Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Cross sections and pseudo-homomorphisms of topological abelian groups

H.J. Bello^a, M.J. Chasco^a, X. Domínguez^{b,*}

^a Departamento de Física y Matemática Aplicada, University of Navarra, Spain
^b Departamento de Matemáticas, Universidade da Coruña, Spain

ARTICLE INFO

Article history: Received 10 April 2017 Received in revised form 18 May 2017 Accepted 1 June 2017 Available online 7 June 2017

 $MSC: 22A05 \\ 54H11 \\ 54C65$

46A30

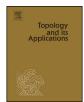
Keywords: Topological group Splitting Cross section Pseudo-homomorphism Closed graph theorem

1. Introduction

Splitting problems for subgroups of topological groups have been studied for a long time. An ample collection of results within the class \mathcal{L} of locally compact abelian groups appears in [1]. One of these results states that a topological group G in \mathcal{L} splits in any group of \mathcal{L} containing it if and only if G is topologically isomorphic to a product of copies of \mathbb{R} and \mathbb{T} . Outside the locally compact case, the corresponding problem for subspaces of topological vector spaces has a long history, especially for Banach spaces, and it is still an object of active research.

* Corresponding author.

E-mail addresses: hbello.1@alumni.unav.es (H.J. Bello), mjchasco@unav.es (M.J. Chasco), xabier.dominguez@udc.es (X. Domínguez).



We say that a mapping ω between two topological abelian groups G and H is a pseudo-homomorphism if the associated map $(x, y) \in G \times G \mapsto \omega(x + y) - \omega(x) - \omega(y) \in H$ is continuous. This notion appears naturally in connection with cross sections (continuous right inverses for quotient mappings): given an algebraically splitting, closed subgroup H of a topological group X such that the projection $\pi : X \to X/H$ admits a cross section, one obtains a pseudo-homomorphism of X/H to H, and conversely. We show that H splits as a topological subgroup if and only if the corresponding pseudo-homomorphism can be decomposed as a sum of a homomorphism and a continuous mapping. We also prove that pseudo-homomorphisms between Polish groups satisfy the closed graph theorem. Several examples are given.

@ 2017 Elsevier B.V. All rights reserved.

Within the general problem of finding conditions under which a closed subgroup H of a topological abelian group X splits, the particular case in which the corresponding quotient mapping $\pi : X \to X/H$ admits a cross section (i.e. a continuous right inverse mapping) is especially interesting. In this case there exists a homeomorphism between X and the product $H \times X/H$ leaving H invariant. If the cross section is additionally a homeomorphism, then H splits as a topological subgroup.

We introduce and study the concept of pseudo-homomorphism, which is a natural strengthening of that of quasi-homomorphism as defined in [4]. A pseudo-homomorphism is a mapping $\omega : G \to H$ between topological abelian groups such that the associated mapping $(x, y) \in G \times G \mapsto \omega(x + y) - \omega(x) - \omega(y) \in H$ is continuous in $G \times G$. This notion appears in a natural way in connection with cross sections, thus providing an alternative framework for the above described problems. We define a distinguished class of pseudo-homomorphisms, namely those which can be decomposed as a sum of a homomorphism and a continuous function, and we prove that a pseudo-homomorphism is approximable in this sense precisely when the corresponding subgroup splits as a topological subgroup.

We devote the last section to prove that pseudo-homomorphisms between Polish groups satisfy the closed graph theorem.

1.1. Notation and preliminaries

All groups considered in this paper are abelian. We denote by $\mathcal{N}_0(X)$ the set of all neighborhoods of zero of the topological abelian group X.

We will sometimes write $H \leq X$ to indicate that H is a subgroup of the group X. We say that the subgroup H splits algebraically from X if there is a subgroup $H' \leq X$ such that the mapping $[(x, y) \in H \times H' \mapsto x + y \in X]$ is a group isomorphism. This is equivalent to the fact that there exists a group homomorphism $P: X \to H$ such that $P \circ i = \operatorname{id}_H$ where $i: H \to X$ is the inclusion mapping. We will refer to such a mapping P as an algebraic retraction for H in what follows. If $H \leq X$ is divisible, or if the quotient group X/H is free, then H splits algebraically from X.

If X is a topological group and H is a subgroup of X, we say that H splits topologically from X if there is a subgroup $H' \leq X$ such that $[(x, y) \in H \times H' \mapsto x + y \in X]$ is a topological isomorphism. It is clear that if H splits topologically from X then H, as well as any of its complements, is a closed subgroup of X. (But the converse is not true, see Proposition 18 below.) The closed subgroup H splits topologically from X if and only if there exists a continuous homomorphism $P: X \to H$ such that $P \circ i = id_H$.

We denote by \mathbb{T} the topological group \mathbb{R}/\mathbb{Z} , where \mathbb{R} is endowed with the Euclidean topology. A *character* of an abelian group X is a homomorphism from X to \mathbb{T} . If X is a topological abelian group, we denote by X^{\wedge} the dual group of X, which is defined as the group of all continuous characters of X with pointwise multiplication, endowed with the compact-open topology. If X is compact, X^{\wedge} is discrete and vice-versa. By the classical Pontryagin–van Kampen theorem, every locally compact abelian group is canonically topologically isomorphic to its bidual group $(X^{\wedge})^{\wedge}$.

For a completely regular Hausdorff space X, the free abelian topological group over X is the free abelian group A(X) endowed with the unique Hausdorff group topology for which (1) the mapping $\eta: X \to A(X)$, which maps the topological space X onto a basis of A(X), becomes a topological embedding and (2) for every continuous mapping $f: X \to G$, where G is an abelian Hausdorff group, there is a unique continuous group homomorphism $\tilde{f}: A(X) \to G$ which satisfies $f = \tilde{f} \circ \eta$.

A Polish space is a separable, completely metrizable space. By a classical result of Klee [13], if the topology of an abelian group can be generated by a complete metric, then it actually can be generated by a complete, invariant one. Hence a topological abelian group is Polish if and only if it is complete, separable and metrizable.

For other topological notions we follow [8].

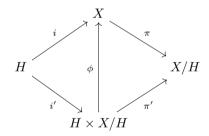
2. Cross sections, pseudo-homomorphisms and splitting subgroups

Definition 1. Let H be a closed subgroup of a topological abelian group X and let $\pi : X \to X/H$ be the canonical projection. A continuous map $s : X/H \to X$ is called a *cross section* for π , if $\pi \circ s = id_{X/H}$.

Comfort, Hernández and Trigos-Arrieta studied cross sections for topological groups in [6] and they observed the following

Proposition 2. Given a topological abelian group X, a closed subgroup H of X and the canonical projection $\pi: X \to X/H$, the following are equivalent:

- (1) π has a cross section.
- (2) There exists a retraction $r: X \to H$ such that r(x+h) = r(x) + h for every $h \in H$ and $x \in X$.
- (3) There exists a homeomorphism $\phi: H \times X/H \to X$ making the following diagram commutative:



Proposition 3. Let H be an open subgroup of a topological group X. The natural projection $\pi: X \to X/H$ has a cross section.

Proof. Choose as $s: X/H \to X$ any map satisfying $s(\pi(x)) \in \pi^{-1}(x)$ for every $x \in X$. Since H is open, X/H is discrete and consequently s is continuous. \Box

We denote by $G^{\#}$ an abelian group G endowed with its Bohr topology, i.e. the initial topology on G with respect to all homomorphisms from G to \mathbb{T} . For any subgroup H of G, the inclusion $H \to G$ is a topological embedding from $H^{\#}$ to $G^{\#}$ with closed image [5, Lemma 2.1 and p. 41]. Moreover the identity is a topological isomorphism between the topological abelian groups $G^{\#}/H^{\#}$ and $(G/H)^{\#}$ [14, Lemma 2.2].

In this context the following results are known (the symbol \mathbb{Z}_p denotes the group of the *p*-adic integers):

Proposition 4.

- (a) ([6, Theorem 24]) The projection $\mathbb{Q}^{\#} \to \mathbb{Q}^{\#}/\mathbb{Z}^{\#}$ has a cross section.
- (b) ([7, Example 3.9]) For every abelian group G such that $\mathbb{Z}_p \leq G$, the projection $G^{\#} \to G^{\#}/\mathbb{Z}_p^{\#}$ has a cross section.

The following Proposition provides another class of quotient maps admitting cross sections.

Proposition 5 ([2, Theorem 2.8]). Let X be a topological abelian group and H a compact subgroup of X. Assume that X/H is a zero-dimensional k_{ω} -space. Then the projection $\pi : X \to X/H$ admits a cross section.

Topological vector spaces constitute a class of abelian topological groups when regarded under their additive structure. The following result, which appears as Proposition II.7.1 in [3], was originally proved by E. Michael:

Proposition 6. Let E be a complete metric linear space and let L be a closed subspace of E. Assume that L is locally convex. Then the projection $\pi : E \to E/L$ has a cross section.

We now introduce the notion of pseudo-homomorphism which, as we will see, is closely related with that of cross section.

Definition 7. Let G and H be topological Abelian groups and $\omega : G \to H$ a map with $\omega(0) = 0$. ω is called a *pseudo-homomorphism* if the map $\Delta_{\omega} : G \times G \to H$ defined by $\Delta_{\omega}(x, y) = \omega(x + y) - \omega(x) - \omega(y)$ is continuous.

Pseudo-homomorphisms can be characterized in the following way:

Lemma 8. Let G and H be topological Abelian groups and $\omega : G \to H$ a map with $\omega(0) = 0$. Then ω is a pseudo-homomorphism if and only if it satisfies the following properties:

- (a) The map $\Delta_{\omega} : (x, y) \in G \times G \mapsto \omega(x + y) \omega(x) \omega(y) \in H$ is continuous at (0, 0).
- (b) If the net (x_{α}) converges to $x \in G$ then $\omega(x_{\alpha}) \omega(x_{\alpha} x) \to \omega(x)$.

Proof. If ω is a pseudo-homomorphism, (a) is trivially true. Let us prove (b): Let $x_{\alpha} \to x$ in G. From the continuity of Δ_{ω} it follows that $\Delta_{\omega}(x_{\alpha}, -x) \to \Delta_{\omega}(x, -x)$. Hence $\omega(x_{\alpha} - x) - \omega(x_{\alpha}) - \omega(-x) \to \omega(x - x) - \omega(x) - \omega(-x)$, i.e.

$$\omega(x_{\alpha}) - \omega(x_{\alpha} - x) \to \omega(x).$$

Conversely, assume that both (a) and (b) are true and pick two nets $(x_{\alpha})_{\alpha \in A} \to x$ in G and $(y_{\alpha})_{\alpha \in A} \to y$ in G. By hypothesis

$$\begin{aligned} \omega(x_{\alpha}) - \omega(x_{\alpha} - x) &\to \omega(x), \\ \omega(y_{\alpha}) - \omega(y_{\alpha} - y) &\to \omega(y), \\ \omega(x_{\alpha} + y_{\alpha}) - \omega(x_{\alpha} + y_{\alpha} - x - y) &\to \omega(x + y), \\ \omega(x_{\alpha} - x + y_{\alpha} - y) - \omega(x_{\alpha} - x) - \omega(y_{\alpha} - y) &\to 0. \end{aligned}$$

From continuity of the group operations it easily follows that

$$\omega(x_{\alpha} + y_{\alpha}) - \omega(x_{\alpha}) - \omega(y_{\alpha}) \to \omega(x + y) - \omega(x) - \omega(y).$$

Since x and y are arbitrary elements of G, we deduce that Δ_{ω} is continuous. \Box

Example 9. Let G and H be topological abelian groups. Let $f: G \to H$ be a continuous mapping such that f(0) = 0, and $a: G \to H$ a homomorphism. It is clear that $\omega = a + f$ is a pseudo-homomorphism.

This example serves as a motivation for the following definition:

Definition 10. A pseudo-homomorphism $\omega : G \to H$ is *approximable* if there exists a homomorphism $a : G \to H$ such that $\omega - a$ is continuous.

Proposition 11. A pseudo-homomorphism $\omega : G \to H$ is approximable if there exists a homomorphism $a: G \to H$ such that $\omega - a$ is continuous at 0.

Proof. Let us show that $\omega - a$ is actually continuous on G. Fix a net $(x_{\alpha})_{\alpha \in A}$ in G which converges to $x \in G$. Since $\omega - a$ is a pseudo-homomorphism, by condition (b) in Lemma 8 we have $(\omega - a)(x_{\alpha}) - (\omega - a)(x_{\alpha} - x) \rightarrow (\omega - a)(x)$. Since $\omega - a$ is continuous at zero and $x_{\alpha} \rightarrow x$, we deduce $(\omega - a)(x_{\alpha}) \rightarrow (\omega - a)(x)$, as required. \Box

Let G and H be topological abelian groups and $\omega : G \to H$ a pseudo-homomorphism. As mentioned in [4, Lemma 2], it is not difficult to show that the family of sets $W(V,U) = \{(h,g) \in H \times G : g \in U, h \in \omega(g) + V\}$ where $U \in \mathcal{N}_0(G)$ and $V \in \mathcal{N}_0(H)$) is a basis of neighborhoods of zero for a group topology on $H \times G$. We will denote this group topology by τ_{ω} , and we will analyze it in terms of its convergent nets. They are characterized in the following Lemma:

Lemma 12. With the above notations, a net (h_{α}, g_{α}) in $H \times G$ converges to (h, g) in the topology τ_{ω} if and only if $g_{\alpha} \to g$ in G and $h_{\alpha} - \omega(g_{\alpha} - g) \to h$ in H.

Proof. Apply the definition of the topology τ_{ω} . \Box

The proof of the following Lemma is also immediate.

Lemma 13. Let X and Y be topological groups. Let $\varphi : X \to Y$ be a homomorphism. Suppose that there exists a mapping $s : Y \to X$ such that $\varphi \circ s = id_Y$, s(0) = 0 and s is continuous at zero. Then φ is onto and open.

We present in Theorems 14 and 17 a natural two-way relationship between cross sections and pseudohomomorphisms. Under this correspondence, quotients by splitting subgroups are associated to approximable pseudo-homomorphisms.

Theorem 14. Let G and H be topological abelian groups and $\omega : G \to H$ a pseudo-homomorphism. Let X be the topological group $H \times G$, endowed with the group topology τ_{ω} . Then the natural inclusion of H into X is an embedding, and the natural projection $\pi : X \to G$ is a quotient mapping which admits a cross section. Moreover, ω is approximable if and only if H is a splitting subgroup of X.

Proof. From Lemma 12 it follows at once that for any net (h_{α}) in H, one has $h_{\alpha} \to 0$ in H if and only if $(h_{\alpha}, 0) \to (0, 0)$ in X. This implies that H is a topological subgroup of X.

Consider the mapping $s: G \to X$ given by $s(g) = (\omega(g), g)$. It is clear that $\pi \circ s = \operatorname{id}_G$. Let us see that s is continuous. By Lemma 12, we need to show that for every $g \in G$ and every net (g_α) with $g_\alpha \to g$, we have $\omega(g_\alpha) - \omega(g_\alpha - g) \to \omega(g)$. This follows from condition (b) in Lemma 8.

Again from Lemma 12 it is immediate to deduce that π is continuous. Using Lemma 13 we conclude that it is a quotient mapping.

Now assume that ω is approximable, say $\omega = a + f$ where $a : G \to H$ is a homomorphism and $f : G \to H$ is continuous. Define $P : X \to H$ as P(h, g) = h - a(g). This is clearly an algebraic retraction for H. Let us show that it is continuous, which will imply that H is a splitting subgroup of X. Fix any net (h_{α}, g_{α}) in $H \times G$ which converges to (0,0) in τ_{ω} . This implies by Lemma 12 that $g_{\alpha} \to 0$ and $h_{\alpha} - \omega(g_{\alpha}) \to 0$. Since $\omega = a + f$ and f is continuous, we deduce $h_{\alpha} - a(g_{\alpha}) = P(h_{\alpha}, g_{\alpha}) \to 0$. Conversely, assume that H is a splitting subgroup of X. Let $P: X \to H$ be a continuous homomorphism with $P \circ i = \operatorname{id}_H$. Define a(g) = -P(0,g) for any $g \in G$; let us see that $\omega - a: G \to H$ is continuous at zero, which by Proposition 11 will imply that ω is approximable. Fix a net (g_α) which converges to 0 in G. Then $\omega(g_\alpha) - a(g_\alpha) = \omega(g_\alpha) + P(0,g_\alpha) = P(\omega(g_\alpha), 0) + P(0,g_\alpha) = P(\omega(g_\alpha),g_\alpha) = P(s(g_\alpha)) \to 0$. \Box

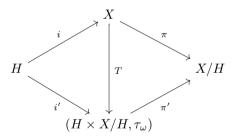
Corollary 15. Let A(X) be the free abelian topological group on a Tychonoff topological space X and let H be any topological abelian group. Then every pseudo-homomorphism $\omega : A(X) \to H$ is approximable.

Proof. According to Theorem 14 the natural projection $\pi : (H \times A(X), \tau_{\omega}) \to A(X)$ is a quotient mapping which admits a continuous cross section $s : A(X) \to (H \times A(X), \tau_{\omega})$. The restriction $s|_X : X \to (H \times A(X), \tau_{\omega})$ is clearly continuous, hence there exists a continuous homomorphism $S : A(X) \to (H \times A(X), \tau_{\omega})$ such that $S|_X = s|_X$. It is clear that $\pi \circ S = \mathrm{id}_{A(X)}$, which implies that H is a splitting subgroup of $(H \times A(X), \tau_{\omega})$ and, again by Theorem 14, ω is approximable. \Box

Proposition 16. Let G be the product of a family of locally precompact abelian groups and let H be a product of copies of \mathbb{R} and/or \mathbb{T} . Then any pseudo-homomorphism $\omega : G \to H$ is approximable.

Proof. By Corollary 3.14 in [2], H is a splitting subgroup of $(H \times G, \tau_{\omega})$ and by Theorem 14, ω is approximable. \Box

Theorem 17. Let H be a closed subgroup of a topological abelian group X which splits algebraically and let $P: X \to H$ be an algebraic retraction. If the canonical projection $\pi: X \to X/H$ admits a cross section s with s(0) = 0 then $\omega = P \circ s$ is a pseudo-homomorphism and there is a topological isomorphism T making the following diagram commutative:



In particular ω is approximable if and only if H splits topologically from X.

Proof. Let us see that Δ_{ω} is continuous. Since $\pi \circ s = id_{X/H}$, for every $g_1, g_2 \in X/H$ we have $\pi(s(g_1 + g_2) - s(g_1) - s(g_2)) = 0$ which implies that $s(g_1 + g_2) - s(g_1) - s(g_2) \in H$. We deduce $\omega(g_1 + g_2) - \omega(g_1) - \omega(g_2) = P(s(g_1 + g_2) - s(g_1) - s(g_2)) = s(g_1 + g_2) - s(g_1) - s(g_2)$. Since *s* is continuous, the result follows.

Define now $T(x) = (P(x), \pi(x))$ for every $x \in X$. Clearly T makes the above diagram commutative. For every net (x_{α}) in X we have

$$T(x_{\alpha}) \to (0,0) \Leftrightarrow \pi(x_{\alpha}) \to 0 \quad \text{and} \quad P(x_{\alpha} - s(\pi(x_{\alpha}))) \to 0 \quad \text{(by Lemma 12)}$$
$$\Leftrightarrow \pi(x_{\alpha}) \to 0 \quad \text{and} \quad x_{\alpha} - s(\pi(x_{\alpha})) \to 0 \quad \text{(because } x_{\alpha} - s(\pi(x_{\alpha})) \in H)$$
$$\Leftrightarrow x_{\alpha} \to 0.$$

Finally, it is easy to check that $(h, g) \mapsto s(g) + h - P(s(g))$ is the inverse of T.

The fact that ω is approximable if and only if H splits topologically from X follows from the commutativity of the above diagram and the corresponding result for $(H \times X/H, \tau_{\omega})$ (Theorem 14). \Box **Proposition 18.** For every compact, connected abelian group H which is not topologically isomorphic to a product of copies of \mathbb{T} there exists a compact, totally disconnected abelian group G and a non-approximable pseudo-homomorphism $\omega : G \to H$.

Proof. The abelian group H^{\wedge} is not free, hence there is an abelian group A and a (algebraically) nonsplitting torsion subgroup $T \leq A$ with $A/T \cong H^{\wedge}$ (Corollary 3.2 in [9]). By Pontryagin duality, H is canonically a non-splitting subgroup of the compact group A^{\wedge} and $A^{\wedge}/H \cong T^{\wedge}$ [10, 23.25, 24.11]. Since His compact and connected, it is divisible, hence H splits algebraically from A^{\wedge} . Moreover, A^{\wedge}/H is totally disconnected, hence zero-dimensional. By Proposition 5, the projection $A^{\wedge} \to A^{\wedge}/H$ admits a cross section. By Theorem 17, the associated pseudo-homomorphism cannot be approximable. \Box

A subspace L of a topological vector space E is said to be *complemented* if there is a subspace L' of E such that the linear mapping $[(x, y) \in L \times L' \mapsto x + y \in E]$ is a topological isomorphism. It is easy to see that a subspace $L \leq E$ is complemented in E if and only if it splits topologically as a subgroup of E.

Proposition 19. Let E be a complete metric linear space and let L be a non-complemented, locally convex, closed subspace of E. Then there exists a non-approximable pseudo-homomorphism $\omega : E/L \to L$.

Proof. By Proposition 6 the projection $\pi : E \to E/L$ has a cross section. It is clear that L splits algebraically from E. Since L does not split topologically as a subgroup of E, by Theorem 17, we deduce that there exists a non-approximable pseudo-homomorphism $\omega : E/L \to L$. \Box

Example 20. Let ℓ^1 be the classical Banach space of all summable real sequences $x = (x_n)$ endowed with the norm $||x|| = \sum |x_n|$. There is a non-approximable pseudo-homomorphism $\omega : \ell^1 \to \mathbb{R}$. Indeed, it is well-known that there exists a complete metric linear space E with a non-complemented, one-dimensional subspace L such that E/L is topologically isomorphic, as a topological vector space, to the Banach space ℓ^1 (see [12, Ch. 5.4]). The existence of a non-approximable pseudo-homomorphism $\omega : \ell^1 \to \mathbb{R}$ follows from Proposition 19. This example yields the following remarkable fact: The topological group $(\mathbb{R} \times \ell^1, \tau_{\omega})$ is homeomorphic to $\mathbb{R} \times \ell^1$ (by Proposition 2) and $\mathbb{R} \times \{0\}$ splits algebraically from $(\mathbb{R} \times \ell^1, \tau_{\omega})$, but it does not split topologically.

3. A closed graph theorem for pseudo-homomorphisms

It is well known that any homomorphism between Polish groups which has a closed graph is continuous. From here it is not difficult to deduce that any approximable pseudo-homomorphism between Polish groups which has a closed graph is also continuous. In this section we will see that this property is true without the approximability assumption.

The following result can be regarded as a version of Theorem 1.1 in [15] for topological abelian groups.

Theorem 21. Let G and H be Polish abelian groups and let $f : G \to H$ be a mapping which satisfies the following conditions:

- (a) If $x_n \to 0$, $y_n \to 0$, $f(x_n) \to 0$ and $f(y_n) \to 0$ then $f(x_n + y_n) \to 0$.
- (b) If $x_n \to 0$ and $f(x_n) \to 0$ then $f(-x_n) \to 0$.
- (c) If $x_n \to x$ then $[f(x_n x) \to 0 \Leftrightarrow f(x_n) \to f(x)]$.

If the graph of f is closed in $G \times H$ then f is continuous.

Proof. Note that (c) implies that f(0) = 0. Let $\Gamma \subset G \times H$ be the graph of f. Define the mapping $\star : \Gamma \times \Gamma \to \Gamma$ by $(x, f(x)) \star (u, f(u)) = (x+u, f(x+u))$. Then (Γ, \star) is an abelian group where (0, f(0)) = (0, 0) is the additive identity and the additive inverse of (x, f(x)) is (-x, f(-x)). Let us see that it is actually a topological group with the topology on Γ induced by the product topology on $G \times H$.

Suppose that $(x_n, f(x_n)) \to (x, f(x))$ and $(y_n, f(y_n)) \to (y, f(y))$. Let us see that $(x_n + y_n, f(x_n + y_n)) \to (x + y, f(x + y))$. It is clear that $x_n + y_n \to x + y$, so we only have to prove $f(x_n + y_n) \to f(x + y)$. By hypothesis $x_n \to x$ and $f(x_n) \to f(x)$; hence by condition (c) we get $f(x_n - x) \to 0$. In the same way we deduce $f(y_n - y) \to 0$. By applying condition (a) to the sequences $x_n - x$ and $y_n - y$ we get $f((x_n + y_n) - (x + y)) \to 0$. Since $x_n + y_n \to x + y$, again by condition (c) we deduce $f(x_n + y_n) \to f(x + y)$.

Now suppose that $(x_n, f(x_n)) \to (x, f(x))$ and let us see that $(-x_n, f(-x_n)) \to (-x, f(-x))$. Since $x_n \to x$ and $f(x_n) \to f(x)$, by condition (c) we have that $f(x_n - x) \to 0$. Applying (b) to the sequence $x_n - x$ we deduce $f(-x_n + x) \to 0$. Since $-x_n \to -x$, again from (c) we get $f(-x_n) \to f(-x)$.

Since Γ is a subspace of the separable, metrizable space $G \times H$, it is separable itself. We conclude that Γ is a Polish group. The projection $p : (x, f(x)) \in \Gamma \mapsto x \in G$ is a continuous algebraic isomorphism. By applying the corresponding Open Mapping Theorem [11, Corollary 32.4] to p we conclude that p^{-1} is continuous and thus f is continuous, too. \Box

Corollary 22. Let G and H be Polish abelian groups and let $\omega : G \to H$ be a pseudo-homomorphism. If the graph of ω is closed in $G \times H$ then ω is continuous.

Proof. Since Δ_{ω} is continuous at (0,0), it is clear that ω satisfies conditions (a) and (b) in Theorem 21. Condition (c) is a consequence of Lemma 8(b). The assertion follows. \Box

Acknowledgements

The authors acknowledge the financial support of the Spanish AEI and FEDER UE funds. Grants: MTM2013-42486-P and MTM2016-79422-P. They also acknowledge the support of the Asociación de Amigos of the University of Navarra.

The authors are also grateful to the referee for his/her careful reading of the manuscript and useful suggestions.

References

- D.L. Armacost, The Structure of Locally Compact Abelian Groups, Pure Appl. Math., vol. 68, Marcel Dekker, Inc., New York and Basel, 1981.
- [2] H.J. Bello, M.J. Chasco, X. Domínguez, M. Tkachenko, Splittings and cross sections in topological groups, J. Math. Anal. Appl. 435 (2016) 1607–1622.
- [3] C. Bessaga, A. Pelczynski, Selected Topics in Infinite-Dimensional Topology, Mathematical Monographs, vol. 58, PWN, Warsaw, 1975.
- [4] F. Cabello, Quasi-homomorphisms, Fundam. Math. 178 (3) (2003) 255–270.
- [5] W.W. Comfort, V. Saks, Countably compact groups and finest totally bounded topologies, Pac. J. Math. 49 (1) (1973) 33-44.
- [6] W.W. Comfort, S. Hernández, F.J. Trigos-Arrieta, Cross sections and homeomorphism classes of abelian groups equipped with the Bohr topology, Topol. Appl. 115 (2) (2001) 215–233.
- [7] D. Dikranjan, A class of abelian groups defined by continuous cross sections in the Bohr topology, Rocky Mt. J. Math. 32 (4) (2002) 1331–1355.
- [8] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [9] P. Griffith, A solution to the splitting mixed group problem of Baer, Trans. Am. Math. Soc. 139 (1969) 261–269.
- [10] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations, second edition, Grundlehren der Mathematischen Wissenschaften, vol. 115, Springer-Verlag, Berlin–New York, 1979.
- [11] T. Husain, Introduction to Topological Groups, Saunders Mathematics Books, W. B. Saunders Company, Philadelphia, London, 1966.
- [12] N.J. Kalton, N.T. Peck, J.W. Roberts, An F-Space Sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge Univ. Press, Cambridge, 1984.

- [13] V.L. Klee Jr., Invariant metrics in groups (Solution of a problem of Banach), Proc. Am. Math. Soc. 3 (1952) 484-487.
- [14] F.J. Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindelöf property for topological groups, J. Pure Appl. Algebra 70 (1991) 199–210.
- [15] S. Zhong, R. Li, S.Y. Won, An improvement of a recent closed graph theorem, Topol. Appl. 155 (15) (2008) 1726–1729.