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Silo discharge of binary granular mixtures
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We present numerical and experimental results on the mass flow rate during the discharge of three-dimensional
silos filled with a bidisperse mixture of grains of different sizes. We analyzed the influence of the ratio between
coarse and fine particles on the profile of volume fraction and velocity across the orifice. By using numerical
simulations, we have shown that the velocity profile has the same shape as that in the monodisperse case and is
insensitive to the composition of the mixture. On the contrary, the volume fraction profile is strongly affected
by the composition of the mixture. Assuming that an effective particle size can be introduced to characterize the
mixture, we have shown that previous expression for the mass flow rate of monodisperse particles can be used
for binary mixtures. A comparison with Beverloo’s correlation is also presented.
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I. INTRODUCTION

The flow of particles through orifices is ubiquitous in
industrial processes in which most of the raw or processed
materials are stored and delivered in granular form. Despite
this fact, there exists no systematic study that links the mass
flow rate during silo discharge with the bulk properties of the
material delivered, such as the shape of the grains and particle
size distribution, or with the silo configuration such as the exit
geometry. The most frequently used correlation that links the
mass discharged from a silo with the size of its outlet was
introduced early in the eighteenth century by Hagen [1,2] and
rediscovered during the 1960s by Beverloo et al. [3]. The mass
flow rate can be written as

W = CρB

√
g[D − kd]5/2, (1)

where ρB is the bulk density, g is the gravitational acceleration,
D is the diameter of the outlet, and d is the diameter of
the particle of a monosized granular sample. Values C and
k are free parameters introduced ad hoc to fit the experimental
observations in the range of studied outlet sizes. More than
forty years later, Mancok et al. [4] provided an expression
for the mass flow rate, where the parameter k was excluded
and the constant C was replaced by an alternative fitting
parameter. Indeed, Mancok et al. argued that it is not necessary
to introduce k if the dilatancy of the material near the exit
is considered. Moreover, these authors fitted an exponential
function to the volume fraction at the outlet. However,
Mancok’s expression—similarly to the Beverloo correlation—
was based on an empirical fitting of the experimental results
justified only by dimensional arguments. Very recently, the
mass flow rate was linked to the microscopic interactions
between particles. Janda et al. [5] showed that the flow rate
of a two-dimensional (2D) silo could be calculated from the
particle velocities and volume fraction profiles just at the exit.
Both profiles were self-similar and were determined only by
the size of the orifice, D = 2R. Then, the mass flow rate for a
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2D silo can be expressed as

W = C
√

gφ∞[1 − α1e
−R/α2 ]R3/2. (2)

In this expression, the constant C is not a free parameter, but
a function of the volume fraction and velocity profiles at the
outlet and φ∞ is the asymptotic volume fraction at the orifice
center in the limit of large apertures. Thus, by analyzing the
volume fraction φ of the material only at the exit, these authors
provided an experimental evidence of the functional form φ(x)
introduced in [5]. Moreover, although α1 and α2 in Eq. (2) are
in fact fitting parameters, both are linked to the dilatancy of
the material near the outlet.

More recently, a 3D silo was studied using numerical sim-
ulations to analyze the micromechanical origin of the scaling
function introduced in Ref. [5] for the downward velocity
profile. Rubio-Largo et al. [6] showed that the functional
form of the vertical velocity at the outlet is controlled by the
kinetic part of a coarse-grained stress tensor, which is indeed
controlled by the outlet radius. More importantly, these authors
have shown that the vertical velocity profile of the grains at the
outlet is nearly insensitive to the diameter of the discharged
particle.

The flow of granular mixtures was explored earlier by
Artega and Tüzün [7] and Humby et al. [8]. In both studies,
the authors analyzed the flow rate of a mixture of spherical
particles with two different radii and fitted the results with
a modified Beverloo correlation. Recently, a similar approach
was used by Benyamine et al. [9] to study the flow of bidisperse
mixtures, but in this case using the mass flow expression Eq. (2)
introduced by Janda et al. One of the key findings in the
work by Benyamine is that the exit velocity of the particles
is effectively impacted by the ratio between the particle sizes,
and that a typical mixture diameter cannot be simply defined
to fit the experimental observations. More recently, Zhou et al.
[10] provided numerical evidence that the velocity and density
profiles of a binary granular mixture at the outlet of a 2D silo
have the same functional dependence as the one introduced
for the monodisperse case [5]. However, they stated that “the
mixture velocity is approximately proportional to the fine mass
fractions.” Hence, these authors proposed an expression for the
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FIG. 1. (a) Photograph of the experimental setup. The inter-
changeable disks are used to modify the aperture size. (b) Outline
of the experimental exit apertures scaled with the particle sizes,
rc = 0.15 cm (in red) and rf = 0.10 cm (in blue). The arrows denote
the smallest (R = 0.65 cm) and largest (R = 1.95 cm) studied outlet
radius. (c) Snapshot of the simulated case B, in which the particle
size ratio was increased to rc/rf = 2.5.

flow of bidisperse mixtures that includes an alternative fitting
constant and a linear combination of two extra functions that
depend on the size ratio of the particles with respect to the
outlet and on the fine mass ratio.

In this work, we show that a typical mixture particle
size can be defined, which agrees with the experimental
observations, contrary to the arguments of the work by
Benyamine. Furthermore, we show that the scaling approach
introduced by Janda et al. and Rubio-Largo et al. [5,6] can
be generalized to the bidisperse case. By the introduction of
an effective particle radii the proper scale can be obtained for
collapsing all the observational results on a master curve. We
show that the downward exit velocity at the outlet is nearly
insensitive to the ratio between the mass of fine particles and
the total mass, χf . Consequently, the differences observed in
W for different χf are mainly controlled by the volume fraction
at the exit. Thereby, the mass flow rate can be calculated as in
the monodisperse case if an effective particle radius is used to
describe the granular mixture.

II. EXPERIMENTAL AND NUMERICAL PROTOCOLS

A. Experimental setup

All the experiments were done using spherical particles,
which pass through an orifice centered in the base of a tall
cylindrical silo of a radius of RS = 7.50 ± 0.05 cm. Glass
beads (density: ρ = 2.40 ± 0.05 g/cm3) with a radius of rf =
0.10 ± 0.05 cm were used as fine particles and rc = 0.15 ±
0.05 cm as coarse. The base of the container was exchangeable
to carry out experiments with different orifice radii, in the range
of 0.65 cm < R < 1.95 cm [see Fig. 1(a)]. A more detailed

description of the experimental setup can be found in Mankoc
et al. [4].

Grains are mixed at different fine mass ratios, χf =
mf /(mf + mc) where mf , mc are the total mass of the
fine and coarse grains, respectively. The beads of each
size were poured into the two 1-liter test tubes, the surfaces
were leveled with a blade, and the corresponding masses were
determined. As we looked for samples where the volume
fraction is the same for both monodisperse cases, samples with
different masses were rejected, and pouring of both samples
was repeated. Afterward, the grains were mixed either before
the container was filled, or while the material was fed into
the silo. No significant differences in the results have been
observed between the two alternative protocols.

In order to determine the discharge rate, two complemen-
tary methods were implemented. On the one hand, the mass
discharged as a function of time was determined by using
a high-capacity, high-resolution electronic balance. On the
other hand, the surface downward vertical velocity vS of
the granular column was determined by using an ultrasonic
distance meter placed above the silo. During the first half of
the discharge duration, the top (free) surface remained almost
flat without any signal of a central depression, which indicates
the development of a funnel flow regime. Importantly, even
in the case where clogging events were observed when small
orifices were used, vS can be measured with good accuracy if
the material remains flowing at least for a few seconds.

B. Simulations

To understand the mechanisms behind the observed differ-
ences in the mass flow rates when χf is varied, a numerical
simulation of the discharge process was carried out, using a
discrete element method implemented in YADE [11,12]. Then,
the velocity and volume fraction profiles at the outlet were
carefully determined. Two different cases were considered:
case A, which replicated the experimental conditions, and
case B, where the density (ρ = 10 g/cm3) of the beads and
their sizes (rf = 0.5 cm, rc = 1.25 cm) were increased. Note
that in case B rc/rf = 2.5. These values were selected to
enhance any effect that ρ and rc/rf could have on the
flow properties. Hence, the new size ratio was chosen as
a compromise between the aim of enhancing the influence
of rc/rf and the requirement to avoid segregation during
the discharge. Consequently, simulated fine mass ratios of
particles for case B were χf = 0.00, 0.02, 0.06, 0.16, and
1.00, which correspond to a partial fraction in number of fine
particles, Nf /(Nf + Nc), of 0, 0.25, 0.50, 0.75, and 1.00,
respectively. It is worth noting that for the pure coarse case, the
number of particles was Nc = 2 × 104, while for the pure fine
case the number grew to Nf = 1.2 × 105, which represents a
notably higher computational cost.

A linear spring–dashpot model was used as the contact
force model, with the normal and tangential contact forces
expressed as Fn = knξ − γnξ̇ and Ft = min(μFn,ktζ − γtvt),
respectively. The quantity ξ is the particle-particle overlap, ζ

is the total shear displacement of the contact, and vt is the rel-
ative tangential velocity. Furthermore, kn = 2000 Nm−1, kt =
2kn/7, γn = 0.03 Nsm−1, γt = 0.02 Nsm−1 and μ = 0.55.
The silo was filled to a height of at least four times the
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FIG. 2. (a) Experimental mass flow rate W vs the outlet radius
R for different fine mass ratios χf . The lines are a guide to the eye.
Inset: Values obtained from the numerical simulations (case A). The
systematic difference between experimental and numerical results is
due to the dependence of the bulk density with the filling protocol. (b)
Downward free surface velocity as a function of R. In both panels,
the standard deviations of the data are smaller than the symbol sizes.

diameter of the silo. Finally, both mixtures flow through a
circular orifice of R = 1.5 cm and R = 7.5 cm for cases A
and B, respectively.

III. EXPERIMENTAL AND NUMERICAL RESULTS

A. Experimental results

The mass flow through various orifices was measured for
different χf . As can be seen in Fig. 2, the larger the fraction
of fine particles, the larger the mass flow rate. Indeed, the
mass of purely fine particles discharged in 1 s (χf = 1), was
20% larger than that of the corresponding χf = 0, for the
biggest explored outlet (R = 1.95 cm). Moreover, the same
effect is apparent from the free surface downward velocity,
vS , Fig. 2(b). Figure 3(a) shows that W is linearly correlated
with vS for all the mixtures studied. Therefore, this correlation
makes it possible to calculate an average bulk volume fraction
for each fine mass ratio. As the bulk volume fraction φB

can be computed for each experimental realization from the
simultaneous measures of vS and W , tens of discharges were
measured for each orifice. Then well-defined averages for
the bulk volume fraction were obtained for each value of R.

FIG. 3. (a) Experimental mass flow rate against the vertical
downward speed of the top free surface. The slopes of different linear
fits provide an estimation of the average bulk volume fraction of
each mixture [displayed as gray circles in Fig. 3(b)]. (b) Box plot of
the experimental bulk volume fraction obtained from all the studied
outlet orifices for different values of χf . The crosses are the mean
values obtained for the different outlet orifices. The up-down boxes
correspond to the percentiles 25th and 75th, respectively and the
whiskers shows the 10% and 90% limits of the volume fraction
distribution. The stars indicate the bulk volume fraction of the
simulated case B.

These results are summarized using the box plots displayed
in Fig. 3(b). In this panel, the bulk density obtained from the
linear fit shown in Fig. 3(a) is also included and displayed
by gray circles. All these observations confirm that when
the coarse-to-fine size ratio is small (rc/rf = 1.5), results
of the bulk volume fraction only slightly affected. However,
this almost negligible change in φB with χf has a notable
influence on W . To emphasize this observation, we introduce
the simulations of case B. In this case, the coarse-to-fine size
ratio increases to rc/rf = 2.5 and the bulk volume fraction
changes in a notably larger range [see the star symbols in
Fig. 3(b)]. This tendency agrees with the results discussed in
Refs. [13] and [14]. Hence, if the coarse-to-fine size ratio has
an influence on the flowing properties, it should be apparent
from the comparison between cases A and B (see Sec. III B).

Before discussing the microscopic nature of our results, let
us analyze the suitability of Beverloo’s correlation to predict
the mass flow rate of a binary mixture. In Refs. [7,8], the
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FIG. 4. Dimensionless mass flow rate against the dimensionless
outlet size. All experimental data collapse on a single straight line
assuming that there exists an effective particle size de describing
each mixture [see Eq. (4)]. The line corresponds to the fitting the
dimensionless Beverloo’s expression [Eq. (3)] with the values shown
in the legend.

authors chose to fix C to the value introduced by Nedderman
[15] and therefore study the influence of χf on the fitted value
of k. The physical arguments provided to support this criterion
are not detailed here. In this case, we fit our results without
introducing any restriction to the fitting parameters. Hence, let
us write Eq. (1) as

W = CρB

√
gd5/2

(
D

d
− k

)5/2

. (3)

The right-hand side of Eq. (3) depends on D/d. Thus, to
compare the different particles ratios explored, an effective
size of the material must be defined. Following the arguments
presented by Arteaga et al. [7] and Humby et al. [8] we used
the arithmetic mean size of the beads [16],

de = 2re = 2(χf rf + (1 − χf )rc), (4)

as the effective diameter to characterize the different granular
mixtures. Figure 4 shows the scaled dimensionless mass flow
rate as a function of the dimensionless outlet size D/de for
all the grain mixtures. Clearly, the introduction of de allows
the experimental results to collapse on a straight line that can
be fitted using Eq. (3). Despite the good agreement between
the experimental data and Beverloo’s expression, there are
no mechanical arguments to justify the use of a reduced exit
radius [ D

de
− k] in the mass flow rate expression. Moreover, the

experimental and numerical evidence suggest that the empty
annulus region, used to justify the introduction of k, cannot
be properly defined [5,6]. In Sec. III C, we use the approach
presented in [5] and [6] to avoid the use of the constant k.

B. Numerical results

Velocity and density profiles for different fine mass ratio
have been studied using numerical simulations. The vertical
velocity v(r) was calculated at the exit as a function of the

FIG. 5. (a) Profile of the vertical velocity corresponding to the
coarse (left panel) and the fine (right panel) particles for case A
and χf = 0.50. Both profiles are indistinguishable. The solid line
corresponds to v(r) = √

2gR [1 − (r/R)2]1/2. (b) Velocity profiles
corresponding to all χf studied were scaled with

√
2gR. The radial

coordinate was normalized by the corresponding outlet radius (left
panel: case A, R = 1.5 cm; right panel: case B, R = 7.5 cm). Apart
from some minor differences, the exit velocities are marginally
affected by the mass or size ratio.

radial coordinate for all particles passing through the orifice.
The profiles of the coarse and the fine particles mixed at
χf = 0.50 are shown in Fig. 5(a) (right and left panels,
respectively) for case A. Clearly, both profiles are nearly
equivalent. The figure shows that the scaling predicted for
monodisperse beads [5], v(r) = √

2gR [1 − (r/R)2]1/2, is also
valid for each species contained in the mixture [see the
continuous line shown in Fig. 5(a)]. Hence, in the following,
we use the velocity profile without distinguishing the species.

In order to compare the results corresponding to both
simulated conditions (cases A and B), all the velocities were
normalized with

√
2gR (using the corresponding exit radii R).

All the profiles are similar to one another, independently of
the fine mass ratio. Indeed, all the studied χf gives velocities
differing by less than 1% from each other, except for χf = 0
in case B, which is 7% larger. Consequently, the differences
observed in the flow rate (see Fig. 3) cannot be justified by the
change in the exit velocities when χf was varied.

Figure 6(b) shows that the volume fraction profile at the
orifice is very sensitive to χf . To check if this dependence
could be related to any segregation, we plot the number of fine
grains normalized by the total number of particles passing
through the concentric circular sections of the orifice [see
Fig. 6(a)]. We found that the probability of finding beads of
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FIG. 6. (a) Normalized number of fine particles passing through
a flat annulus of radius r and thickness 	r = rf against r in the
simulation (case A). The probability of observing fine particles is
almost independent of the radial position and equal to the bulk value
(see horizontal lines). (b) Volume fraction of both simulated situations
(cases A and B) can be fitted with the same function introduced for the
monodisperse limit [5]: φ(r) = φc[1 − (r/R)2]1/4 (shown for the two
monodisperse limits by dashed lines). The error bars, corresponding
to the standard deviation of the data are similar in all of the cases but
they are displayed only for one series of data.

each size in any of these regions is nearly the same as that in
the bulk. This fact suggests that the apparent density of the
material passing through the outlet could be obtained from the
mass weighted arithmetic mean of the mixed particles, as it
was done for de.

Considering that φ(r) is compatible with the functional
form proposed for the monodisperse case [5], it can be assumed
that the radial dependence of the volume fraction can be written
as φ(r) = φc(R) [1 − (r/R)2]1/ν . In this expression, φc(R)
corresponds to the volume fraction at the center of the orifice
of radius R. The different results presented in Fig. 6(b) show
that although the shape of the profile is almost not affected by
χf , the value of φc depends on χf .

C. Mass flow rate estimation

As it was shown in the previous section, the velocity
and density profiles at the outlet, v(r) and φ(r), can be
fitted assuming the same functional dependency, regardless
of whether it is a monodisperse material or a granular mixture.
Therefore, as in the monodisperse case [5], it is possible to
write the expression for the mass flow rate for a given exit

radius as

W (R) =
∫∫
So

ρφc(R) vc(R) [1 − (r/R)2](2+ν)/2ν dSo, (5)

where So is the outlet surface, ρ is the density of the material,
and vc(R) is the vertical velocity at the center of the exit.
Exponents 1/2 and 1/ν specify the shape of the velocity and
density profiles at the orifice. As v(r) is independent of χf ,
the velocity at the center of the orifice can be written as
vc = √

2gγR, where γ is a correction factor to the vertical
acceleration of the particle. This correction has been tested
very recently even for a flowing polydisperse system [17].
Then, Eq. (5) can be analytically integrated to obtain

W (R) = ρ π
√

g �φc(R) R5/2, (6)

where � =
√

2 γ

( 2+ν
2ν

+1)
is a dimensionless factor that accounts for

the influence of the profiles shape (through the factors 2 and ν)
and the vertical acceleration (through the factor γ ) on the
flow expression. Furthermore, φc(R) is a priori an unknown
function but its functional dependence can be determined only
by plotting �φc(R) = W (R)R2/5

ρπ
√

g
against R as shown in Fig. 7(a).

Clearly, an exponential saturation can fit any of the data sets.
More importantly, the value of �φc is almost independent of
χf for R → ∞.

Figure 7(b) shows all the experimental results introduced as
a function of the reduced orifice radius R′ = R/re [re = de/2;
see Eq. (4)]. All the scaled data collapse on a single curve.
Therefore, the fit of the collapsed data [Fig. 7(b)] suggests that
an effective scale α could be used to characterize the shape of
the packing fraction profile at the outlet:

�φc(R′) = φ∞[1 − e−R′/α]. (7)

Here, φ∞ is the asymptotic value of �φc when the size of the
outlet tends to infinity, and α is the typical scale over which
the exit orifice has a significant influence. The value of α is
around ten times the effective size [see the inset of Fig. 7(b)]
of the granular material re.

Equation (6) can be rewritten for any granular media defined
by an effective radius of re in a more compact form as

W (R/re) = C ′ [1 − e−(R/re)/α]

[
R

re

]5/2

, (8)

where C ′ = ρ π
√

g φ∞ r
5/2
e is the scale imposed by the radial

dependence of the velocity and volume fraction profiles and
the effective particle size.

Figure 8 shows that all results (numerical and experimental)
are in good agreement with Eq. (8) independently of χf .
The continuous line represents Eq. (8) using the value of C ′
calculated from the fitting parameters φ∞ = 0.638 and α =
8.524 and the effective radius re corresponding to each fine
mass ratio χf studied. The dashed line represents Berverloo’s
correlation using the values introduced in Fig. 4 as fitting
parameters. The small difference between both fits becomes
more noticeable in the log-log plot of the same data (inset of
Fig. 8).
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FIG. 7. (a) Dimensionless mass flow rate against the outlet radius
R. Each set of data has been fitted using the exponential saturation
indicated on the label. (b) All data can be collapsed in a single curve
when plotted against the normalized radius, R′ = R

re
. The inset shows

the values used to fit the collapsed results.

IV. CONCLUSIONS

We have numerically and experimentally studied the mass
discharge process of a flat-bottom silo filled with a binary
mixture of spherical beads. In order to enhance the possible
effects that the coarse-to-fine size ratio could have on the
discharge dynamics, we performed numerical simulations of
heavier particles with a coarse-to-fine size ratio not accessible
to our experimental setup. The numerical results confirm that
(a) no significant segregation take place during the discharge
and (b) the inertia of the beads and their sizes seem to have no
major influence on the exit velocity of the particles.

Using the mass-weighted arithmetic mean radius as the
effective particle size for the binary mixture, we showed that
the velocity and the volume fraction profiles at the outlet can
be fitted by the scaling relationship, discussed by Janda et al.

FIG. 8. Collapsed data corresponding to the simulated and
experimental mass flow rates. For the sake of convenience, values
of W and R have been normalized by the radius re to compare
all the results. The continuous line corresponds to Eq. (8) with
the parameter C ′ calculated using φ∞ = 0.638 and α = 8.524 and
the corresponding effective radius of re. The dashed line represents
Berverloo’s correlation using the parameters introduced in Fig. 4.
Inset: log-log plot of the same data where the small difference between
both fitting protocols becomes noticeable.

and Rubio-Largo et al. [5,6]. Moreover, we found that while
the velocity profile does not depend on the fine mass ratio, the
volume fraction is affected by χf .

Motivated by these findings, we analyzed the experimental
results considering the approaches by Beverloo and Janda
to predict the silo mass flow rate. Both procedures provide
good predictions (Fig. 8). Nevertheless, Eq. (8) connects
the discharge rate with the dynamics observed at the outlet,
while the approach by Beverloo uses two free parameters to fit
the results. The analysis of the grain dynamics summarized by
Eq. (7) indicates that a pertinent “granular scale” governs the
observed dynamics. This scale is controlled by the microscopic
interaction between particles through the frictional forces and
the restitution coefficient. Hence, the presented results indicate
that, while no segregation occur, the mass flow rate for a
binary mixture of grains could be formally predicted with the
continuous approach introduced for the monodisperse case [5],
if a suitable effective size for the granular mixture is defined.
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