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Let G be a precompact, bounded torsion abelian group and G∧
p its dual group 

endowed with the topology of pointwise convergence. We prove that if G is 
Baire (resp., pseudocompact), then all compact (resp., countably compact) subsets 
of G∧

p are finite. We also prove that G is pseudocompact if and only if all 
countable subgroups of G∧

p are closed. We present other characterizations of 
pseudocompactness and the Baire property of G∧

p in terms of properties that express 
in different ways the abundance of continuous characters of G. Besides, we give an 
example of a precompact boolean group G with the Baire property such that the 
dual group G∧

p contains an infinite countably compact subspace without isolated 
points.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Pontryagin–van Kampen duality theorem is a deep result with far-reaching consequences in the theory 
of locally compact abelian groups. It allows the characterization of different properties of a locally compact 
group in terms of properties of the dual group. If the group is compact, its dual group is discrete, therefore 
the topological properties of the group are reflected by algebraic properties of the dual group.

In the non-locally compact case, much remains to be explored, although there have been important in-
sights during the last years. For instance, the existence of precompact, noncompact Pontryagin reflexive 
groups was established in [1,12] and [6]. Once Comfort and Ross proved in [9] that the topology of a pre-
compact group was the one induced by its continuous characters, a natural notion of duality in the class 
of precompact groups emerged. The dual group of a topological abelian group G is in this context G∧

p , 
which means the group G∧ of continuous characters of G endowed with the topology of pointwise con-
vergence. Actually Raczkowski and Trigos-Arrieta proved in [18] that every precompact abelian group G
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is Comfort–Ross reflexive, i.e. the natural homomorphism from G to (G∧
p )∧p which takes each x to the 

evaluation [χ ∈ G∧
p �→ χ(x)] is a topological isomorphism.

There are many examples of properties of a precompact abelian group G with an equivalent counterpart 
in G∧

p . For instance, G is compact if and only if G∧
p carries its maximal precompact topology, and G is 

pseudocompact if and only if all countable subgroups of G∧
p carry their maximal precompact topology [13].

This article is aimed at presenting further results along these lines for the class of precompact, bounded 
torsion abelian groups G. Our choice of bounded torsion groups is not accidental: the Pontryagin duality 
theory acquires several specific features in this class (see [4]). For instance the above pseudocompactness 
criterion can be reformulated for such groups G in the following way (Theorem 2.6): G is pseudocompact if 
and only if all countable subgroups of G∧

p are closed.
Also, Comfort–Ross duals of pseudocompact abelian groups are known examples of precompact groups 

without infinite compact subsets [1]. Similarly, some of the main results of this article, which we collect in 
the table below, can be summarized in this way: “If G is a precompact, bounded torsion abelian group with 
property (P) then the only subsets of G∧

p with property (Q) are the finite ones”, where (P) and (Q) are 
two of the following topological properties, listed in decreasing order of generality: Baire, pseudocompact, 
countably compact, compact.

(P) (Q)
Theorem 3.3 Baire Compact
Corollary 2.8 Pseudocompact Countably compact

Proposition 2.10 Countably compact Pseudocompact

Actually, Proposition 2.10 holds for all, not necessarily bounded torsion, precompact abelian groups. It 
is not clear whether the same restriction can be dropped in the remaining two cases. We also discuss the 
topological sharpness of these results. In particular we present in Example 3.12 a precompact boolean group 
G with the Baire property such that the dual group G∧

p contains an infinite countably compact subset.
Furthermore, in Proposition 2.4, Theorem 2.6 and Theorem 3.2 we give characterizations of the Baire 

property and pseudocompactness of G∧
p in terms of properties that express in different ways the abundance 

of continuous characters of G. Two different characterizations of pseudocompact bounded torsion abelian 
groups are given in the first place, which are obtained from known results; afterwards we study the Baire 
property whose characterization needs more work.

1.1. Notation, terminology, and preliminary facts

All groups we consider are assumed to be abelian. If every nonzero element of a group G has finite order, 
we say that G is a torsion group. If there exists a positive integer m with mG = {0} we say that G is 
bounded torsion; the minimal m with this property is called the period of G.

As usual, ω is the set of natural numbers, Z stands for the set of integers and R is the set of real numbers. 
The quotient group R/Z is denoted by T. We will use the same notation for the elements of T and their 
representatives in the interval (−1/2, 1/2].

A subset {x1, . . . , xk} of a group G is independent if the equality n1x1+· · ·+nkxk = 0 with n1, . . . , nk ∈ Z

implies that n1x1 = · · · = nkxk = 0. An infinite set X ⊂ G is independent if every finite subset of X is 
independent. For every n ∈ N we put G[n] := {x ∈ G : nx = 0}. Clearly G[n] is a subgroup of G. 
Furthermore, if G is a topological group, then G[n] is a closed subgroup of G.

A topological group G is precompact if for every neighborhood U of 0 in G, finitely many translates of U
cover G. In what follows we will use “precompact” as an abbreviation of “precompact and Hausdorff”.

A Tychonoff space is said to be pseudocompact if every continuous real-valued function defined on it is 
bounded. Any Hausdorff pseudocompact group is precompact; actually a precompact group G is pseudo-
compact if and only if it meets each nonempty Gδ-subset of its Weil completion [10].
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A subset B of a topological space X is said to be nowhere dense if the closure of B in X has no interior 
points. A space X has the Baire property if the intersection of every countable family of open dense subsets 
of X is dense in X or, equivalently, if the only open subset of X representable as a countable union of 
nowhere dense subsets of X is the empty set. It is a consequence of the Banach Category Theorem that a 
topological group G has the Baire property if and only if the intersection of any countable family of open 
dense subsets of G is nonempty or, equivalently, the group G is not a countable union of its nowhere dense 
subsets.

A character of a topological group G is a continuous homomorphism of G to T. A topological group G
is MAP (abbreviation for Maximal Almost Periodic) if for every x ∈ G \ {0}, there exists a character χ of 
G such that χ(x) �= 0. In other words, G is MAP if and only the characters of G separate points of G.

Given a topological group G, we denote by G∧ the group of all characters of G, with pointwise addition. 
The symbol σ(G, G∧) denotes the Bohr topology of G, that is, the initial topology on G with respect to 
its continuous characters. We also denote by G∧

p the group G∧ endowed with the pointwise convergence 
topology.

If G is bounded torsion, so is G∧; in particular all characters of G have finite range, and the sets of 
the form Δ⊥ = {χ ∈ G∧ : χ(Δ) = {0}}, with Δ running over all finite subsets of G, form a basis of 
neighborhoods of 0 for the topology of G∧

p .
A subgroup N of a topological group G is said to be dually embedded in G if every character of N extends 

to a character of G. Every subgroup of a precompact group is dually embedded. Every finite subgroup of a 
MAP group is dually embedded as well.

A nonempty subset A of a topological group G is said to be quasi-convex if for every x /∈ A there exists a 
character ψ of G such that ψ(A) is contained in [−1/4, 1/4] and ψ(x) /∈ [−1/4, 1/4]. The topological group 
is said to be locally quasi-convex if it has a neighborhood base at 0 consisting of quasi-convex subsets. Every 
precompact group is locally quasi-convex. Every locally quasi-convex, Hausdorff group is MAP (see [3]).

A topological group is said to be Pontryagin reflexive if the natural evaluation mapping αG : G → (G∧
co)∧co

is a topological isomorphism, where the subscript “co” stands for the compact-open topology on both 
groups G∧ and (G∧

co)∧. Pontryagin–van Kampen classical duality theorem asserts that all locally compact 
abelian groups are reflexive. The reader can find more information on recent developments in the Pontryagin 
reflexivity of abelian topological groups in the survey article [7].

2. Pseudocompactness of G∧
p for a bounded torsion group G

In the sequel we will need the following results:

Proposition 2.1. Let G be a MAP group.

(a) (See [9, Theorem 1.2].) The group G is precompact if and only if its topology coincides with σ(G, G∧).
(b) (See [18, Theorem 3.1: The Comfort–Ross duality].) If G is precompact, the canonical homomorphism 

G → (G∧
p )∧p is a topological isomorphism.

It is worth noting that if the compact subsets of G and G∧
co are finite, then the Pontryagin duality and 

the Comfort–Ross duality coincide.
Following [20,1] we say that a subgroup D of a topological Abelian group G is h-embedded in G if 

every (not necessarily continuous) homomorphism f : D → T can be extended to a continuous character 
f̃ : G → T. It is clear that if D is h-embedded in G, then every homomorphism of D to T is continuous.

Proposition 2.2 (See Proposition 2.1 in [1]). If every countable subgroup of a topological group G is 
h-embedded, then the countable subgroups of G are closed and the compact subsets of G are finite.
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Proposition 2.3 (See Proposition 3.4 in [13]). A precompact group G is pseudocompact if and only if all 
countable subgroups of G∧

p are h-embedded.

In the next proposition we characterize the MAP bounded torsion groups G with the pseudocompact 
dual G∧

p .

Proposition 2.4. Let G be a bounded torsion, MAP topological group. The following conditions are equivalent:

(i) G∧
p is pseudocompact.

(ii) For every sequence {gn : n ∈ ω} of independent elements of G and every sequence {tn : n ∈ ω} of 
elements of T such that the order of tn divides that of gn for every n ∈ ω, there exists χ ∈ G∧ with 
χ(gn) = tn for every n ∈ ω.

(iii) For every sequence {Δn : n ∈ ω} of finite subsets of G, where 〈Δn〉 ∩ 〈
⋃

k<n Δk〉 = {0} for every 
n ∈ ω, and every sequence {χn} in G∧, one has 

⋂
n∈ω(χn + Δn

⊥) �= ∅.

Proof. Since all the above statements (i)–(iii) either hold or fail to hold simultaneously for G and 
(G, σ(G, G∧)), we may assume that G is precompact.

(i)⇒ (iii): Pick sequences {Δn : n ∈ ω} and {χn : n ∈ ω} as in (iii). Put D =
⊕

n∈ω〈Δn〉. It is clear 
that the homomorphism f : D → T given by f(x) = χn(x) for all n ∈ ω and x ∈ Δn is well defined. 
Proposition 2.3 applied to G∧

p and the Comfort–Ross duality together imply that the countable subgroup D
is h-embedded in G. Hence there exists χ ∈ G∧ which coincides with f on D. Clearly χ ∈

⋂
n∈ω(χn +Δn

⊥).
(iii)⇒ (ii): Fix sequences {gn} and {tn} as in (ii). For every n ∈ ω the character κn of the finite group 

〈{gn}〉 defined by κn(gn) = tn can be extended to a character χn of the precompact group G. By (iii), there 
is some χ ∈ G∧ such that χ ∈

⋂
n∈ω(χn + {gn}⊥), which means that χ(gn) = tn for every n ∈ ω.

(ii)⇒ (i): By Proposition 2.3 applied to G∧
p and the Comfort–Ross duality, it suffices to show that all 

countable subgroups of G are h-embedded. Consider a countable subgroup C of G. We may assume that 
C is infinite. Take any homomorphism f : C → T. Let us show that there exists χ ∈ G∧ which coincides 
with f on C. We can express the countably infinite, bounded torsion group C as C =

⊕
n∈ω〈gn〉, where 

{gn : n ∈ ω} ⊂ G is an independent sequence [19, 4.3.5]. Since the order of f(gn) clearly divides that of gn
for every n, we conclude that there exists χ ∈ G∧ such that χ(gn) = f(gn) for every n. That is, χ and f
coincide on C. �

Our next aim is to prove that in the case of bounded torsion groups the sufficient condition for pseudo-
compactness given in Proposition 2.3 can be replaced by a weaker one. We start with a lemma.

Lemma 2.5. Let G be a bounded torsion topological group. The following properties are equivalent:

(i) All subgroups of G are closed.
(ii) Every homomorphism of G to T is continuous.

Proof. Let us show that (i)⇒ (ii). If f : G → T is a homomorphism, then f(G) ⊂ T[n], where n is the period 
of G. Hence the kernel of f , say, K is a subgroup of G which has finite index in G. By the assumptions of 
the lemma, K is closed in G. Hence G is a disjoint union of finitely many closed cosets of K. This implies in 
turn that each of these cosets is open in G. Therefore K is an open subgroup of G and the homomorphism 
f is continuous.

The implication (ii)⇒ (i) is known and true without assuming that G is bounded torsion; we give the 
argument for the sake of completeness. Consider a subgroup H of G and fix x ∈ G \H. Let ϕ : G → G/H

be the corresponding quotient map. Since ϕ(x) �= 0 there exists a homomorphism χ : G/H → T with 
χ(ϕ(x)) �= 0. The homomorphism χ ◦ ϕ : G → T is continuous by hypothesis and separates x from H. �
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Theorem 2.6. Let G be a MAP, bounded torsion group. The following conditions are equivalent:

(a) All countable subgroups of G are σ(G, G∧)-closed.
(b) The group G∧

p is pseudocompact.

In addition, if G is locally quasi-convex, both (a) and (b) are equivalent to

(a′) All countable subgroups of G are closed.

Proof. We will use the following observation: If H = (G, σ(G, G∧)), then by Proposition 2.3 applied to G∧
p

and the Comfort–Ross duality, we obtain that the group G∧
p = H∧

p is pseudocompact if and only if every 
countable subgroup of H is h-embedded.

(a)⇒ (b): Take a countable subgroup S of H. By hypothesis, every subgroup of S is closed in H, hence 
in S. By Lemma 2.5, every homomorphism from S to T is continuous. Since H is precompact, every subgroup 
of H is dually embedded. We conclude that S is h-embedded in H.

(b)⇒ (a): By hypothesis, all countable subgroups of H are h-embedded. By Proposition 2.2, they are 
closed in H as well.

It is clear that (a)⇒ (a′), even without the local quasi-convexity assumption. Let us prove (a′)⇒ (a). 
Since G is a bounded torsion, locally quasi-convex group, it has a basis of neighborhoods at 0 formed by 
subgroups (see [4, Proposition 2.1]), therefore it can be embedded into a product of discrete groups. This 
implies in turn that G is a nuclear group, and in particular every closed subgroup of G is σ(G, G∧)-closed 
(see [5, Corollary 8.6]). �
Remark 2.7. It turns out that Theorem 2.6 cannot be extended to precompact torsion groups, neither to 
precompact torsion free groups (notice that all precompact groups are locally quasi-convex).

Indeed, let Qq = {t ∈ T : qkt = 0 for some k ∈ N} be the quasicyclic subgroup of T, where q is a prime 
number. We consider Qq with the topology inherited from T. Clearly Qq is a precompact torsion group. 
Every proper subgroup of Qq is finite and hence is closed in Qq. However (Qq)∧p is not pseudocompact. 
Indeed, it is countable, infinite, non-discrete, and has a countable base. Hence this group is homeomorphic
to the space of rational numbers endowed with the usual linear order topology.

Consider also the infinite cyclic group Z endowed with the precompact topological group topology τ whose 
base at zero consists of the subgroups nZ, where n ≥ 1 is an integer. Clearly every non-trivial subgroup of 
Z is of the form nZ for some n > 1, so all subgroups of G = (Z, τ) are closed. Once again, G∧

p is countably 
infinite and non-discrete, so it is not pseudocompact.

Corollary 2.8. Let G be a pseudocompact, bounded torsion group. Then every countably compact subset of G∧
p

is finite.

Proof. By Theorem 2.6 and the Comfort–Ross duality, all countable subgroups of G∧
p are closed. Hence G∧

p

is a bounded torsion abelian group all whose countable subgroups are closed. By Theorem 2.1 in [22], every 
countably compact subset of G∧

p is finite. �
We will see in Example 3.12 that one cannot weaken “pseudocompact” to “Baire” in Corollary 2.8. 

However, if G is a Baire bounded torsion group, every compact subset of G∧
p is finite (Theorem 3.3).

Proposition 2.10 below shows that one can interchange “pseudocompact” and “countably compact” in 
Corollary 2.8, even without additional assumptions on the algebraic structure of the group G. First we 
recall a useful topological concept. A subset B of a Tychonoff space X is said to be bounded in X if every 
continuous real-valued function on X is bounded on B. It is clear that every pseudocompact subspace of a 
Tychonoff space is bounded.
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The following result is a special case of [13, Theorem 4.2] which generalizes Grothendieck’s theorem about 
compact subsets of Cp(X); we apply it in the proof of Proposition 2.10.

Theorem 2.9. Let X be a countably compact space and Y a metrizable space. Then the closure of every 
bounded subset of Cp(X, Y ) is compact.

Proposition 2.10. Let G be a countably compact topological group. Then every bounded subset of G∧
p is finite. 

In particular all pseudocompact subspaces of G∧
p are finite as well.

Proof. Let P be a bounded subset of G∧
p . Then the closure of P in G∧

p , say, K is also a bounded subset 
of G∧

p . Denote by Cp(G, T) the space of continuous functions on G with values in T endowed with the 
pointwise convergence topology. Then G∧

p is clearly a closed subspace of Cp(G, T), so K is a closed bounded 
subset of Cp(G, T). Since G is countably compact and T is metrizable, it follows from Theorem 2.9 that K
is compact. Note that every countably compact group is pseudocompact, so Proposition 2.3 implies that 
all countable subgroups of G∧

p are h-embedded. Hence all compact subsets of G∧
p are finite according to 

Proposition 2.2. We conclude therefore that the set K and its subset P are finite. �
The particularization of Proposition 2.10 to the case of a compact group G gives the following result 

established by Trigos-Arrieta in [23, Theorem 4.4] (see also [2, Theorem 9.9.42]):

Corollary 2.11. Let H be an abelian group and τ the finest precompact topology on H. Then every bounded 
subset of (H, τ) is finite.

Remark 2.12. It is natural to ask whether one can strengthen Corollary 2.8 and/or Proposition 2.10 by 
replacing “countably compact” to “pseudocompact”. In other words, we wonder whether pseudocompact 
subspaces of G∧

p , for a pseudocompact bounded torsion group G, are finite. It turns out that the answer in 
both cases is “No”, so both Corollary 2.8 and Proposition 2.10 are quite sharp. Indeed, it is shown in [21, 
Theorem 3.3] that there exists an infinite pseudocompact boolean group G such that the dual group G∧

p is 
topologically isomorphic to G and, hence, pseudocompact. In fact, the cardinality of such a group G can be 
arbitrary big.

3. The Baire property on G∧
p for a bounded torsion group G

Our next goal is to give a characterization of the Baire property for bounded torsion groups similar in 
spirit to the one obtained for pseudocompactness in Proposition 2.4. We start with a lemma:

Lemma 3.1. Let G be a MAP bounded torsion topological group. For every nowhere dense subset F of G∧
p

and every finite subgroup K ⊂ G, one can find a finite subgroup L of G and χ ∈ G∧
p such that K ∩L = {0}

and (χ + L⊥) ∩ F = ∅.

Proof. Let F be a nowhere dense subset of G∧
p . We can assume that G is infinite — otherwise the dual group 

G∧
p
∼= G is finite and discrete, so the set F must be empty. Let n ≥ 2 be the period of G. Then χ(G) ⊂ T[n], 

for every character χ ∈ G∧
p .

The bounded torsion group G is algebraically isomorphic with a direct sum of finite cyclic groups whose 
orders divide n [19, 4.3.5]. Thus G =

⊕
z∈Z〈z〉 algebraically, where Z is an independent subset of G. Let us 

denote by Gd the group G endowed with the discrete topology. It is clear that G∧ is a subgroup of (Gd)∧. 
Actually, since G is a MAP group, G∧

p is a dense subgroup of the compact group (Gd)∧co; this follows from 
Theorem 1.9 in [9]. Besides, note that (Gd)∧co is naturally topologically isomorphic with ΠZ =

∏
z∈Z T[nz], 

where nz is the order of z, via the canonical isomorphisms 〈z〉∧ ∼= T[nz]; in what follows we make implicit 
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use of this identification. In particular we can regard F as a nowhere dense subset of ΠZ . Also, since the 
closure of a nowhere dense set is nowhere dense, we can assume that F is closed in ΠZ .

For every B ⊂ Z define ΠB :=
∏

z∈B T[nz], and let πB : ΠZ → ΠB be the projection. Clearly πB(G∧
p ) is 

a dense subgroup of ΠB for every B ⊂ Z. There exists a finite subset X of Z such that K ⊂ 〈X〉. Let us 
put Y = Z \X.

Let us prove that πY (F ) is nowhere dense in ΠY . For every s ∈ ΠX , let

P (s) = {z ∈ F : z(x) = s(x) for each x ∈ X}.

It is easy to see that for every s ∈ ΠX the set πY (P (s)) is nowhere dense in ΠY . Indeed, since P (s) is closed 
in ΠZ and πY is a closed map, πY (P (s)) is also closed in ΠY , so if πY (P (s)) fails to be nowhere dense, it 
must contain a non-empty open set in ΠY , say, O. Then

O × {s} ⊂ πY (P (s)) × {s} = P (s) ⊂ F.

Since Y is cofinite in Z, O × {s} is a non-empty open set in ΠZ , which contradicts the fact that F is 
nowhere dense in ΠZ . Therefore the sets πY (P (s)), with s ∈ ΠX , are nowhere dense in ΠY . Notice that 
F =

⋃
{P (s) : s ∈ ΠX}. Hence the set πY (F ) is the union of the finite family {πY (P (s)) : s ∈ ΠX} of closed 

nowhere dense sets in ΠY . This clearly implies that πY (F ) is nowhere dense in ΠY .
Since πY (G∧

p ) is dense in ΠY , we deduce that πY (F ) is nowhere dense in πY (G∧
p ). In particular we can 

find a character χ0 ∈ G∧ such that the intersection of some basic neighborhood of πY (χ0) in ΠY with 
πY (G∧

p ) does not meet πY (F ). This means that there exists a finite subset Δ ⊂ Y such that no χ ∈ F

coincides with χ0 on Δ, i.e. (χ0 +Δ⊥) ∩F = ∅. Let L = 〈Δ〉. Then L ⊂ 〈Y 〉 and K ⊂ 〈X〉, so K ∩L = {0}. 
This completes the proof. �

In Theorem 3.2 below we characterize the MAP bounded torsion groups G such that the dual group G∧
p

has the Baire property. This theorem is a natural but more complicated analogue of Proposition 2.4.

Theorem 3.2. Let G be a MAP, bounded torsion topological group. The following conditions are equivalent:

(i) G∧
p has the Baire property.

(ii) For every sequence {Δn : n ∈ ω} of finite subsets of G, where 〈Δn〉 ∩ 〈Δk〉 = {0} if n �= k, and every 
sequence {χn} in G∧

p , there exists an infinite set I ⊂ ω such that 
⋂

n∈I(χn + Δ⊥
n ) �= ∅.

Proof. Assume that the dual group G∧
p has the Baire property. Take an arbitrary sequence {(Δn, χn) :

n ∈ ω} as in (ii). Our aim is to find an infinite set I ⊂ ω and a character χ ∈ G∧ such that χ(x) = χn(x)
for all n ∈ I and x ∈ Δn.

For every n ∈ ω, put Un =
⋃

m>n(χm + Δ⊥
m). It is clear that the sets Un are open in G∧

p . Let us verify 
that Un is dense in G∧

p for each n ∈ ω. Take an arbitrary character χ0 ∈ G∧
p , a finite set C ⊂ G and 

consider the basic open set χ0 + C⊥ in G∧
p . Since the group 〈C〉 is finite and 〈Δk〉 ∩ 〈Δl〉 = {0} if k �= l, 

there are at most finitely many indices k ∈ ω such that 〈C〉 ∩ 〈Δk〉 �= {0}. Take an integer m > n such that 
〈C〉 ∩ 〈Δm〉 = {0}. The finite group 〈C〉 + 〈Δm〉 is dually embedded in the MAP group G, therefore there 
exists a character χ ∈ G∧

p such that χ(x) = χ0(x) for each x ∈ C and χ(x) = χm(x) for each x ∈ Δm. It is 
clear that χ ∈ (χ0 + C⊥) ∩ Un �= ∅, which implies that Un is dense in G∧

p .
The group G∧

p has the Baire property, hence the set S =
⋂

n∈ω Un is non-empty. Take an element χ ∈ S. 
It follows from our choice of χ that for each n ∈ ω, there exists m > n such that χ(x) = χm(x) for all 
x ∈ Δm. In other words, the set
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I = {m ∈ ω : χ(x) = χm(x) for each x ∈ Δm}

is infinite. This proves the necessity.
To prove the sufficiency, assume the group G satisfies (ii). Suppose for a contradiction that the group 

G∧
p is not Baire. Then there exists an increasing sequence {Fn : n ∈ ω} of closed nowhere dense sets in G∧

p

such that G∧
p =

⋃
n∈ω Fn. Take a non-empty basic open set χ0 + Δ⊥

0 in G∧
p such that (χ0 + Δ⊥

0 ) ∩ F0 = ∅. 
Denote by K0 the subgroup of G generated by Δ0. Clearly K0 is finite.

Assume that for some n ∈ ω we have defined χ0, . . . , χn ∈ G∧
p and finite subsets Δ0, . . . , Δn of G such 

that (χk + Δ⊥
k ) ∩ Fk = ∅ for each k ≤ n, and that the groups 〈Δk〉 and 〈Δl〉 with 0 ≤ k < l ≤ n have 

trivial intersections. Denote by Kn the subgroup of G generated by the set 
⋃

k≤n Δk. Clearly Kn is finite. By 
Lemma 3.1, there exists a non-empty basic open set χn+1+Δ⊥

n+1 in G∧
p such that (χn+1+Δ⊥

n+1) ∩Fn+1 = ∅
and the groups Kn and 〈Δn+1〉 have trivial intersection. This finishes our construction of the sequence 
{(χn, Δn) : n ∈ ω}. It follows from our construction that 〈Δn〉 ∩ 〈Δk〉 = {0} if n �= k.

According to (ii), we can find an infinite subset I of ω and a character χ ∈ G∧ such that χ ∈ χn + Δ⊥
n

for all n ∈ I. This implies that χ /∈ Fn, for each n ∈ I. Since Fn ⊂ Fn+1 for each n ∈ ω, we conclude that 
χ /∈

⋃
n∈ω Fn = G∧

p . This contradiction shows that G is Baire. �
Let us recall that a space X is scattered if every nonempty subspace Y of X contains an isolated point. 

It is known that a compact Hausdorff space admits a continuous mapping onto the closed unit interval [0, 1]
if and only if it is not scattered (see [15, Proposition 3.5] for a proof).

Theorem 3.3. Let G be a precompact, Baire, bounded torsion group. Then every compact subset of G∧
p is 

finite.

Proof. Suppose to the contrary that G∧
p contains an infinite compact subset. Let m be the minimal positive 

integer such that some infinite compact subset Lm of G∧
p is contained in G∧

p [m]. Since G∧
p (as well as G) is 

a bounded torsion group, such an m exists.
By the assumptions of the theorem, G is precompact and has the Baire property. Therefore its dual 

group G∧
p does not contain any nontrivial convergent sequences (see [6, Corollary 2.4]). By Theorem 4 in 

[16], every infinite compact scattered space contains non-trivial convergent sequences. Therefore no infinite 
closed subset of the compact space Lm is scattered. Let L be a closed infinite subset of Lm which does 
not contain isolated points. As the set Lm ∩ G∧

p [k] is finite for each positive integer k < m, there exists a 
non-empty open set U in L such that L′ = clLU is disjoint from G∧

p [k], for each k < m. Then L′ is also an 
infinite closed subset of L without isolated points and the order of every element of L′ is equal to m.

Let ϕ : L′ → [0, 1] be a continuous, onto mapping. Let also K be a closed subset of L′ such that ϕ(K) =
[0, 1] and the restriction of ϕ to K is irreducible, that is, ϕ(K ′) �= [0, 1] for every proper closed subspace K ′

of K (see [11, 3.1.C]).
In the sequel we need the following simple facts:

Claim A. For every finite subgroup P of G∧
p , the set

KP = {x ∈ K : |P ∩ 〈x〉| ≥ 2}

is finite.

Indeed, for an element y ∈ P and an integer i with 1 ≤ i < m, let K[i, y] = {x ∈ K : ix = y}. 
It is clear that the set K[i, y] is compact and i(x − z) = 0 for all x, z ∈ K[i, y], whence it follows that 
K[i, y] −K[i, y] ⊂ G∧[i]. Since the set K[i, y] −K[i, y] is compact and 1 ≤ i < m, our choice of m implies 
that K[i, y] is finite. Hence the set KP ⊂

⋃
{K[i, y] : 1 ≤ i < m, y ∈ P} is finite as well.
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Claim B. For every finite subgroup P of G∧
p and an arbitrary non-empty open interval J ⊂ [0, 1], there exists 

an element y ∈ K such that 〈y〉 ∩ P = {0} and ϕ(y) ∈ J .

Indeed, choose a, b ∈ J with a < b and let J∗ = [a, b] and K∗ = K ∩ ϕ−1(J∗). Since ϕ(K) = [0, 1], K∗ is 
an infinite closed (hence compact) subset of K. By Claim A, we can take an element y ∈ K∗ \KP . Then 
clearly 〈y〉 ∩ P = {0} and ϕ(y) ∈ J∗ ⊂ J .

Claim C. For every finite subgroup P of G∧
p and an arbitrary integer n ≥ 1, there exists a finite independent 

set B ⊂ K such that 〈B〉 ∩ P = {0} and ϕ(B) is a 2−n-net for [0, 1] with respect to the usual metric in 
[0, 1].

Let N = 2n+1. We define the required set B = {xi : 1 ≤ i ≤ N} ⊂ K as follows. First we take a 
family {Ji : 1 ≤ i ≤ N} of non-empty open intervals in [0, 1] such that every open interval in [0, 1] of 
length greater than or equal to 2−n contains one of the intervals Ji. For example, a uniform partition of 
[0, 1] into subintervals of length 2−n−1 has this property. By Claim B, there exists an element x1 ∈ K such 
that 〈x1〉 ∩ P = {0} and ϕ(x1) ∈ J1. Assume that for some k < N we have defined an independent subset 
{x1, . . . , xk} of K such that P ∩〈x1, . . . , xk〉 = {0} and ϕ(xi) ∈ Ji for each i ≤ k. Then S = P + 〈x1, . . . , xk〉
is a finite subgroup of G∧, so Claim B implies that there exists xk+1 ∈ K such that 〈xk+1〉 ∩ S = {0}
and ϕ(xk+1) ∈ Jk+1. It follows from our choice of xk+1 that the set {x1, . . . , xk, xk+1} is independent and 
P ∩ 〈x1, . . . , xk+1〉 = {0}.

At the N -th step we obtain the independent set B = {xi : 1 ≤ i ≤ N} ⊂ K. It follows from our choice 
of the intervals Ji and points xi with ϕ(xi) ∈ Ji that ϕ(B) is a 2−n-net for [0, 1]. It is also clear from our 
construction that 〈B〉 ∩ P = {0}. This proves Claim C.

We turn back to the proof of the theorem. Making use of Claim C, one can easily construct by induction 
a sequence {Δn = An∪Bn : n ∈ ω} of finite subsets of K satisfying the following conditions for each n ∈ ω:

(i) An ∩Bn = ∅;
(ii) Δn ∩ Δk = ∅ if k �= n;
(iii) both ϕ(An) and ϕ(Bn) are 2−n-nets in [0, 1] with respect to the usual metric in [0, 1];
(iv) the set 

⋃
n∈ω Δn is independent in G∧.

For every n ∈ ω, we define a subset Un of G by letting

Un = {g ∈ G : (∃ p > n) (∀x ∈ Ap) (∀y ∈ Bp) [x(g) = 0, y(g) = 1/m]}

=
⋃
p>n

( ⋂
x∈Ap

x−1({0}) ∩
⋂

y∈Bp

y−1({1/m})
)
.

It is clear from the above definition that each Un is open in G.
Let us verify that Un is dense in G for every n ∈ ω. Take an arbitrary element g0 ∈ G and let V =

g0 + {x1, . . . , xk}⊥ be a basic neighborhood of g0 in G, where xj ∈ G∧
p for j = 1, . . . , k. We have to find an 

element g ∈ Un ∩ V . Take an integer p > n such that 〈x1, . . . , xk〉 ∩ 〈Δp〉 = {0}. This is possible due to (ii) 
and (iv).

Let C be the subgroup of G∧
p generated by the set Δp ∪ {x1, . . . , xk}. Since the finite group C is dually 

embedded in the precompact group G∧
p , the character κ on C defined by κ(xj) = xj(g0) for j = 1, . . . , k, 

κ(x) = 0 for each x ∈ Ap, and κ(y) = 1/m for each y ∈ Bp can be extended to a character g of G∧
p . We 

identify g with an element of G which belongs to V ∩Un. So this set is nonempty and each Un is dense in G.
By hypothesis the group G has the Baire property, therefore 

⋂
n∈ω Un �= ∅. Take an element g ∈

⋂
n∈ω Un. 

Then there exists an infinite subset I of ω such that g(Ap) = {0} and g(Bp) = {1/m} for every p ∈ I (we 
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identify g with a character of G∧
p ). Let us see that both 

⋃
p∈I Ap and 

⋃
p∈I Bp are dense in K, which clearly 

contradicts the continuity of the character g. Indeed, since ϕ is a closed map, it follows from (iii) that 
ϕ(

⋃
p∈I Ap) = ϕ(

⋃
p∈I Ap) = [0, 1], and the same equality holds for the sets Bp in place of Ap. As ϕ is also 

irreducible, both sets 
⋃

p∈I Ap and 
⋃

p∈I Bp are dense in K, as claimed. This completes the proof of the 
theorem. �
Problem 3.4. Can one drop “bounded torsion” in the assumptions of Theorem 3.3? In other words, is it true 
that all compact subsets of G∧

p are finite provided that G is a precompact group with the Baire property?

Corollary 3.5. Let G be a MAP bounded torsion group such that G∧
p is a Baire space. Then every 

σ(G, G∧)-compact subset of G is finite.

Proof. Apply Theorem 3.3 to the precompact, Baire, bounded torsion group G∧
p . Note that according to 

Proposition 2.1, (G, σ(G, G∧)) ∼= (G∧
p )∧p . �

Recently many non-compact reflexive groups have been found among precompact groups. It is shown in 
[1, Theorem 2.8] and [12, Theorem 6.1] that a pseudocompact group without infinite compact subsets is 
reflexive. A slightly more general fact is established in [6, Theorem 2.8]: Every precompact Baire group with-
out infinite compact subsets is reflexive provided that it satisfies the so-called Open Refinement Condition
(see [6, p. 2638]). The following Corollary implies all these results for bounded torsion groups.

Corollary 3.6. Let G be a precompact bounded torsion group which is a Baire space without infinite compact 
subsets. Then G is Pontryagin reflexive.

Proof. By Theorem 3.3, all compact subsets of G∧
p are finite. The same is true by hypothesis for the 

compact subsets of G, so Pontryagin duality of G coincides with Comfort–Ross duality and G is Pontryagin 
reflexive. �

A locally quasi-convex group G is g-barrelled if every compact subset of G∧
p is equicontinuous. The class of 

g-barrelled groups was introduced in [8]. It includes all locally quasi-convex groups that are Čech-complete, 
separable Baire, or pseudocompact.

Corollary 3.7. Let G be a precompact, bounded torsion group which is a Baire space. Then G is g-barrelled 
and its topology is the only locally quasi-convex topology on the abelian group G whose group of characters 
is G∧.

Proof. By Theorem 3.3, all compact subsets of G∧
p are finite. This clearly implies that G is g-barrelled.

Any g-barrelled topological group topology τ on an Abelian group is the finest locally quasi-convex topol-
ogy with the same group of characters as τ [8]. Further, by Proposition 2.1(a), any precompact topological 
group topology τ on an Abelian group is the coarsest (locally quasi-convex) topology with the same group 
of characters as τ . This completes the proof. �
Corollary 3.8. Let G be a locally quasi-convex, bounded torsion group such that G∧

p is a Baire space. Then 
G is reflexive if and only if G is g-barrelled.

Proof. Since the group G is locally quasi-convex, the canonical homomorphism αG : G → (G∧
co)∧co is open 

and injective. By Corollary 3.5, all compact subsets of G are finite. Hence the compact-open topology and 
the pointwise convergence topology coincide on G∧. This implies that the map αG is onto.
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Finally, αG is continuous if and only if the compact subsets of G∧
co

∼= G∧
p are equicontinuous [7] if and 

only if G is g-barrelled. �
In the next problem we actually ask whether Theorem 3.3 characterizes the Baire property in precompact 

boolean groups:

Problem 3.9. Let G be a precompact boolean group such that every compact subset of the dual group G∧
p

is finite. Does G have the Baire property?

It is natural to ask, after Theorem 3.3, whether all countably compact subsets of G∧
p are finite, for each 

bounded torsion group G with the Baire property. In Example 3.12 below we present a precompact boolean 
group G with the Baire property such that the dual group G∧

p contains a big countably compact subset, 
thus answering the question in the negative. Our construction of such a group G does not require extra 
set-theoretic assumptions and can be easily visualized modulo some facts from the Cp-theory. We start with 
the following two lemmas.

Lemma 3.10. Let X be a Tychonoff space satisfying the following condition:

(∗) For every sequence {(Δn, fn) : n ∈ ω}, where the sets Δn are finite, pairwise disjoint subsets of X and 
the functions fn : Δn → Z(2) are arbitrary, one can find an infinite set I ⊂ ω and a continuous function 
f : X → Z(2) such that fn and the restriction of f to Δn coincide for each n ∈ I.

Then the group H = Cp(X, Z(2)) has the Baire property.

Proof. Let {Fn : n ∈ ω} be a sequence of closed nowhere dense sets in H. It suffices to show that H �=⋃
n∈ω Fn. We can assume without loss of generality that Fn ⊂ Fn+1, for each n ∈ ω.
For a non-empty set A ⊂ X and a function g : A → Z(2), we put

W (A, g) = {f ∈ H : f(x) = g(x) for each x ∈ A}.

The sets of the form W (A, g) form a base for the topology of the group H. Arguing as in the proof of 
Lemma 3.1, one can verify that for every finite subset D of X and a closed nowhere dense set F in H, 
there exists a basic open set W (A, g) in H such that W (A, g) ∩ F = ∅ and A ∩ D = ∅. Therefore, we 
can construct by induction a sequence {W (Δn, gn) : n ∈ ω} of non-empty basic open sets in H such that 
W (Δn, gn) ∩Fn = ∅ and Δn∩Δk = ∅ whenever k < n. Since X satisfies condition (∗) of the lemma, we can 
find an infinite set I ⊂ ω and a function g ∈ H such that gn and g coincide on Δn, for each n ∈ I. Then 
g ∈

⋂
n∈I W (Δn, gn) and, hence, g /∈

⋃
n∈I Fn =

⋃
n∈ω Fn. We have thus proved that H �=

⋃
n∈ω Fn, so the 

group H has the Baire property. �
The next fact was established by Pytkeev in [17]. Since this source can hardly be accessed, we supply 

the reader with a proof.

Lemma 3.11. Let X be a Tychonoff space such that every countable subspace of X is scattered and 
C∗-embedded in X. Then every countable infinite family γ of pairwise disjoint finite subsets of X contains 
an infinite subfamily λ such that the set 

⋃
λ is discrete.

Proof. Let {An : n ∈ ω} be a faithful enumeration of the family γ and Y =
⋃
γ. Then Y is countable and, 

hence, scattered. Therefore one can enumerate Y in type β for some β < ω1, say, Y = {yν : ν < β} such 
that every initial segment Yδ = {yν : ν < δ} is open in Y .
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We apply induction on the order type β of Y . If β = ω, then Y is discrete and there is nothing to 
prove. Assume that the conclusion of the lemma is valid whenever the order type of Y is less than α, where 
ω < α < ω1.

Case 1. α is a limit ordinal. There exists a strictly increasing sequence {βk : k ∈ ω} of infinite ordinals 
such that α = supk∈ω βk. For every k ∈ ω, let Zk = Yβk

. Then Zk is open in Y , the order type of Zk is βk, 
and Y =

⋃
k∈ω Zk.

Claim. For every x ∈ Y and every infinite subset N ⊂ ω, there exists an infinite subset N ′ of N and a 
neighborhood O of x in X such that O ∩

⋃
n∈N ′ An = ∅.

Indeed, for a point x ∈ Y choose k ∈ N such that x ∈ Zk. If Zk ∩ An = ∅ for infinitely many n ∈ ω, it 
suffices to take O to be an arbitrary open set in X satisfying O ∩ Y = Zk. Otherwise, since βk < α, our 
inductive assumption implies that there exists an infinite subset N ′ of N such that the set T = Zk∩

⋃
n∈N ′ An

is discrete. Notice that the set T is infinite. Let P and Q be infinite disjoint subsets of N ′. Since T is discrete 
and C∗-embedded in X, the sets A = Zk ∩

⋃
n∈P An and B = Zk ∩

⋃
n∈Q An have disjoint closures in X. 

Hence the closure in X of one of the sets 
⋃

n∈P An or 
⋃

n∈Q An does not contain the point x. This proves 
our claim.

We are going to find a faithfully indexed sequence of integers {ni : i ∈ ω} such that Ani
∩
⋃

j>i Anj
= ∅

for every i ∈ ω. This will imply that 
⋃

i∈ω Ani
is discrete.

Put n0 = 0 and N0 = ω. The set An0 being finite, there exists k0 ∈ ω such that An0 ⊂ Zk0 . It follows 
from the above Claim that there exists an infinite subset N1 of N0 such that An0 is disjoint from the closure 
of 

⋃
n∈N1

An. Notice that n0 /∈ N1. We take an arbitrary integer n1 ∈ N1. Clearly, n1 �= n0. Take an integer 
k1 > k0 such that An1 ⊂ Zk1 .

Assume that for some i ≥ 1 we have defined pairwise distinct integers n0, . . . , ni, integers k0 < · · · < ki
and infinite subsets N0 ⊃ N1 ⊃ · · · ⊃ Ni of ω with Anj

⊂ Zkj
for every j = 0, . . . , i, nj ∈ Nj for every 

j = 0, 1, . . . , i, and Anj
∩
⋃

n∈Nj+1
An = ∅ for every j = 0, . . . , i −1. Applying the above Claim to the points 

of Ani
we find an infinite subset Ni+1 of Ni such that Ani

is disjoint from the closure of the set 
⋃

n∈Ni+1
An. 

Take an element ni+1 ∈ Ni+1 distinct from nj for each j ≤ i and choose ki+1 > ki such that Ani+1 ⊂ Zki+1 . 
This finishes our construction.

Fix i ∈ ω; let us show that Ani
∩
⋃

j>i Anj
= ∅. Fix x ∈ Ani

. It follows from our construction that 
Ani

⊂ Zki
and Ani

is disjoint from the closure of the set 
⋃

n∈Ni+1
An. Since nj ∈ Nj for each j, we see that 

x /∈
⋃

j>i Anj
.

Case 2. α = β0 + 1 for some countable ordinal β0. Since the sets An are pairwise disjoint, there can be 
at most one n ∈ ω with yβ0 ∈ An (we recall that {yν : ν < α} is an enumeration of Y , so yβ0 is the last 
element of Y in this ordering of Y ). Hence there exists an infinite subset N0 of ω such that yβ0 /∈ An for each 
n ∈ N0. The order type of the set 

⋃
n∈N0

An ⊂ {yν : ν < β0} is less than or equal to β0, so our inductive 
assumption implies that there is an infinite subset N1 of N0 such that the set 

⋃
n∈N1

An is discrete. This 
completes the proof of the lemma. �
Example 3.12. There exists a precompact boolean group G with the Baire property such that the dual group 
H = G∧

p endowed with the pointwise convergence topology contains an infinite countably compact subspace 
without isolated points. In addition, G contains countable non-closed subgroups.

Proof. Let βω be the Čech–Stone compactification of the discrete space ω. According to [14], there exists a 
dense countably compact subspace X of K = βω \ ω such that every countable subspace of X is scattered. 
Clearly X does not contain isolated points. Since countable subsets of K are C∗-embedded in K, the same 
is valid for countable subsets of X.
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We claim that the group Cp(X, Z(2)) of continuous functions on X with values in the discrete two-element 
group Z(2) has the Baire property. We will deduce this from Lemma 3.10. Indeed, consider a sequence 
{(Δn, fn) : n ∈ ω}, where Δn are finite, pairwise disjoint subsets of X and the functions fn : Δn → Z(2) are 
arbitrary. By Lemma 3.11, there exists an infinite subset I of ω such that the set T =

⋃
n∈I Δn is discrete. 

For i = 0, 1, let

Ai = {x ∈ T : fn(x) = i for some n ∈ I}.

Then A0 and A1 are disjoint subsets of T and T = A0 ∪A1. Let g be the function on T such that g(x) = i if 
x ∈ Ai, where i = 0, 1. Clearly g and fn coincide on Δn, for each n ∈ I. Since T is discrete, g is continuous. 
Further, since countable discrete subsets of K are C∗-embedded, the closures of A0 and A1 in K are disjoint. 
The compact space K has a base of clopen (that is, closed and open) sets, so we can find disjoint clopen sets 
Ui in K such that Ai ⊂ Ui for i = 0, 1 and K = U0 ∪ U1. Let f be the function on X defined by f(x) = i

if x ∈ X ∩ Ui, where i = 0, 1. Thus f extends g and coincides with fn on Δn, for each n ∈ I. This implies, 
according to Lemma 3.10, that the group G = Cp(X, Z(2)) has the Baire property.

Clearly G is a precompact boolean topological group. The dual group H = G∧
p is precompact and, by 

the Comfort–Ross duality, the group H∧
p is topologically isomorphic to G under the canonical isomorphism 

αG : G → H∧
p .

For every x ∈ X and f ∈ Cp(X, Z(2)), let x̂(f) = f(x). Then x̂ is a continuous character on G and 
B = {x̂ : x ∈ X} is a subset of H homeomorphic to X (see [2, Corollary 1.9.8]). So B is an infinite 
countably compact subspace of H which does not contain isolated points.

Finally we present a countable non-closed subgroup of G. Take a family {Un : n ∈ ω} of pairwise disjoint 
non-empty clopen subsets of X. For every n ∈ ω, let fn be the characteristic function of the set Un, so 
fn ∈ H. It is clear that the functions fn converge to the identity e of H, the constant function which takes 
the unique value zero. Choose x0 ∈ H \ 〈A〉 and let A = {fn : n ∈ ω}. Then the sequence {gn : n ∈ ω}
converges to x0, where gn = fn + x0 for each n ∈ ω. Let L be the subgroup of G generated by the set 
{gn : n ∈ ω}. It is clear that x0 is an accumulation point of L. It is also clear that x0 /∈ L. Indeed, otherwise 
there exist non-negative integers n1 < · · · < nk such that x0 = gn1 + · · ·+ gnk

. If the number of summands 
k is even, then the latter equality means that x0 = fn1 + · · · + fnk

, thus contradicting our choice of the 
element x0. If k is odd, the above equality is equivalent to fn1 + · · · + fnk

= e which is again impossible in 
view of our choice of the functions fn. Therefore L is a countable non-closed subgroup of G. �
Remark 3.13. Corollary 2.8 implies that the group H = G∧

p in Example 3.12 is not pseudocompact. By 
Theorem 2.6, H must contain countable non-closed subgroups. This can also be proved by the following 
construction. Take a countable infinite subset C of B and denote by K the subgroup of H generated by C. 
Then the countable group K is not closed in H. Indeed, if K were closed in H, the intersection F = K ∩B

would be compact as a countable, countably compact space. Since C ⊂ K, the compact set K is infinite. 
Clearly this contradicts Theorem 3.3 since H ∼= G∧

p and the precompact group G has the Baire property.
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