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Instabilities of conducting fluid layers in weak time-dependent magnetic fields
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We present the experimental analysis of the instabilities generated on a large drop of liquid metal by a
time-dependent magnetic field. The study is done exploring the range of tiny values of the control parameter
(the ratio between the Lorentz forces and inertia) avoiding nonlinear effects. Two different instabilities break
the symmetries generating spatial patterns that appear without a threshold for some specific frequencies (up to
the experimental precision) and have been observed for parameter values two orders of magnitude lower than
in previously published experiments [J. Fluid Mech. 239, 383 (1992)]. One of the instabilities corresponds to
a boundary condition oscillation that generates surface waves and breaks the azimuthal symmetry. The other
corresponds to a parametric forcing through a modulation of the Lorentz force. The competition between these
two mechanisms produces time-dependent patterns near codimension-2 points.
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I. INTRODUCTION

The existence of nonlinear effects and instabilities is a key
point on the dynamics of many natural, industrial, and even
social processes [1]. Despite all the effort that has been done
on extended systems there is a lack of understanding of small
problems, where the spatial dimensions are comparable to
any characteristic length produced by the instability. Many
different configurations have been analyzed: small containers
shaken by vertical vibration [2], droplets driven by ultrasounds
[3], small convective problems [4,5], colloidal droplets with
electrical fields [6], or liquid metals with electric [7] or
magnetic [8–15] fields.

This last configuration is a particular case of a discipline,
magnetohydrodynamics (MHD) [16], that studies the interac-
tion between conducting fluids and magnetic fields and that is
involved in a broad variety of fields: biophysics [17], crystal
growth [18], metallurgy [19], heat transfer [20], geo- and
astrophysics [21], plasma physics [22], and electrolysis [23].
A common issue in these problems is that MHD instabilities
are usually observed very far from a threshold because of
the experimental difficulties in detecting weak effects. The
consequence is that in many configurations the MHD forces
are usually neglected [17].

These effects have been recently observed in humans [24]:
a MHD mechanism has been proposed to explain the origin of
vertigoes suffered by some individuals when they are placed
inside an MRI device. The authors propose that pressure
fluctuations are produced in the electrolyte present in the inner
ear by the interaction of ionic currents with the magnetic field.
Other instabilities where no external currents are involved were
neglected, although pure MHD instabilities without a threshold
have been proposed but in a different context [10]. However,
in this last case all the experiments up to now were done in a
strongly nonlinear regime [8,9,11–15], a common feature of
many of the examples cited above.

In this paper we analyze the different mechanisms that
can trigger instabilities in a conducting fluid layer under
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the action of very weak time-dependent magnetic fields.
The experimental setup allows us to explore regions with
bifurcation parameters two orders of magnitude smaller than
those of previous works [9]. The experimental study is based
on the observation of surface modulations. We have observed
symmetry breaking for tiny values of the bifurcation parameter
and identified two different mechanisms involved in the pattern
creation.

II. EXPERIMENTAL SETUP

The experimental cell consists of a cylindrical Teflon R© cav-
ity with an inner diameter of Ø84 mm. The inner bottom is flat
for r ≤ 20 mm and slightly inclined for r > 20 mm (Fig. 1).
A volume Vd of an eutectic InGaSn alloy, liquid at room
temperature (density ρ = 6360 kg/m3, electrical conductivity
σ = 3.1 106 S/m, interfacial tension γ = 0.53 N/m) [25], is
placed inside and remains centered because of the depression.
Due to the surface tension [25] the liquid metal adopts the
shape of a thick circular fluid drop. This drop is immersed in a
HCl 1% water dilution to prevent oxidation. The whole setup
is closed by a transparent cover. For all the results presented in
this paper the working volume is 28 cm3 with an external radius
of Rd = 35 mm and a thickness at the center hd = 11mm.
Only two cases are included with a volume of Vd = 35 cm3

that correspond to videos in the Supplemental Material.
The magnetic field is generated by an alternating electrical

current Ic in an external coil, with a frequency between 0.1 and
10 Hz and an intensity up to 60 A. This range of frequencies
is small enough to prevent skin effects, so the axisymmetric
magnetic field fully penetrates the fluid drop. The vertical
component is uniform in the vertical (z axis) direction (with
variations below 0.2%) and increases approaching the lateral
wall (up to 7% stronger). The radial component increases
almost linearly with the radius, up to 3% of the maximum value
of the vertical component, so we can assume that we are forcing
with a nearly vertical magnetic field. We can then conclude that
the field evolves harmonically: �Be = B0 sin (2πfBt)k̂, with
fB = ωB/2π the forcing frequency and B0 the amplitude. For
the maximum current Ic = 60 A the corresponding magnetic
field amplitude is B0 = 0.07 T.
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FIG. 1. Cross section of the experimental cell (size in mm) and
diagram of the experimental setup (not to scale).

Let us summarize the key points of the mechanism
that triggers the instabilities: The temporal evolution of the
magnetic field produces magnetic flux density variations
giving rise to a current density �j due to the Lenz’s law:
when the external magnetic field Be changes, an eddy current
is created to compensate for this variation producing an
induced magnetic field bi [16]. The induced currents interact
again with the magnetic field, so a Lorentz force �j × �B
appears, where �B = �Be + �bi accounts for the external �Be

and induced �bi components. This process is valid in the
magnetohydrodynamic approximation, which states that the
evolution of �B must be slow and the conductor remains free
of charge. This new force can destabilize the liquid drop in
different ways.

One possibility that becomes experimentally evident for
large magnetic fields is the axisymmetric drop beating. When
the magnetic field is reduced (respectively, increased), the
radial Lorentz force increase (reduces) the radius Rd of
the drop in order to keep constant the magnetic flux. This
mechanism forces the beating of the drop.

The relevance of the Lorentz force compared to inertia is
expressed by the interaction parameter N = B2

0Lσ/ρU [16]
where B0 is the amplitude of the forcing magnetic field, L is a
characteristic length (typically, the droplet radius), and σ and ρ

the electrical conductivity and density of the fluid, respectively.
The characteristic velocity U of the flow is obtained from the
beating of the drop and can be estimated as U = 2πfBL =
LωB , so the interaction parameter becomes N = B2

0σ/ρωB

[10].
We have determined the presence of instabilities in our

experiments down to a minimum value of Nmin = 0.0003.
For comparison, the interaction of the MRI device with the
inner ear will produce a N ∼ 0.002 ω−1

B for a magnetic field
of B ∼ 3 T interacting with either the endolymph (basically,
a KCl solution) or perilymph (NaCl dilution) [26]. Other
experimental setups have reached a minimum of N � 0.02,

nearly two orders of magnitude larger than the values attained
in this work.

The optical system consists of a shadowgraphy [27] but with
a reflecting curved surface (the liquid metal surface) instead
of a phase object: a punctual light source with controlled
illumination power is placed at the focus of a parabolic mirror.
A parallel beam is generated with vertical incidence to the
water-InGaSn interface, where it is reflected. Instabilities may
create surface deflections that deviate the light and induce
intensity modulations. A camera with fixed gain located on the
focus of the reflected beam records the temporal evolution of
the pattern. Due to this setup, only the central part (r < 29 mm)
of the droplet can be observed. The recovered intensities allow
a direct comparison between the dynamics in different regions
of the phase space. This setup has already been used in other
experiments [28] and in the present configuration can measure
modulations of the surface peak-to-peak of 10μ m. The lateral
resolution is 0.3 mm. The light intensity I scaled between the
bright and dark regions allows us to study the dynamics of the
instabilities and reconstruct the patterns.

III. RESULTS

Because of the forcing mechanism responsible of the
instabilities, all the patterns observed here have a dynamics
governed by the oscillation frequency of the Lorentz term
of the Navier-Stokes equation �j × �B, which is twice the
excitation frequency fL = 2fB = ωB/π .

In Fig. 2 we present a subset of all the different patterns
that can be recovered (see videos of the dynamical behavior in
Ref. [29]). The first patterns that appear without threshold are
axisymmetric:,I (x,y,t) = I (r,t). When the forcing strength
is increased (for larger values of �Be), these patterns break the
axisymmetry I (r,θ,t) = I (r,t) exp (i mθ ). All the patterns that
have been observed correspond to patterns with an azimuthal
wave number m = 2 to 10. For the drop size considered here
we only clearly detect azimuthal wave numbers, although some
modulations on the radial direction are visible.

In Fig. 3 we present the phase space of these pat-
terns. Each pattern is split into axisymmetric and nonax-
isymmetric parts I (r,θ,t) = IAx(r,t) + INoAx(r,θ,t). We have
performed a Fourier expansion of the temporal evolution
for the last term of the previous expression INoAx(r,θ,t) =∑∞

n=0 An(r,θ ) exp(i nωBt). We have determined that a nonax-
isymmetric pattern was triggered when their weight WNoAx =∑∞

n=1

∫
S
A2

nds, compared to the maximum value, was larger
than a threshold value WTh = WNoAx/WMax comparable to the
noise level of the acquisition system.

With this idea in mind, we have used a threshold value of
W even

Th = 0.06 for Figs. 3(a), 3(b), and 3(d) and W odd
Th = 0.02

for Fig. 3(c). Although these values are to some extent
arbitrary, they allow us to distinguish axisymmetric and nonax-
isymmetric regions of the phase space separated by a boundary
BThr(fb). In all the panels, the gray regions correspond to the
axisymmetric patterns (i.e., the nonaxisymmetric part remains
below the noise level). The threshold boundary BThr(fB) for the
whole nonaxisymmetric part has local minima on fB = 1.8,
2.9, 4.1, and 5.4 Hz. These minima present nonaxisymmetric
behavior even for the minimum value of the magnetic field
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FIG. 2. Light intensity I recovered using the observational setup from the surface modulation across the horizontal plane (in pixels). From
left to right, top to bottom, patterns with a dominant azimuthal wave number m = 0,2,3,4,5,6. The excitation frequency fe and the intensity
current are indicated. Mode m = 0 corresponds to a pattern with a very weak nonaxisymmetric component (see fig. 3). Other patterns (not
plotted here) obtained for m = 8 and 10 and movies of the different dynamics are presented as Supplemental Material[29]. Only the central
r < 29 mm of the drop are visible (see details in the text).

that we can attain in our setup. For this reason, we consider
that for these frequencies there is no excitation threshold. No
hysteresis has been detected.

In Fig. 3(a) we present a simplified phase space covering
the observed patterns. Each symbol represents a different
azimuthal symmetry. When a single azimuthal wave number
has been detected, only one symbol appears. When the
threshold has been crossed, but the data do not allow us
to differentiate between the various possible azimuthal wave
numbers, we have indicated those cases with a circle. In other
cases, different wave numbers were detected in the dynamical
cycle of the pattern for the same values of the experimental
parameters. Two possibilities arise. The first one consists of a
cycle between patterns with different mi for each time period,
i.e., the azimuthal wave number is time-dependent m(t) or,
alternatively, the amplitude of each pattern mi oscillates. In
those situations the wave numbers present are indicated in
Fig. 3(a) separated by a slash. In some special cases a more
complex dynamics between three modes can be obtained
(not shown here). When only one of the wave numbers is
clearly identified, but not the other, the dynamical behavior
is indicated with a solid marker. In Fig. 3(b) we include all
the experimental parameters so the correspondence between
Ic ↔ B ↔ N can be derived to allow an easier interpretation
of the other panels.

As pointed out above, the forcing frequency in the Lorentz
term of the Navier-Stokes equation corresponds to fL = 2fB .
To differentiate between the possible mechanisms, we have
split the temporal evolution onto the even and odd multiples
of the magnetic field frequency fB [see Figs. 3(c) and 3(d)],
i.e., harmonics and subharmonics of the forcing frequency fL.
We can observe a very different behavior for each panel, with
different thresholds. The even modes [Fig. 3(d)] correspond
to harmonics of the frequency fL = 2fB , and the instability
appears without threshold for some specific frequencies. On
the other side, the odd modes correspond to subharmonics

of the frequency of the Lorentz force, and in this case
the instability appears for nonzero values of the interaction
parameter NTh.

All these waves correspond to surface waves and should
obey the dispersion relation:

ω2
n =

[
ρM − ρD

ρM + ρD

gk + γ

ρM − ρD

k3

]
tanh (kh), (1)

where g, γ , ρM , and ρD correspond to gravity, surface tension
(see Ref. [13]), and densities of the InGaSn alloy and the HCl
water dilution, respectively. In Refs. [30–32] the MHD effects
are considered, including corrections to the linear and cubic
terms. Nevertheless in our case the magnetic damping time
τ = ρ/σB2

0 ∼ 1000 s [32] is so large that these modifications
of the dispersion relation are negligible.

The frequencies where the minimum threshold is obtained
are f min

L = 1.8, 2.9, and 4.1 Hz for the even modes and f min
L =

3.4, 4.5, and 5.8 Hz for the odd modes. These modes are plotted
in Fig. 4.

The behavior of the even modes corresponds to the breaking
of the axisymmetry for the beating of the drop, which
excites surface waves with the same frequency of the forcing
mechanism. Here, instead of a vertical (or lateral) shaking of
the fluid layer, the destabilizing force is the radial pulsation
of the droplet induced by the Lenz currents. The observed
frequencies correspond to multiples of the forcing frequency
ωeven

n = ωL = 2ωB .
We present the wave number of the observed patterns

for the even modes (Fig. 4, ∗), associated to the first m =
2–5 azimuthal modes λm = 2πR/m and their corresponding
frequencies. A good agreement with Eq. (1) is observed (solid
line). As the capillary length is very small lc = 4 mm and
for the wave numbers considered here, we can consider that
we are on the shallow water regime (kH � 1; klc 	 1) so
ωn ∼ k

√
gH (ρM − ρD)/(ρM + ρD).
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FIG. 3. Phase space of the instabilities. (a) Observed patterns:
m = 2, ♦; m = 3, �; m = 4, �; m = 5, 
; m = 6, 
; other
nonaxisymmetric patterns, ◦. When a mixed state is observed, the
observed patterns appear separated by a slash. Void symbols mean a
stable pattern, full symbols a state for dynamical cases. (b) Threshold
for the instabilities based on the cumulative energy for the whole
set of observed modes for the nonaxisymmetric part. The different
axes denote the values of the variables fe, Ic, B, and N . Cumulative
energy for the (c) odd and (d) even modes, referred to as the excitation
frequency fB . The gray zones correspond to regions where the
cumulative energy is smaller than the threshold value WTh (see text
for explanation).

The oscillations observed for the odd modes correspond
to the behavior predicted by Ref. [10] that were observed
in Ref. [9] but in a strongly nonlinear regime and far from
the threshold. The corresponding eigenfunctions excited on
the surface can be described as eimθJm(kmnr) where m is the
azimuthal wave number and kmn is the nth zero of the function
Jm(kmnR). The evolution of this modes obeys, to the first order,
a Mathieu-Hill equation [10]:

än + ω2
n[1 + 2ε sin(ωLt)]an = 0, (2)
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FIG. 4. Dispersion relation observed for the excited waves at
the minima observed of the threshold boundary BThr(fB ): ∗, even
modes (laterally excited); ♦, odd modes (MHD instability) without
lateral damping (open) and with damping (closed). The solid line
corresponds to the dispersion relation for surface waves (no adjustable
parameters).

where an represents the amplitude of the different waves
with frequencies ωn. This equation reproduces the response
of many different parametrically forced systems [33], and it
can resonate with subharmonics of the excitation frequency.
In this case the first odd mode corresponds to ωn = ωL/2.

For the odd modes, the wave numbers are the solution
of the previous Bessel functions. The modes with the lowest
frequencies correspond to the first zeroes of Jm(km1R). In
Fig. 4 we present the associated wave numbers km1 for
the first m = 1 − 3 modes and the associated frequencies
(open diamonds). We can note that there is a drift between
the observed frequencies and the values obtained from the
dispersion relation. Actually, the observed oscillation fre-
quency is smaller than the expected behavior. As was already
proposed in Ref. [34] the presence of a lateral meniscus can
reduce the observed frequencies and affect the dynamical
behavior of surface waves modifying the damping. The solid
diamonds presented in Fig. 4 correspond to a correction of the
observed frequencies assuming a 15% reduction induced by
the damping. This damping is also responsible of the nonzero
value of the threshold.

The simultaneous existence of both mechanisms for the
same parameter values in the phase space induces multistabil-
ity. In these situations, we are close to codimension-2 points,
and the patterns have a very complex dynamics where two or
even three alternating patterns were observed. This is relevant
around [regions with solid markers in Fig. 3(a)] the frequency
intervals 1.5–2.5, 3–3.5, 4.5, and 5.5–6.0 Hz. The last three
ranges correspond to the regions with m = 1, 2, and 3 for
the odd modes. Nevertheless, there is no odd mode identified
on Fig. 3(c) for the first island 1.5–2.5 Hz. This region will
correspond to the mode m = 0 that would have an associated
frequency of 2.1 Hz according to the presented description,
which lies just in the middle of the observed region. This
mode cannot be observed here because, being axisymmetric,
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cannot be separated from the basic axisymmetric pulsation.
Nevertheless, its presence can be detected indirectly by the
multistability region around f = 2 Hz.

IV. CONCLUSIONS

We have presented a study of an experimental setup where
a fluid layer is destabilized by a time-dependent magnetic
field. Different nonaxisymmetric patterns were obtained, and
a detailed phase space has been presented. We have clearly
identified two different mechanisms that produce different
patterns with different dynamics. These two mechanisms
generate a different response, with oscillations that can be
harmonics or subharmonics of the forcing frequency. All
the observed instabilities are recovered for a value of the
bifurcation parameter two orders of magnitude lower than in
previous experiments.

For the even modes (even multiples of ωB) different
azimuthal waves are detected without threshold, or with

a threshold smaller than the experimental resolution (N <

0.0003). For the odd modes, we have determined that the
threshold would correspond to an interaction parameter be-
tween N = 0.001 and N = 0.01 depending on the excited
frequency. Moreover, the wave numbers and frequencies
associated are different in each process. These values of the
interaction parameter can be reached on MRI devices. Further
work in this direction is needed to clarify if this mechanism
can affect the vestibular cavity. Even more, these results open
the door to the possibility of MHD instabilities in other
configurations where the magnetic field effects are usually
considered as too weak and neglected.
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