
 

 

 
 
 
 
 
 
 
Facultad de Ciencias Económicas y Empresariales 
 
 
 
 
 

��������	
�����
�������
 
 
 
 
 
 

�����������	
�	�������	����
����	
	

����
�	��	����
�	
���������	����������	
�	����
�	

	
�
�
	��	�����	

�
��������	�����	����������		
	
��
	

	
����	 �	!��" ����	

�������
	
�	��������	#�
�$�����	�	#�%����������	
��������
�
	
�	�������	

	
	



 

 2 

�����������	
�	�������	����
����	
����	 �	!��" ����&	�
�
	�����	��
	����
�	��	����
�	
'
�(���	��%��	�
�)*+),	
-��
���	.)),	
	
	
	
	
	
	
	
	

 �/�� ��	
 
����	%�%��	 ��������	 �������	 ����
����	 
���	��
�	0,.1".))2�	���	������
���	 ���������
�	
����


�
��	 ��	 �

%��
�	 3�	 ��	 ��
4�	 ����	 �������	 ����
����	 ���	 %���������	 ��
	
5������
�����6	�
���������
	4���	�������	 ��������	����&	�����	�7����	��	�8���������	������
�	
���4���	 ���	 ����
����	 ��
	 �������	 �������&	 4���	 ���	 ������	 
�	 ���	 ��
�(�	 �
	 ����	
������
����%	
���%%������	��	���	�
��	����	�
����	��%������
��	���	
�����
	�
�	�
��������	
����
����	�������	

 
 
 
 
 
 
 
 
 
 

����	 �	!��" ����	
��������
�
	
�	�������	
9�%�
�	#�
�
�:�	
���%��	������������
	
;0)*)	���%�
��	

�����<�������	
 
 
 
 
 
 



 

 3 

1. Introduction 

Airline accidents are a paramount issue in the contemporary airline industry, since they 

have a significant impact on the demand for air travel, affecting the finances of the 

airlines. If travelers believe that an air travel incident is a random event, then they will 

pay little attention to it, since it does not reveal any further information on air travel 

safety. However, if they believe that it is not a random event, then air travel is perceived 

as dangerous and passengers switch for a safer airline or choose an alternative traveling 

mode. This issue has been examined among others by Rose (1992),  Borenstein and 

Zimmerman (1988), Bosch et al. (1998) and Liu and Zeng (2007). 

Research in air travel accidents usually focuses on the  impact of the fatal event on 

the equity value of the air travel, Chance and Ferris (1987), Borenstein and Zimmerman 

(1988), Mitchell and Maloney (1989) Nethercutt and Stephen (1997), Bosch et al. (1998).  

Another line of research focuses on the impact of air travel accidents on the demand for 

air travel, Borenstein and Zimmerman (1988), Liu and Zeng (2007). The present research 

contributes to the literature by analyzing the persistence of air travel accident events 

using fractional integration, estimating both univariate and multivariate models that 

account for the order of integration of the individual variables as well as the order of 

integration between variables. 

 The objective of this paper is threefold. Firstly, we examine the special 

characteristics of airline fatal accident events by performing a descriptive analysis of the 

data set. Secondly, we examine the univariate behavior of the series in terms of fractional 

integration to assess whether the series present a persistent pattern over time. Finally, we 

study how airline accidents are related to traffic volume, and use long range dependence 
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techniques (fractional cointegration) to assess empirically this relationship. Policy 

implications are derived for countering airline accident events. 

The paper is organized as follows; in the next section a literature survey is 

presented. Then a theoretical model that supports the empirical evidence is presented. 

Finally, the empirical results are displayed, followed by the discussion and conclusion. 

 

2. Literature Survey 

Previous studies on air travel accidents have focused either on the impact of fatal 

accidents on the equity values of airlines (e.g. Chance and Ferris, 1987; Borenstein and 

Zimmerman, 1988; Mitchell and Maloney, 1989; Nethercutt and Stephen, 1997; Bosch et 

al., 1998) or on the impact of fatal accidents on air travel demand, (Borenstein and 

Zimmerman, 1988, and Liu and Zeng, 2007). The first type of research finds that fatal 

accidents have a significant negative effect on the stock value of the airline involved in 

such accidents, but they also find that fatal accidents have no significant impact on the 

equity values of other airlines. However, Mitchell and Maloney (1989) find that the 

equity value of the airline involved in a fatal accident falls only if the accident is the fault 

of the company. If the financial market is perfect, the stock value should have already 

incorporated the expected responses of the demand. Therefore, their results may suggest 

that fatal accidents have little impact on the total demand for air travel. Moreover, as 

pointed out by Bosch et al. (1998), because the rivals of the crash airline may benefit 

from the fatal accident by attracting more customers from the crash airline and non-rivals 

may be hurt by the crash, the seeming immunity to the stock value of all non-crash 

airlines to fatal accidents does not necessarily imply that fatal accidents do not affect the 

total demand for air travel. Furthermore, examining the effect of plane crashes on 



 

 5 

different airlines, Nethercutt and Pruitt (1997) group the entire airline industry into ‘low 

cost’ airlines and major airlines, while Bosch et al. (1998) categorize non-crash airlines 

into direct and indirect competitors. If the overall demand for air travel falls after a plane 

crash, the market value of all airlines should decline. 

With regard to air travel demand Borenstein and Zimmerman (1988) has 

explicitly examined the impact of fatal incidents on the demand for air travel, finding that 

the demand for the services of crash airlines remained largely unaffected by the fatal 

incidents prior to deregulation, e.g. that fatal incidents did have a negative, but not 

statistically significant effect on the demand in the pre-deregulation period. Because their 

sample has information on 13 accidents in the pre-deregulation period, Borenstein and 

Zimmerman (1988, p. 927) warned readers about the danger of inferring a systematic 

demand response for that period. Moreover, Liu and Zeng (2007) analyzing air travel 

demand in accidents context found that the demand for air travel is likely to fall as the 

fatality rate increases. 

This article expands air travel accidents research by examining the relationship 

between the air travel accidents and the airline traffic or volume in the period from 1927 

to 2006 with a fractional integration methodology. None of the above papers investigate 

unit roots in the series. We find that there is a negative association between the two 

variables. Thus, while the airline traffic has substantially increased across the years, the 

number of accidents has been decreasing, which might be explained by technological 

change, with an increase in security measures, airlines investments in the quality and 

maintenance of their air fleets across the years. We also find that the airline traffic and 

the number of accidents are fractionally cointegrated, implying a stable equilibrium 
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relationship between them. However, this relationship is highly persistent, with the effect 

of the shocks taking a very long time to disappear completely. 

 

3. The Model 

The following stylized model is used to show that optimal choices of a profit maximizing 

representative airline allows us to relate airline accidents with the volume of airline 

traffic. The model illuminates under what conditions airline accidents are negatively 

related to the volume of airline traffic.  

Let us assume that the number of airline accidents of the representative airline 

company, A, is a decreasing function of maintenance, u, and the average quality, x, of 

airline fleet: 

cxuxuA −Ω=),( .                    (1)  

Note that 0),( ≥xuA , implying that cxu≥Ω . According to equation (1), when there 

is no maintenance, u = 0, and/or the airline fleet is old and/or run down so as that x = 0, 

then, Ω=A  where ��is the maximum number of expected airline accidents.  

The representative airline’s total revenue at time t is proportional to the quality of its 

fleet x, and decreasing in the industry-wide traffic volume, V.  Thus the total revenue 

takes the form R(V)x, where R’(V) <0. The airline faces maintenance costs1, plus 

quadratic installation costs, as well as costs associated with any type of accidents 

[including insurance costs, reputation loss, etc]. The representative airline controls fleet 

maintenance, u, aiming at maximizing the present value of its profits: 

dtexuAuupx rt

u
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subject to the evolution of the quality of airline fleet: 
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bxux −=
•

,        (2) 

where r is the interest rate and fleet quality decays at a constant proportionate rate b. One 

can think of airline safety regulations as impacting positively on the parameter b, i.e., 

tougher safety regulation increases b. 

Assuming unitary marginal installation costs, � = 1, and using equation (1), the 

Hamiltonian function for this problem is: 

][][
2

2

bxucxu
u

upxH −+−Ω−−−= λδ . 

The first order conditions are: 

cxucxuH u δλλδ −+=�=++−−�= 1010 ,    (3)         

][ bcuprHr x λδλλλλ −+−=−�−=−
••

 .               (4) 

In order to find the steady state equilibrium of this model set equations (2) and (4) 

equal to zero: 

bxux =�=
•

0 ,                  (5) 

   cupbr δλλ +=+�=
•

)(0 .                (6) 

Using equations (3) and (5) into (6) and solving for u and x, yields the following 

steady state equilibrium for airline fleet quality and maintenance: 

     
)()2(

*
brbrbc

pbr
x

+−+
−+=

δ
,                            (7)                           

    
)()2(

)(
*

brbrbc
pbrb

u
+−+

−+=
δ

.                             (8)               

For positive values of optimal quality and maintenance of the airline fleet, it is necessary 

to impose pbr >+  and bc >δ . Recalling that tougher safety regulation increases the 



 

 8 

parameter b, notice that an increase in b yields an increase in the optimal quality and 

maintenance of the airline fleet [ 0
*

;0
* >>

db
du

db
dx

] if rbc <− )(2 δ . 

An important qualitative result of this model concerns the impact of traffic volume 

upon optimal maintenance and quality of the airline fleet. An increase of traffic volume V 

increases optimal maintenance and quality:  

,0
)()2(

)('* >
+−+

−=
brbrbc

VR
dV
dx

δ
 

  .0
)()2(

)('* >
+−+

−=
brbrbc

VR
dV
du

δ
 

  Note that from equation (1), given the optimal values of u* and x*, we have the 

equilibrium number of airline accidents: 

     ***)*,( ucxxuA −Ω= .                    (9) 

It is important to stress that an increase in optimal maintenance or in optimal quality 

leads to a fall in the equilibrium number of airline accidents: 

,0*
*

*)*,( <−= cu
dx

xudA
 

.0*
*

*)*,( <−= cx
du

xudA
 

Notice that equation (9) using equation (5) can be rewritten as: 

    [ ]2**)*,( xcbxuA −Ω= .                    (10) 

As a consequence, the number of airline accidents is negatively related to the volume 

of airline traffic: 

      0
*

*
*)*,(*)*,( <=

dV
dx

dx
xudA

dV
xudA

.                  (11) 



 

 9 

 The rationale for the negative impact of air traffic volume on airline accidents is as 

follows: in an increasingly competitive environment, an airline aiming at increasing the 

number of flights and/or passengers has an incentive to increase fleet maintenance and/or 

fleet quality, which results in lower number of accidents. 

  

4.  Data 

A data set from 1927-2006 used in this paper was obtained from two sources: first, the 

ATA- Air Transport Association of America web site (http://members.airlines.org) that 

compiles from various publications of Civil Aviation Authority and Federal Aviation 

Administration and second, the Airsafe.com web site.  The data is highly reliable from 

1945 to date, but is based in estimations for the period before. 

Borenstein and Zimmerman (1988) used monthly data but almost all other authors 

working in this specific area use annual data. The annual data variables used are, the total 

number of fatal air accidents, aircraft miles (000000), total number of passengers and 

airline revenue (mils).2 The data is presented in Table 1. 

 

INSERT TABLE 1 ABOUT HERE 

 

The average number of total yearly accidents is 43.15 with the minimum 13 accidents 

in 1984 and the maximum 137 accidents in 1929. The average number of passengers is 

533,465, with a minimum of 191 in 1927 and a maximum of 2,128,212 in 2006. These 

two variables relate inversely, with accidents falling and passengers increasing with time. 

Air line miles and air line revenues are directly related to the number of passengers. 
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5. Persistence in Airline Accidents 

The analysis of the persistence in time series has important policy implications since the 

effect of a given shock on a series is different depending on its univariate properties. 

When a series is stationary and mean reverting (e.g., in the context of I(d) models as 

those employed here, when d < 0.5), the effect of a given shock on it will have a 

transitory effect, its effect disappearing fairly rapidly; if the series is nonstationary but 

mean reverting (0.5 �  d < 1) the shock will still be transitory though it will take longer to 

disappear completely, while it will be permanent if the series is nonstationary with d � 1. 

While the classical approach to studying the stationarity of the series only allows for the 

I(1)/I(0) case, in this paper, airline accidents series are allowed to be I(d), where d can be 

any real number. Thus, it encompasses both the stationary I(0) and the nonstationary I(1) 

cases. To simplify matters we define an I(d) process in the following way. We say that a 

covariance stationary process, {ut, t = 0, ±1, …,} is I(0) if the infinite sum of the 

autocovariances is finite. That is, 

,∞<�
∞

−∞=u
uγ  

where �u = E(ut - Eut)(ut+u - Eut). Thus, it includes the standard white noise, stationary 

autoregressions (AR), moving average (MA), etc. Then, a process {xt, t = 0, ±1, …,} is 

said to be I(d) if it requires d-differences to get an I(0) process. That is,  

         ,)1( tt
d uxL =−      (12) 

where ut is I(0). Note that the polynomial on the left-hand-side in (12) can be expressed 

in terms of its Binomial expansion, such that, for all real d, 
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Thus, if d is an integer value, xt will be a function of a finite number of past 

observations, while if d is not an integer, xt depends strongly upon values of the time 

series in the distant past. Moreover, the higher d is, the higher will be the level of 

association between the observations. The estimation of the parameter d for the accidents 

series we analyze here gives us an idea of the persistence of the series, which will be 

related to traffic. We believe that the disaggregated analysis of airline accidents series 

may help policy-makers to know how to counteract these events. 

The fractional integration approach allows us to identify the level of persistence 

of a series in a continuous way and therefore overcomes the restrictive view that 

traditional econometrics identify a series which is either persistent I(1) or non-persistent 

I(0), but is unable to evaluate the middle term of the persistence level. 

 

INSERT FIGURE 1 ABOUT HERE 

 

First we focus on the total number of air accidents, annually, from 1927 to 2006. 

The plot of the series is displayed in Figure 1 and we observe it has been decreasing 

across the years, probably due to the improvements in the aircrafts. Thus, the series could 

be nonstationary I(1). Conducting tests of fractional integration, the evidence points to 

values strictly above 0 and close to 1, thereby showing a large degree of persistence.  

 

INSERT TABLE 2 ABOUT HERE 
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Table 2 displays the estimated values of d for the above series in the following set-up: 

,...,2,1,10 =++= txty tt ββ    (13) 

and (12), i.e.,  

,)1( tt
d uxL =−       

where yt is the observed time series (in our case, the total air accidents), d is a real value 

and ut is an I(0) process. Thus, ut might be a white noise process but also any type of I(0) 

autocorrelated structure. We estimate d in the above model, using a Whittle function in 

the frequency domain, for the three standard cases of no regressors, an intercept, and an 

intercept with a linear trend, assuming that the disturbances ut are both white noise and 

autocorrelated, in the latter case using the exponential model of Bloomfield (1973). This 

model uses a non-parametric approach that produces autocorrelations decaying 

exponential as in the AR case. This method is fairly convenient in the context of 

fractional integration (See, e.g. Gil-Alana, 2004). Along with the estimates we also 

produce the 95% confidence intervals for the values of d.3 

The results in this table strongly support the view that this series is highly 

persistent, with values of d constrained between 0.73 and 0.91. Moreover the unit root 

null hypothesis (d = 1) cannot be rejected in any case at the 5% level. The implications of 

this result is that shocks are long lasting.4  

 

INSERT FIGURE 2 ABOUT HERE 

 

 Next we look at some variables that might be related to the airline traffic. In 

particular, we examine the number of passengers, the airline miles and the airline 
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revenues for the same period of time as in the previous case, i.e., annually, from 1927 to 

2006.5 We note in Figure 2 that the three series display values increasing across time, 

being clearly nonstationary. Tables 3 – 5 displays the estimates of d along with the 95% 

intervals for the three series. 

 

INSERT TABLES 3 – 5 ABOUT HERE 

 

We observe that the estimated values of d are higher than 1 in all cases. Starting 

with the variable “Passengers” (Table 3), the order of integration is about 1.34 if we 

assume white noise disturbances, and it is slightly smaller (1.12) when using the model 

of Bloomfield for the disturbance term. In the latter case, the unit root hypothesis cannot 

be rejected. If we focus on the “Airline miles” series (Table 4), the estimated d is found 

to be around 1.10 in all cases, and the unit root is included along all the confidence 

bands. Finally, for the “Airline revenues” (Table 5), d is found to be strictly above 1 in all 

cases. Thus, we observe a higher degree of dependence in these series compared with the 

“Total air accident” series, however, the fact that the unit root null hypothesis cannot be 

rejected in some cases for these variables suggests that there might exist a cointegrating 

relation between the number of accidents and some of the variables referring to airline 

traffic. 

 

6.  The relationship between airline accidents and airline traffic 

Given the potential fractional nature of the series under study, in what follows we 

examine the relationship between accidents and traffic by using new methodological 

techniques based on fractional cointegration. 
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Engle and Granger (1987) provided the following definition for cointegration. 

Given two real numbers d, b, the components of the vector zt are said to be cointegrated 

of order d, b, and denoted zt ~ CI(d, b) if: 

 (i)  all the components of zt are I(d), 

  (ii)  there exists a vector � �  0, such that wt = �’zt ~ I(d - b), b > 0.  

Here, � and wt are called the cointegrating vector and error respectively. Thus, in a 

bivariate case, if two processes xt and yt are both I(d), and there exists a linear 

combination wt = yt – axt that is I(d – b) with b > 0, the two series are then cointegrated. 

Engle and Granger (1987) offered some intuition behind this crucial concept in modern 

time series econometrics, suggesting the existence of forces in economics which tend to 

keep series not too far apart.6 

Though the original idea of cointegration, as espoused by Engle and Granger 

(1987), allows for fractional orders of integration, all the theoretical and empirical work 

carried out during the 1990s was restricted to the case of integer degrees of differencing, 

in particular, d = b = 1. Thus, the series are individually I(1) but there exists a linear 

combination of them which is I(0). Only in recent years, have fractional values also been 

taken into account. In fact, it is plausible that there exists long-run co-movements 

between nonstationary series which are not precisely I(1). On the other hand, there is 

usually no a priori reason for restricting analysis to just I(0) cointegrating errors, as the 

convergence to equilibrium of any cointegrating relation could be much slower than the 

adjustment implied by, for example, a finite ARMA cointegrating error.7 

 In this paper we follow a very simple strategy for testing fractional cointegration. 

Given the I(1) evidence of the two variables of interest, i.e, the total air accidents and 

airline traffic  (this latter variable measured by any of the three series used in the 
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previous section), we run first the OLS regression of one variable over the other.8 Here, 

in the standard cointegrating setting, with d = b = 1, it has been shown (see, e.g., Phillips 

and Durlauf, 1986) that the OLS estimate of � is n-consistent with non-standard 

asymptotic distribution, in general. In fractional settings, the properties of OLS could be 

very different from those in this standard framework. For example, Robinson (1994b) 

showed the inconsistency of OLS when d < 0.5. When the observables are purely 

nonstationary (i.e., d � 0.5), consistency is retained, but its rate of convergence and 

asymptotic distribution depends crucially on d and b. Thus, in what follows we first run 

the OLS regressions of total air accidents on the variable representing airline traffic. The 

results are displayed in Table 6.9 

 

INSERT TABLE 6 ABOUT HERE 

 

 We observe in this table that the coefficients are all statistically significant and the 

slope coefficient is negative in the three cases, which is consistent with the theoretical 

model described in Section 3. 

Next, we examine the residuals from the cointegrating regressions and estimate 

the order of integration in the residuals from the cointegrating regressions. In other 

words, we employ the same methodology as in Engle and Granger (1987) though applied 

to the fractional case. (See, Gil-Alana, 2003). 

In this context, we can use Robinson’s (1994a) univariate tests. They have a 

standard normal null limit distribution and permits us to test any real value d, including 

thus stationary and nonstationary processes. Then, the non-rejection of the null 

hypothesis that the order of integration of the estimated residuals is equal to that of the 
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original series (in our case, 1) will imply that the series are not cointegrated. On the other 

hand, rejections of the null in favour of alternatives with a smaller degree of integration 

(i.e., d < 1) will give us evidence of fractional cointegration of a certain degree. 

However, it should be pointed out that, though the asymptotic results in Robinson 

(1994a) are still valid, given that the residuals used are not actually observed but 

obtained from minimising the residual variance of the cointegrating regression, in finite 

samples the residual series might be biased towards stationarity. Thus, we would expect 

the null to be rejected more often than suggested by the normal size of Robinson’s 

(1994a) tests.10 Therefore, the empirical size of these tests for cointegration in finite 

samples has to be obtained using a simulation approach. Montecarlo experiments indicate 

that they perform better than standard tests, regardless of whether fractional or AR 

alternatives are considered (see Gil-Alana, 2003; Caporale and Gil-Alana, 2005). 

 

INSERT TABLES 7 – 9 ABOUT HERE 

 

The results report several cases of fractional cointegration. Thus, starting with the 

variable “Passenger”, (in Table 7), if the disturbances are white noise and we do not 

include regressors, the estimated d is about 0.73 and the unit root is rejected in favor of d 

< 1. For the remaining two cases (with an intercept and/or a linear trend) the estimated d 

is also found to be smaller than 1 but the unit root is included in the confidence band. 

However, allowing autocorrelation throughout the model of Bloomfield, d is found to be 

strictly smaller than 1 for the three cases considered. Thus, it is concluded that there 

exists a (nonstationary) fractional cointegration relationship between total air accidents 
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and airline passengers, with shocks affecting the long run equilibrium disappearing in the 

very long run. 

For the variable “Airline miles” (Table 8) the only evidence of fractional 

cointegration is found if we do not include regressors for the two cases of white noise 

and autocorrelated disturbances. However, including an intercept or an intercept with a 

time trend, the unit root null cannot be rejected at the 5% level. 

For the variable “Airline revenues” (Table 9) the results are similar to 

“Passengers”, and fractional cointegration occurs if ut is white noise and we do not 

include regressors, and for the three cases with autocorrelated disturbances. 

The fact that in those cases where we find cointegration d is constrained in the 

interval (0.50, 1) means that the equilibrium relationship is nonstationary though mean 

reverting, with the effect of the shocks disappearing in the very long run. 

 

7.  Discussion  

We have shown  that in spite of the increasing volume of airline traffic in the last eighty 

years the total number of airline accidents has been reduced considerably. Possible 

explanations lie on technological change throughout the improvements in safety and 

greater competition among airline companies. It is important to stress that greater 

competition makes airlines to invest in the quality and maintenance of their fleet.  

Relative to the unit root, we show that there is a high level of persistence in total 

air accidents series, concluding that shocks in this series are persistent and long lasting. 

Moreover, variables assumed to be related to air travel accidents (passengers, airline 

miles and airline revenues) also reveal a high level of persistence, being nonstationary 

I(1). Based on this result, it is hypothesized that the series are cointegrated and this 
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hypothesis cannot be rejected from a fractional viewpoint. Therefore, it is concluded that 

there exists a (nonstationary) fractional cointegration relationship between the total 

airline accidents and the airline passengers, airline miles and airline revenues, with 

shocks affecting the long run equilibrium disappearing in the very long run. Moreover, 

this relation is negative, which might be due to the fact that air travel is becoming safer 

and greater competition in the airline industry. 

What is the policy implication of this result? According to the theoretical model, 

competition among airlines makes them invest in the quality of their fleets, and in their 

maintenance11, increasing safety. So airline competition should be stimulated. In the 

same vein, the model shows that safety regulation of airlines is also important. Therefore, 

toughening and enforcing safety regulation is of paramount importance to make sure 

there will be fewer air accidents. For example, the March 2006 ban of certain air travel 

companies from the European skies is a policy along these lines. The list of air accidents 

displayed in Airsafe.com web page is also a way to pressure air companies into adopting 

safety procedures.  

More research is needed to confirm the present result. In particular, some new 

developed methods for fractional cointegration have been proposed by Hualde and 

Robinson (2006), Chen and Hurvich (2006), Johansen (2006) and others. The 

implementation of some of these methods in our data will be examined in future papers. 

 

8. Conclusion  

This paper has analysed the persistence in airline accidents from 1927 to 2006 using long 

range dependence techniques based on fractional integration and cointegration methods. 

It is shown that there is a high level of persistence in air total accidents series, signifying 
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that shocks in this series are persistent and long lasting. Air travel characteristics (number 

of passengers, airline miles and airline revenues) also reveal a high level of persistence, 

being nonstationary I(1). Based on this result, it is hypothesized that the series are 

cointegrated and this hypothesis cannot be rejected from a fractional viewpoint. 

Therefore, it is concluded that there exists a (nonstationary) fractional cointegration 

relationship between the total airline accidents and the airline passengers, airline miles 

and airline revenues, with shocks affecting the long run equilibrium disappearing in the 

very long run. Moreover, this relation is negative, which might be a consequence of 

greater competition among airlines and technological improvements in safety and 

security in the airline services. Policy implications are derived. 
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Footnotes 

1.. See Thompson (1968) and Brosh et al. (1975) for optimal maintenance models. 

2. Though the analysis was conducted based on nominal revenues, very similar 

conclusions to those reported in the paper were obtained when using this variable in real 

terms. 

3. The estimated values of d and the associated confidence bands were computed 

using Robinson’s (1994a) tests. See, e.g., Gil-Alana and Robinson (1997) for an 

implementation of this procedure. 

4. We also employed Sowell’s (1992) maximum likelihood estimation procedure in 

the time domain for different ARMA-type disturbances and the results were completely 

in line with those reported in the paper. 

5. Additional variables such as the number of departures were also employed 

obtaining identical results as with the variables used in the paper. 

6. In a general multivariate setting, a more general definition of cointegration than the 

one given by Engle and Granger (1987) is possible, allowing for a multivariate process 

with components having different orders of integration. See, e.g., Johansen (1996), 

Flôres and Szafarz (1996), Robinson and Yajima (2002), Robinson and Marinucci 

(2003), etc. 

7. See Gil-Alana and Hualde (2008) for a review of recent developments in fractional 

integration and cointegration. 

8. We also tested the equality of the orders of integration for each pair of variables 

using an adaptation of Robinson and Yajima’s (2002) statistic with log-periodogram 

estimation and different trimming and bandwidth numbers, and evidence of equal orders 
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of integration were obtained in the majority of the cases. The only exception was in case 

of the “ariline revenues” series for some bandwidth numbers. 

9. A problem with this estimate is that it may suffer from second-order bias in finite 

samples. In that respect, other estimates such as the fully-modified proposed by Kim and 

Phillips (2000) or the frequency-domain one proposed by Robinson and Hualde (2003) 

may be preferred. Using the latter one the results were fairly similar to those reported 

here in Table 5. 

10. Note that a similar problem is faced in Engle and Granger’s (1987) methodology 

for the standard case of cointegration. 

11. We can include training of air personnel in security and safety issues as part of the 

airlines maintenance policies. 
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Figure 1: Total air accidents 
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Figure 2: Total number of passengers, airline miles and airline revenues 
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 Table 1: Descriptive data 

 Mean Std. Dev. Minimum value 
(year) 

Maximum value 
(year) 

TAA 43.15 24.186 13   (1984) 137   (1929) 

P 533465 605212.392 191   (1927) 2128212 (2006) 

AM 2410.36 2469.08 6    (1927) 11200 (2006) 

AR 84574.80 121275.30 10    (1927) 452400 (2006) 

The sample runs from 1927 to 2006. TAA = Total Airline Accidents; P = Passengers; AM = Airline 
Miles, and AR =Airline Revenues. 

 
 
 
Table 2: Estimates of d for the Total Airline Accident series (Yt) 

 No regressors An intercept A linear time trend 
White noise 0.91   [0.77,  1.10] 0.76   [0.62,  1.02] 0.73   [0.56,  1.02] 
Bloomfield  (Autoc.) 0.78   [0.51,  1.30] 0.80   [0.49,  1.26] 0.79   [0.50,  1.26] 

In brackets the 95% confidence band of non-rejection values of d. 
 
 
 
Table 3: Estimates of d for the Passenger series  

 No regressors An intercept A linear time trend 
White noise 1.34   [1.22,  1.56] 1.34   [1.22,  1.56] 1.33   [1.21,  1.56] 
Bloomfield  (Autoc.) 1.12   [0.99,  1.31] 1.12   [0.99,  1.31] 1.12   [0.99,  1.31] 

 

 
Table 4: Estimates of d for the Airline Miles series  

 No regressors An intercept A linear time trend 
White noise 1.10   [0.86,  1.96] 1.13   [0.90,  1.96] 1.13   [0.90,  1.96] 
Bloomfield  (Autoc.) 1.10   [0.82,  2.00] 1.10   [0.82,  2.01] 1.09   [0.82,  2.05] 

 
 
 
Table 5: Estimates of d for the Airline Revenues series  

 No regressors An intercept A linear time trend 
White noise 1.45   [1.30,  1.69] 1.45   [1.30,  1.69] 1.45   [1.30,  1.69] 
Bloomfield  (Autoc.) 1.23   [1.06,  1.52] 1.24   [1.07,  1.53] 1.24   [1.07,  1.53] 

 
 
 
 
 
Table 6: Estimates of the OLS coefficients in the cointegrating regressions 
 � (t-values in parenthesis) � (t-values in parenthesis) 

Passengers 52.3741 (16.115) -0.0000173  (-4.292) 
Airline miles 52.7436 (15.274) -0.0039801  (-3.977) 

Airline revenues 49.0254 (15.864) -0.0000694  (-3.323) 
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Table 7: Estimates of d in the cointegrating regression using Passenger  

 No regressors An intercept A linear time trend 
White noise 0.73   [0.59,  0.91] 0.77   [0.58,  1.03] 0.77   [0.58,  1.03] 
Bloomfield  (Autoc.) 0.67   [0.33,  0.98] 0.64   [0.32,  0.96] 0.64   [0.32,  0.96] 

 
 
 
Table 8: Estimates of d in the cointegrating regression using Airline miles  

 No regressors An intercept A linear time trend 
White noise 0.73   [0.60,  0.92] 0.79   [0.60,  1.07] 0.79   [0.59,  1.07] 
Bloomfield  (Autoc.) 0.72   [0.38,  0.99] 0.74   [0.37,  1.04] 0.74   [0.36,  1.03] 

 
 
 
Table 9: Estimates of d in the cointegrating regression using Airline revenues  

 No regressors An intercept A linear time trend 
White noise 0.74   [0.61,  0.93] 0.77   [0.59,  1.04] 0.77   [0.59,  1.04] 
Bloomfield  (Autoc.) 0.68   [0.35,  0.94] 0.69   [0.35,  0.96] 0.69   [0.35,  0.95] 

 
 

 
 
 

 


