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Bifurcation induced by the aspect ratio in a turbulent von Karman swirling flow
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We evaluate the effect of the aspect ratio, i.e., the distance between the propellers H divided by the diameter
D, on the slow dynamics of a von Karman swirling flow driven by two propellers in a closed cylinder. We use a
cell with a fixed diameter D but where the distance between the propellers can be turned continuously and where
the inertia from the propellers can also be changed using different gears. No change on the dynamics is observed
when the momentum of inertia is modified. Some dramatic changes of the shear layer position are observed
modifying the aspect ratio I' = H/D. A bifurcation of the shear layer position appears. Whereas for low I' the
shear layer position has a smooth evolution when turning the asymmetry between the rotation frequency of the
propellers, for high I" the transition becomes abrupt and a symmetry breaking appears. Secondly we observe that
the spontaneous reversals with large residence times already observed in this experiment for ' = 1 [de la Torre
and Burguete, Phys. Rev. Lett. 99, 054101 (2007)] exist only in a narrow window of aspect ratio. We show using
an experimental study of the mean flow structure and a numerical approach based on a Langevin equation with
colored noise that the shear layer position seems to be decided by the mean flow structure, whereas the reversals

are linked to the spatial distribution of the turbulent fluctuations in the cell.
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I. INTRODUCTION

Turbulent flows can be encountered at very different
scales in nature: from geophysical and astrophysical scales
(atmospheric turbulence, star convection) to biological scales
(heart valves). That is why turbulence is a central problem
of present fundamental researches and applied sciences [1].
Because of the nonlinearity of the equations which rule
turbulence, there is no theoretical nor numerical complete
description of this phenomenon. Particularly, lots of questions
are still open about the appearance and the dynamics of vortices
or other coherent structures in fully developed turbulence, or
the rise of bifurcations on the mean flow [2].

This paper proposes an experimental investigation in a
swirling von Karmén flow. Two counter-rotating propellers
are used to develop turbulence in a cylindrical cavity filled
with water. This model system has been largely studied
numerically [3-5], theoretically [6,7], and experimentally
[8—11]. This kind of flow is particularly used in magnetohydro-
dynamics (MHD) experiments. It is a good candidate for the
dynamo instability which was observed last decade [12]. The
counter-rotating swirling flow can be the place of multista-
bility, memory effects, and long time dynamics [11,13-15].
Particularly de la Torre and Burguete [11,14] observed a
symmetry breaking of the mean flow where the shear layer
between the two counter-rotating cells of the flow does not
remain in the middle of the cavity. Moreover, this shear layer
can spontaneously jump from one side of the cavity to the
other with a long residence time (typically 1000 s) compared
to the turbulent time scales. But what is/are the problem
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parameter(s) which fix(es) the position of the shear layer and
the spontaneous reversals?

In this configuration the propellers provide the angular
momentum and kinetic energy to the fluctuating turbulent
flow. These propellers can be controlled using constant torque
or angular velocity, and different regimes are obtained for
each approach [16]. This interaction between the flow and
the propellers can be responsible for the different observed
dynamics in various experimental setups. Here we would like
to test principally the effect of a parameter related to this
interaction: the aspect ratio I" (the ratio between the distance
between the propellers and the cavity diameter). An other
parameter linked to this interaction, the momentum of inertia
of the propellers, is also studied.

Concerning the aspect ratio we systematically study in this
paper its impact on the symmetry breaking and the spontaneous
long time reversals of the shear layer position. If the mean flow
structure fixes the shear layer position, spontaneous reversals
are observed only in a short window of the aspect ratio. To
explain this phenomenon we use a model based on a Langevin
equation to link our experimental results to different shapes
of the potential and of the spatial distribution of the turbulent
fluctuations.

For the propellers inertia, in a different configuration
(a thermoconvective experiment) it has been observed that
a feedback can be established between the forcing mechanism
(with low thermal inertia) and the dynamical behavior of the
experiment when the system is not able to respond to the
fluctuating requirements of the flow [17]. In the von Karman
flow, an equivalent behavior would be obtained for extremely
low momentum of inertia of the propellers if the motors cannot
follow the fluctuations.

II. EXPERIMENTAL SETUP

Our von Karman setup consists in a horizontal cylinder
of diameter D = 20 cm and of 32 cm in length filled with
water. The distance H between the propellers can be turned
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FIG. 1. Global scheme of the experimental setup. (a) Side view
of the cavity with the denomination of the propellers; (b) photograph
of a propeller with its rotation direction; (c) side view of the cavity in
the propeller’s axis direction.

continuously. The aspect ratio defined as I' = H/D can be
fixed in the range ]0.2,1.2] with an accuracy of 0.01. Each
propeller has aradius R, = 8.75 cm and has ten curved blades
of 2 cm height and 4.85 cm of curvature radius. Figure 1 shows
a scheme of the experimental setup. The propellers rotate in
opposite directions and are powered by two motors of maxi-
mum power 1.5 kW. They are named N and S (see Fig. 1). The
respective rotation frequencies are fy and fs. We define the
rotation asymmetry parameter as A = (fy — fs)/(fnv + fs)-
The rotation frequency can be adjusted independently for both
propellers in a range [0.5,12.5] Hz with an accuracy of 0.03
Hz. The high inertia of the propellers leads us to have a very
stable rotation frequency with maximal fluctuations of 0.1%.
A higher fluctuation level on the velocity of the propeller will
destroy the dynamics observed here [14,18]. The Reynolds
number is computed as Re = 7 Ri( fn + fs)/v, where v is the
kinematic viscosity of the fluid. We maintain the temperature
of the water at 21 & 1 °C by immersing the cavity in a tank of
150 L in volume.

This last setup characteristic is also useful to reduce
optical distortions: we make velocity measurements using
a 1D Laser Doppler Anemometry (LDA) system placed on
a horizontally translating board. Its measurement volume is
1.3%x0.3x0.3 mm?, the temporal resolution is up to 100 kHz.
The flow is seeded with silver coated hollow glass spheres with
a diameter of 14 zm and a density of 1.65 g/cm?®. Two kinds of
measurements are made. (i) Equatorial (orthoradial) velocity
measurements at the center of the cell (y = 0, z = 0, and radial
position y = 0.9 R) are used to study the shear layer position.
(i) Measurements of 2D velocity fields by the combination
of the equatorial and axial velocity measurements in a
plane included between the propellers blades extremities and
y € [0, R] are used to estimate the poloidal-toroidal velocity
ratio of the mean flow. The volume average of the toroidal and
poloidal velocities are respectively defined as

— 1
Vior = iﬁlveqkﬂj,

1
Vol = 9[)),/0,2 +v2dV, (1)
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where vq is the equatorial velocity, v, the radial one, v, the
axial one, and V the volume of the cell between the propellers.

III. EXPERIMENTAL OBSERVATIONS

We first verified that the Reynolds number (Re) does not
have any effect on the shear layer position. This was expected
as it has already been shown that this configuration does not
depend on the Reynolds for Re > 10° [11,16].

In previous experiments [11,14] the propellers were con-
nected with a system of gears and belts to the motors, with
a total momentum of inertia of I, = 55.28 x 1073 kg m?2.
Here we have used two supplementary configurations that
reduce the inertia of each propeller to Iy, =25.76 and
9.84x 1073 kgm?. Just for comparison, the momentum of
inertia for a solid rotation of the fluid present in each one
of the half-cells is 15.71x 1073 kgm?. For these values of
Iprop We have not observed any modification on the dynamics.
However, we would like to highlight that these values are
probably too important and we should test smaller inertias to
verify that this parameter has no effect on the dynamics.

The influence of the aspect ratio was evaluated measuring
the equatorial velocity at the center of the cell. Figure 2
presents time series of this velocity over 1500 s for I' = 0.5,
0.8,0.95,1.025,1.075,1.2. The corresponding Reynolds num-
ber reaches 2.9x10°, whereas A is fixed as close to zero
as possible (A < 1073). We observe various behaviors. For
' = 0.5, whereas the mean velocity is null, some reversals
of the velocity are observed with a typical time scale of
some tens of seconds. At I' = 0.8 the velocity is centered
on zero with only turbulent fluctuations. When we increase
the aspect ratio (I' = 0.95,1.2) we observe that the velocity
has a privileged sign and presents some large deviations to the
other sign. The spontaneous reversals observed by de la Torre
and Burguete [11] are also observed at I = 1.025. Finally, for
' = 1.075 such reversals are still observable but the bistability
is less clear and it could be the presages of the behavior for
higher I". To summarize, we have a short I' window where
we can observe long-time reversals. Moreover, whereas the
mean velocity is very close to zero for I' < 0.95, the series of
1500 s of acquisition time for higher aspect ratios never reveal
zero-mean velocity.

To confirm these observations we plot on Fig. 3 the
probability density functions (PDFs) corresponding to the pre-
vious time series. Whereas for I' = 0.5 and I' = 0.8 the
PDFs are symmetric, the ones corresponding to I' = 0.95
and I' = 1.2 are highly asymmetric. The bistability observed
for I' = 1.025 corresponds to the double hump observed on
the corresponding PDF. Finally, whereas a bistability seemed
to remain for I' = 1.075, the corresponding PDF reveals an
asymmetric distribution. The bistability is not pronounced
enough to have a signature on the PDF. The PDFs confirm
the presence of a short window where the bistability can be
observed and of two different behaviours before and after
I' ~0.95. A new question appears now: is there a bifurca-
tion which could explain the transition from symmetric to
asymmetric PDFs when increasing I"?

To answer this question we look at the evolution of the
equatorial velocity at the center of the cell while introducing
a very slight difference of rotation frequency between the
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FIG. 2. Time series of the equatorial velocity at (z=0, y=0.9 R)
for six different aspect ratio. V., represents the velocity of the
propellers at the blades outlet. The orange solid lines represent the
sliding mean value of the velocity signal. Re = 2.9x10° and A = 0.
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FIG. 3. Probability density functions of the normalized velocity
for six different aspect ratios. They correspond to the time series
presented on Fig. 2.

propellers. Figure 4 shows the equatorial velocity averaged
over two minutes versus the asymmetry parameter A for five
different aspect ratio. For I' = 0.8 and I" = 0.9 the evolution
of (veq) is quite smooth. But for I' > 1 we observe a very
quick transition from a negative to a positive value of the
equatorial velocity when A crosses zero. For a difference of
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FIG. 4. Evolution of the averaged equatorial velocity with A.
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FIG. 5. Overlaid contour plots of the mean toroidal velocity veq
and the mean vector plots of the poloidal velocity (v,,v,) between the
propellers blades extremities and y € [0,R] for (a) ' = 0.9 and (b)
I' = 1.075. The color bar is shared by both figures.

rotation frequency of about 0.5% (A = 0.0025) we observe a
dramatic change of the sign of the averaged equatorial velocity.
The system is the place of a bifurcation when increasing I':
it transits from a smooth variation of (veq) with A to a very
sudden change of the equatorial velocity when increasing A.
This explains why the PDFs of the velocity (Fig. 3) are not
symmetric forI' = 0.95 and I' = 1.2: the velocity imposed by
the motors cannot be chosen with a sufficient precision to have
exactly A = 0. Consequently for I' > 0.95, even if A is very
close to zero, the shear layer is not in the middle of the cell. A
new question appears: why do we observe such a bifurcation?
A similar observation was made in a von Karman swirling
flow: the normalized and space-averaged angular momentum
reveals the same behavior with A by increasing the Reynolds
number (from 150 to 8x10°) [19].

We first investigate the structure of the mean flow. A good
way consists in measuring the poloidal-toroidal ratio. We
define it as PT = Vjo1/ Vior, Where Vpq and Vi, have been
defined at Eq. (1). To estimate this ratio we perform a 2D
mapping of the axial and equatorial velocities in the plane
defined in the setup presentation (the axisymmetry of the
flow allows to this reduction of the measurement domain).
We measure these two velocities over a mesh of about 2 cm
that covers the free space available between the propellers, the
cylinder wall, and the center axis of the cell. This does not
correspond to the whole volume because we cannot measure
between the blades. The signals are averaged over 2 min. Using
the incompressibility of the flow we are able to obtain the third
velocity component then to compute PT . Figure 5 shows two
examples of the mean poloidal and toroidal velocity fields.

Figure 6 shows the poloidal-toroidal ratio for different
aspect ratios. For I" smaller than 0.8 the determination of
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FIG. 6. Poloidal-toroidal ratio in the flow vs the aspect ratio for
A =0andRe =2.9x10°.

m and Vi, is not accurate for optical reasons (only a small
part of the whole volume could be accessed) so we look at
only the larger aspect ratios. We observe that, for I' < 0.95,
PT remains higher than 0.8, whereas for larger aspect ratios
it reaches a plateau close to 0.75. Because of the coarse mesh
(i.e., poor spatial resolution) it is impossible to provide an error
bar for these points, but we consider that the deviation between
the zone with I" < 0.95 and the plateau is large enough (around
20%) to consider these two I' regions to have a significantly
different PT value. This assumption is also supported by the
qualitative difference between the velocity fields presented
in Fig. 5. This is consistent with the bifurcation observed
in the evolution of the shear layer position with A. The
mean flow structure could be at the origin of the bifurcation.
However, it cannot explain the appearance of the spontaneous
long-time reversals: the poloidal-toroidal ratio is similar for
I' = 1 (reversals) and I' = 1.2 (no reversal). We would like to
signal that despite this behavior, the mean flow is qualitatively
similar to the one presented in Fig. 2 in Ref. [11]. A careful
analysis shows only a small deviation of the stagnation point
for the poloidal component, and the maxima of the toroidal
part, as well as the intensity of the poloidal part.

These results suggest that the dynamics described above
should be dependent on the propellers, as the shape of
the blades controls the poloidal to toroidal ratio and their
efficiency as kinetic energy injectors. We have performed some
preliminary runs with two other kind of propellers: with eight
similar curved blades and ten straight blades. We have verified
that some of the characteristics presented here are still present,
but for different values of the aspect ratio I'.

IV. LANGEVIN-BASED MODEL

To improve the interpretation of these two phenomena
(bifurcation and reversals) we propose a model for the shear
layer position based on a Langevin equation. It is a very similar
model to the one proposed in a different context by Machicoane
et al. [20]. We consider an unidimensional system where
the shear layer can move along the z direction and where a
dimensionless potential V can be defined in the cell. The walls
of the potential well represent the confinement induced by the
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FIG. 7. Scheme of (a) the fluctuations spatial distributions for
different o and of (b) the potential shape for different n and A = 0.
The z coordinate and V (z) are normalized here.

propellers in the axial direction. The shear layer can move
in this potential driven by random turbulent fluctuations. Its
dynamics can be written as

dzg dv

=—— Bos(zg)n(t), 2
T i .. + Bos(za)n (1) 2)

where zg is the shear layer position and z is the axis coordinate
[see Fig. 1(a)]. The last term represents the turbulent fluctua-
tions where By is the fluctuations intensity, 7(¢) a colored noise,
and s(z) a spatial distribution of the turbulent fluctuations. We
consider only the inertial turbulent scales range to influence
the long-time dynamics of the shear layer. The colored noise
n(t) is modeled as an Ornstein-Uhlenbeck process:

le—n . + ES(I), 3)
t T, T

where 7, is a correlation time and & (¢) is a Gaussian noise such
as (E(DEW)) =8t —1').

We have seen that the bifurcation of the evolution of the
shear layer position with A seems to be linked to the mean flow
structure (Fig. 6), but the spontaneous reversals between the
two bifurcated symmetrical solutions have a different origin.
Both features are included in this model.

We propose to use a wide potential without energy barrier as
there is no physical justification of such a potential barrier. This
potential mimics the confinement imposed by the propellers
that forces the shear layer to remain in the central part of
the cell (it corresponds to the second potential shape used by
Machicoane et al. [20]). We have V(z) = |z|"/n — Az, where
n > 2 can be turned continuously and A is used to break
the symmetry along the z axis (similar to the experimental
parameter A). Figure 7(a) shows the potential shape changes
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FIG. 8. Evolution of the shear layer position with X for different
n and o = 0.1. The normalization is made using the maximal z in the
explored range of A.

when we increase n. When the distance between the propellers
increases, it is consistent to observe a flatter and flatter central
region, stiffer and stiffer walls in the potential V, so to increase
n is similar to rise I'.

On the other side, a naive view of the setup will suggest
that the shear stress in the cell would be proportional to the
velocity of the propellers’ rim and inversely proportional to
the distance between them: Viop/H ~ foropD/H ~ fprop/ T
This would be correct if the shear were uniformly distributed
along the z axis. Nevertheless, the averaged velocity fields
obtained in this configuration show that there is a layer (the
shear layer) where this stress is mostly concentrated in a
narrow region in the collision region of both recirculation
cells. The turbulent fluctuations are more important in the
shear layer than in the other zones of the flow. Consequently,
we propose a Gaussian spatial distribution of the turbulent
fluctuations centered on z = 0: s(z) = exp(—z>/202), where
o is the typical spatial extension of the turbulent fluctuations.
Figure 7(b) shows the shape of the turbulent fluctuations
Gaussian distribution. When o decreases the spatial extension
of the fluctuations decreases too. The shear layer thickness
is assumed to be constant because it is determined by the
contrarotating flow cells velocity which does not depend on
the aspect ratio. Consequently the relative size of the shear
layer decreases when the distance between the propellers (and
so I') is increased. In our model, to decrease o corresponds to
increase the aspect ratio.

We perform simulations of the shear layer position using
this model. We fix By and 7, to 1. These parameters do
not qualitatively change the following results. We present on
Fig. 8 the evolution of the shear layer position with A for
two different n and o = 0.1. For n = 2 the evolution of the
shear layer is smooth with A, whereas for n = 6 (so for a
larger aspect ratio) the transition is very sharp. This is very
similar to the experimental behavior and consistent with the
assertion that this bifurcation is directly linked to the mean flow
structure.
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By watching the PDFs of the shear layer position for A
close to zero we are able to determine if the flow is bistable
or not. We compute a phase diagram (o,n) to understand the
behavior of our system when changing I". We observe that for
n up to about 2.5 the behavior of the shear layer position is
smooth with A. The bifurcation to a sharp evolution appears
close ton = 2.5. The zone where spontaneous reversals occur
corresponds to high o where the spatial extension of the
turbulent fluctuations is large relatively to the propellers span
H. We propose two trajectories in the phase diagram which
could be compared to what we observe in the experiment when
we increase the aspect ratio. We can summarize the system
history when we increase I using the phase diagram: (i) the
shear layer position is quite linear with A; the bistability could
be the one with short residence times observed for I' = 0.5;
(ii) the flow becomes bistable with a symmetry breaking when
A is slightly changed; (iii) the bistability disappears but the
sharp evolution of the shear layer position with A persists.
This scenario is in quite good agreement with the experimental
observations. Nevertheless, two aspects seem to differ from our
model: for I' = 0.8 we do not observe bistability, and we have
a symmetry breaking without clear reversals for I' = 0.95.
However, a whole description of the experimental results is
out of the scope of this model. Our objective was to identify
the mechanisms responsible for the two main features: the
bifurcation of the shear layer position and the spontaneous
jumps between the solutions.

V. DISCUSSION AND CONCLUSION

This is a systematic study about the influence of the aspect
ratio on a von Kirmén swirling flow. Although symmetry
breaking with long-time reversals restoring the symmetry has
been observed in this cell for I' = 1 [11], we have shown that
this phenomenon is highly dependent on the aspect ratio. For
small aspect ratios (I" < 0.95) the shear layer position reveals
a smooth evolution with A. Then a bifurcation appears and
this evolution becomes very sharp. This bifurcation seems
to be linked to a change of the mean flow structure as
the measurement of the poloidal-toroidal ratio has shown.
Simultaneously we have observed spontaneous long-time
reversals in a narrow window around I" = 1. Moreover, some
short-time reversals have been revealed for I" around 0.5.

To understand such phenomena we have proposed a model
based on a Langevin equation inspired by a previous study [20].
The shear layer has been considered to move in a potential
(without energy barrier, which seems to be a more physical
situation) where the stiffness of the walls varies with the aspect
ratio. The turbulent fluctuations have been modeled with a
colored noise modulated by a Gaussian spatial distribution. We
have succeeded in qualitatively reproducing the experimental
observations. This provides a physical interpretation of the
phenomena highlighted in this paper. When the distance
between the propellers rises, the potential where the shear
layer moves has a larger and larger flat zone. This allows the
symmetry breaking and the stabilization of the shear layer at
a position different from the center of the cell. Moreover, we
have proposed the assumption that the shear layer thickness
(and so on the typical absolute spatial extension of the turbulent
fluctuations) does not depend on the distance between the
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FIG. 9. Phase diagram of the shear layer behavior based on the
Langevin equation with colored noise equation for By =1and 7, = 1.
The black arrows are possible trajectories in the phase diagram when
I' is increased.

propellers but only on the two fluid cells rotation velocity.
Consequently, when the aspect ratio is increased the relative
spatial extension of the turbulent fluctuations decreases. A
large relative spatial extension of the turbulent fluctuations
could facilitate the passage of the shear layer from a side of
the cell center to the other.

Nevertheless, some disparities between the experimental
observations and the Langevin-based model have appeared.
Beyond the lack of resolution of the phase diagram (Fig. 9),
there probably exists a coupling between the mean flow
structure and the turbulent fluctuations spatial extension. We
have seen that the poloidal-toroidal ratio is not monotonic for
I' < 0.9 (Fig. 6). The consequence could be that the shear
layer absolute thickness is not exactly constant and so that
the evolution of o is not monotonic with I'. It could explain
why we do not observe bistability around I' = 0.8. Finally,
the coupling between the potential shape and the turbulent
fluctuations could be an explanation of the difference between
the reversals observed around I' = 0.5 (typical time of some
tens of seconds) and the one around I" = 1 (typical time of
one thousand seconds). We did not take into account such
a coupling in our model to avoid an increase of the model
complexity without significant improvements of the results
accuracy.

A consequence of this work is that the dynamics observed
in the previous paper by de la Torre et al. [11] can be
reproduced without the introduction of any potential barrier
that separates both symmetry breaking states. In that paper
there was no explanation for the origin of the proposed barrier,
and using the model of this study, whose characteristics are
closely related to the experimental properties, its necessity
disappears. This model should recover the behavior of a
large set of problems where turbulent flows are restricted to
confined geometries. One example can be the destabilization of
a turbulent wake behind an axisymmetric obstacle that breaks
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some symmetries of the problem [21], and whose dynamics
was described using a model close to the one presented
in Ref. [11].
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