(R_{ac} \) as a function of \(\Gamma \) at \(P = 10, M_1 = 10, M_2 = 1.1 \) and \(T_a = 10 \) for different values of \(\Lambda \), from bottom to top, \(\Gamma = [5, 4, 3] = \{\bullet, \ast, \ast\} \).

Fig. 5. \(\Omega_c \) as a function of \(\Lambda \) for different values of \(\Gamma \). The inset shows the critical wave number, \(k_c \), as a function \(\Lambda \) for different values of \(\Gamma \). The fixed parameters are the same as in Fig. 4.

Fig. 6. \(R_{ac} \) as a function of \(T_a \) at \(\Gamma = 1, \Lambda = 0.2, M_1 = 10 \) and \(M_2 = 1.1 \) for different values of \(P \), from bottom to top, \(P = \{1, 10, 10^2\} = \{\bullet, \ast, \ast\} \). The inset shows \(\Omega_c \) correspondingly.

at the two horizontal rigid boundaries. In addition, in the case of a finite magnetic permeability \(\chi_b \) of the rigid boundaries, the scalar magnetic potential must satisfy

\[(1 + \chi_b) D\Phi + k\Phi = 0, \quad (52) \]

at \(z = \pm 1/2 \), respectively [24]. Only in the limit \(\chi_b \to \infty \), Eq. (52) tends to \(D\Phi = 0 \).

In order to solve Eqs. (24)–(26) with these realistic boundary conditions, we use a spectral collocation method. Spectral methods ensure an exponential convergence to the solution and are the best available numerical techniques for solving simple eigenvalue – eigenfunction problems. Here, we follow the technique of collocation points on a Chebyshev grid as described by Trefethen [84]. The collocation points (Gauss–Lobatto) are located at height \(z_j = \cos(j\pi/N) \) where the index \(j \) runs from \(j = N \) to \(j = 0 \). Note that here the \(z \)-variable ranges from \(-1 \) to \(+1 \) and one has therefore to rescale Eqs. (24)–(26) accordingly, because the physical domain is defined in the range \((-1/2, +1/2 \)). We use \(N = 40 \) collocation points in the vertical direction, for which the equations and the boundary conditions are expressed. By using the collocation method, the set of differential equations (24)–(26) is transformed into a set of linear algebraic equations. The eigenfunctions \((\Theta(z), \Phi(z), W(z)) \) are transformed into eigenvectors defined at the collocation points, \(X = (\Theta_N, \ldots, W_0) \), such that \(\Psi_j = \Psi(z_j) \). After this stage of discretization, one is left with a classical generalized eigenvalue problem, \(\bar{A}X = \Lambda \bar{B}X \), where \(\bar{A} \) and \(X \) are the eigenvalue and eigenvector, respectively.

In the case of the oscillatory instability considered here, one has to make sure that \(Ra \) (as being a physical quantity) is a real number by choosing a correct value for \(\Omega_c \). Therefore, one is left with a triplet \((Ra, k, \Omega_c)\) that defines a marginal stability condition (for a fixed value of the horizontal wavenumber \(k \)). This procedure is repeated for several values of \(k \) leading to the marginal stability
zero and the convection is stationary irrespective of the rotation rate, while for intermediate and strong viscoelasticity \((\Gamma > 1) \) the primary bifurcation is oscillatory for small values of \(T_a \), but switches to stationary above a critical value of the Taylor number, \(T_a \approx 109 \).

Fig. 10 displays the normalized critical Rayleigh number, \(Ra_a/Ra_{a,\text{max}} \), as a function of the magnetic field, \(M_1 \approx H^2 \), for different values of the Taylor number, \(T_a \). In all cases the threshold decreases with increasing magnetic field as has also been found for free–free boundary conditions. Finally, let us comment that for small and intermediate values of \(T_a \) the critical frequency increases with \(M_1 \), similar to the case without rotation [77], but for very large values, \(T_a \approx 10^4 \), the convection is always stationary.

4. Final remarks

In the present work, Rayleigh–Bénard rotating convection in a magnetic viscoelastic liquid is studied. The stability thresholds for both, the stationary and the oscillatory convection, have been determined. Two different boundary conditions for the velocity field were analyzed, the so-called free–free and rigid–rigid ones. For the former the results of Venkatasubramanian and Kaloni [29] for the stationary convection and of Perez and coworkers [77] for the oscillatory convection without rotation have been regained. In addition, we have provided analytical formula for the oscillatory convection in the small rotation as well as in the large Prandtl limit. For weakly viscoelastic fluids the critical Rayleigh number for the oscillatory convection is much higher than that for the stationary one, while for high Deborah numbers the oscillatory instability always precedes the stationary one. In this paper, we have also calculated the range of parameters, for which a codimension–2 bifurcation appears.

Due to the presence of various destabilizing effects, i.e., buoyancy and magnetic forces, and of additional relaxation channels due to the Oldroyd model, the discussion of the stability curves becomes rather intricate. An oscillatory instability, whose critical frequency is a rapidly varying function of the Deborah number, is competing with the stationary one. As a result, the codimension–2 bifurcation line, separating those two instabilities, strongly depends on the structure of the Oldroyd model and its relaxation times.

In the case of realistic rigid–rigid boundary conditions, the convection thresholds are calculated numerically by the spectral method. The technique of collocation points (Gauss-Lobatto) as described in [84] was used. We have observed that the bifurcation scenario is changed compared to that for ideal free–free boundary conditions. In particular, we have found that in the realistic case, for large rotation rates, \(T_a \geq 10^2 \), the primary bifurcation is stationary in a wide range of rheological parameters.

Finally, we want to mention that, very often, an external rotation induces other types of patterns, such as found in the Küppers–Lortz instability. To study such instabilities a nonlinear analysis is necessary. A detailed study of the weakly nonlinear analysis for rotating magnetic viscoelastic fluids is in progress.

Acknowledgments

We thank H. Pleiner (MPI-P, Mainz) for useful discussions and his critical reading of the manuscript. The authors acknowledge partial financial support from FONDECYT 1120764, Millennium Scientific Initiative, P10-061-F, Basal Program Center for Development of Nanoscience and Nanotechnology (CEDENNA), UTA-project 8750–12, MICINN (Spanish Ministry of Science and Technology) under Project FIS2011-24642 and DIUFRO project under grant DI13-6000.

Fig. 8. (Color online) The normalized critical Rayleigh number \(Ra_a/Ra_{a,\text{max}} \) as a function of \(T_a \) at \(\lambda = 0.5, P = 10, M_1 = 0.1 \) and \(M_1 = 1.1 \) for different values of \(\Gamma \), from bottom to top, \(\Gamma = \{10^{-3}, 10^{-1}, 10^{-4}, 10^{-5}, 10, 100\} = \{\text{O}, \text{O}, \text{O}, \text{O}, \text{O}, \text{O}\} \) for rigid–rigid boundary conditions.

Fig. 9. \(\Omega_c \) as a function of \(T_a \) for different values of \(\Gamma \) as in Fig. 8.

Fig. 10. \(Ra_a/Ra_{a,\text{max}} \) as a function of \(M_1 \) for different values of \(T_a \) at \(\lambda = 0.5, \Gamma = 1 \), \(P = 10 \) and \(M_1 = 1.1 \). The different values of \(T_a \) are represented by different symbols from bottom to top \(T_a = \{0, 10^2, 10^3\} = \{\text{O}, \text{O}, \text{O}\} \).
Appendix A. Coefficients ϕ_i

The coefficients $\{\phi_i\}$ of Eq. (43) are

$$\phi_0 = P^2 q_1^3 q_2^2 P(1 - A) - q_1^5 (P + 1)$$
$$- q_1^3 q_2^2 P(A - 1) + q_2^4 \pi^2 (1 - P),$$

(A.1)

$$\phi_2 = q_0^2 \Gamma^2 q_1^3 A^2 (1 - A)$$
$$- 3 q_0^2 \Gamma^2 q_2^2 (A^2 + 1)$$
$$+ q_0^4 \Gamma^2 q_1^4 P(4 - P(A + 1))$$
$$+ q_0^4 \Gamma^2 q_2^4 (P(1 - A)(2P + 3))$$
$$+ q_0^4 \Gamma^2 q_1^4 (P(A - 1) - 1) - 1$$
$$+ q_0^4 \pi^2 q_1^4 \Gamma^2 q_2^4 (P(A + 1) + 1) + 2,$$

(A.2)

$$\phi_4 = \Gamma^2 q_0^2 q_2^2 \Gamma q_2^2 (1 - AP)$$
$$- 2q_0^2 \Gamma q_2^2 \Gamma q_2^2$$
$$+ q_0^4 \Gamma q_1^4 (2AP + 3)$$
$$+ q_0^4 \Gamma q_2^4 (P(A + 1) + 2)$$
$$+ q_0^4 \pi^2 q_2^4 \Gamma q_2^4 (q - 1),$$

(A.3)

$$\phi_6 = - q_1^4 (AP + 1).$$

(A.4)

References