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1. Introduction 

Solar magnetic disturbances manifest as dark spots on the surface of the sun which are 

visible from Earth. These disturbances, usually called sunspots have been observed since 

ancient times. It was in the XIXth century when Schwabe (1843) collected them in terms 

of a time series. He collected 17 years of sunspot observations and his results revealed a 

10-year periodicity in the data. In 1848, Rudolf Wolf devised a daily method of 

estimating solar activity by counting the number of individual spots and groups of spots 

on the face of the sun. He chose to compute his sunspot number by adding 10 times the 

number of groups to the total count of individual spots, because neither quantity alone 

completely captured the level of activity.1 Today, the sunspot number is more a 

smoothed number based on the weighted average of measurements made from a network 

of observatories. This ensures that the differences in observations due to location, 

weather, observer and other factors do not affect the sunspot number. 

Determining the sunspot cycle period is important among other things in order to 

compare the period estimate with weather cycles. Thus, cooling and warming of the 

Earth might be due to the changes in the number of observed sunspots (Linström et al., 

1996; Ballester and Oliver, 1999; Olvera, 2007; etc.). From the historical data available 

to Wolf, he estimated a cycle period of above 11.1 years/cycle. This result was also 

confirmed by Schuster (1906) who employed techniques based on the periodogram and 

found an estimate of 11.125 years/cycle. Nowadays, it is widely accepted that the number 

of sunspots fluctuate with apparently regular intervals, period length averaging 10-11 

years (Waldmeier, 1961). Nevertheless, the modelling of the time series of sunspots is 

still an open issue. According to Aguirre et al. (2008), three are two main practical 

                                                           
1 See Morris (1977) for the definition and more information about the Wolf sunspot numbers. 



 

 

difficulties concerning this series: one, the apparent nonstationary nature of the series, 

and two, the complex dynamics underlying the fluctuations in the cycle amplitude. In this 

paper we present a new time series approach that deals with the two above-mentioned 

issues by using fractionally integrated models in the context of cyclical structures. 

 The outline of the article is as follows: Section 2 presents the methodology 

employed in the paper that is based on long memory processes. Section 3 describes the 

data and reports the empirical results, while Section 4 contains some concluding 

comments. 

 

2. Methodology 

From a time series viewpoint, a process is said to be covariance or second order 

stationary if the mean and the variance do not depend on time and the covariance 

between any two observations depends on the distance between them but not on their 

specific locations in time. Then, given a covariance stationary process {xt, t = 0, ±1, … }, 

with autocovariance function E[(xt –Ext)(xt-j-Ext)] = �j, according to McLeod and Hipel 

(1978), xt displays the property of long memory if 

�
−=

∞→
T

Tj
jT γlim  

is infinite. An alternative definition, based on the frequency domain is as follows. 

Suppose that xt has an absolutely continuous spectral distribution, so that it has a spectral 

density function, denoted by f(�), and defined as 
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Then, xt displays long memory if the spectral density function has a pole at some 

frequency � in the interval [0, �]. Most of the empirical literature has concentrated on the 

case where the singularity or pole in the spectrum occurs at the zero frequency. This is 

the case of the standard fractionally integrated or I(d) models of the form: 

,...,1,0,)1( ±==− tuxL tt
d     (1) 

with xt = 0, t �  0, and where L is the lag operator (Lxt = xt-1), d is a positive real value, 

and ut is an I(0) process defined as a covariance stationary process with spectral density 

function that is positive and bounded at all frequencies.2  

The I(d) model in (1) has been widely employed in the analysis of meteorological 

time series, in particular, examining the warming in temperatures under the assumption 

that the residuals from a linear time trend follow an I(d) process (see, e.g., Bloomfield, 

1992; Smith, 1993;  Lewis and Ray, 1997; Pethkar and Selvam, 1997; Koscielny-Bunde 

et al., 1998, Pelletier and Turcotte, 1999; Percival et al., 2004; Maraun et al., 2004, and 

Gil-Alana, 2003, 2005). All these works were based on the observation that most of the 

time series examined by these authors presented a typical shape with the spectral density 

increasing dramatically as the frequency approaches zero and that differencing the data 

leads to overdifferencing at the zero frequency. 

 However, a process may also display a pole or singularity in the spectrum at a 

frequency away from zero. In this case, the process may still display the property of long 

memory but the autocorrelations present a cyclical structure that is decaying very slowly. 

This is the case of the Gegenbauer processes defined as: 

,...,2,1,)cos21( 2 ==+− tuxLLw tt
d

r   (2)  

                                                           
2 The I(0) class of models include the classical white noise process but also other structures allowing a 
weak dependence structure like the stationary autoregressive moving average (ARMA) models. 



 

 

where wr and d are real values, and ut is I(0). For practical purposes we define wr = 

2�r/T, with r = T/s and thus, s will indicate the number of time periods per cycle, while r 

refers to the frequency that present a pole or singularity in the spectrum of xt. Note that if 

r = 0 (or s = 1), the fractional polynomial in (2) becomes (1 – L)2d, which is the 

polynomial associated to the common case of fractional integration at the long run or 

zero frequency. This type of process was introduced by Andel (1986) and subsequently 

analyzed by Gray, Zhang and Woodward (1989, 1994), Chung (1996a,b) and Dalla and 

Hidalgo (2005) among others. 

 Gray et al. (1989, 1994) showed that the polynomial in (2) can be expressed in 

terms of the Gegenbauer polynomial, such that, calling � = cos wr, for all d �  0, 

,)()21(
0

,
2 j

j
dj

d LCLL µµ �=+−
∞

=

−   (3) 

where )(, µdjC  are orthogonal Gegenbauer polynomial coefficients recursively defined 

as:  

,1)(,0 =µdC  

,2)(,1 dC d µµ =  
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C djdjdj µµµµ  

(See, for instance, Magnus et al., 1966, Rainville, 1960; etc. for further details on 

Gegenbauer polynomials). Gray et al. (1989) showed that xt in (2) is (covariance) 

stationary if d < 0.5 for �� = cos wr�< 1 and if d < 0.25 for���= 1.3  This model has 

                                                           
3 Note that if ���< 1 and d in (2) increases beyond 0.5, the process becomes “more nonstationary” in the 
sense, for example, that the variance of the partial sums increases in magnitude. 



 

 

been employed to analyze the sunspots number time series by several authors, including 

Gray et al. (1989), Hsu and Tsai (2009) and others.  

 The model just presented can be generalized to the case of more than one cyclical 

structure and we can consider processes of the form: 

∏ ==+−
=

k

j
tt

dj
r tuyLLw j

1

2)( ,...,2,1,)cos21(   (4) 

where k is a finite integer indicating the maximum number of cyclical structures; and 

)( j
rw )(/2 jsπ=  where s(j) indicates the number of time periods per cycle corresponding 

to the jth cyclical structure. Empirical works based on multiple cyclical structures of this 

form (also named k -factor Gegenbauer processes) can be found in Ferrara and Guegan 

(2001), Sadek and Khotanzad (2004) and Gil-Alana (2007). 

 

3. Data and empirical results 

In this section we employ monthly data of sunspot numbers obtained from the Solar 

Influences Data Analysis Center (SIDC: http://www.sidc.be/sunspot-data). The data run 

from 1749m1 to 2008m12 and they are displayed in Figure 1. 

[Insert Figures 1 – 3 about here] 

 We notice a cyclical structure in the data that is clearer when we observe the first 

500 sample autocorrelation values, displayed in the correlogram in Figure 2. We note a 

significant cyclical pattern that is decaying very slowly, which might be consistent with a 

cyclical fractional model of the form represented by equation (2). Moreover, the 

periodogram, displayed in Figure 3 presents a large peak at a frequency away from zero, 

giving further support in favour of a cyclical I(d) model. Also, the periodogram, though it 

is not a consistent estimator of the spectral density function, it is an asymptotically 



 

 

unbiased estimator of it and, evaluated at the discrete Fourier frequencies �j = 2�j/T, j = 

1, 2, …, T/2, can give us an indication about the length of the cycles. In our case, we 

observe in Figure 3 that the highest peak takes place at �j = 2�24/T, which implies that 

the cycles have a periodicity of T/24 = 3120/24 = 130 periods (=months)/cycle. 

 Based on this evidence, we estimate the following model, 

,...,2,1, =+= txy tt µ    (4) 

,...,2,1,)cos21( 2 ==+− tuxLLw tt
d

r   (5) 

where yt is the observable time series (sunspot numbers), � is an intercept, and ut is an 

I(0) process that is specified in terms of a white noise process and using an AR(1) 

structure. Higher AR orders were also considered though several Likelihood Ratio (LR) 

tests conducted in previous versions of this work concluded that the AR(1) specification 

was sufficient to capture the short run dynamics underlying the series. 

 We employ here a procedure developed by Robinson (1994) that essentially tests 

the null hypothesis: 

,: oo ddH =      (6) 

in (4) and (5) for any given real value do, assuming that wr is known and a given 

parametric structure for ut. This method is briefly described in the Appendix and present 

several advantages compared with other procedures. First, it allows us to test any real 

value do, encompassing thus models with different orders of integration. Second, the 

limit distribution is standard N(0,1), and this standard limit behaviour holds 

independently of the inclusion or not of deterministic terms (like an intercept) and of the 

way of modeling the I(0) error term. Moreover, assuming Gaussianity on ut, this method 

is found to be the most efficient one in the context of fractional integration. 



 

 

[Insert Table 1 about here] 

 The approach employed here tests Ho (6) in (4) and (5) for do-values equal to 0 to 2 

with 0.001 increments, assuming that wr in (4) is equal to 2�j/T, with j = T/s, and s = 

110, 111, …, 150.4 The estimated values are then chosen as the values that produce the 

lowest statistics across wr and do. In Table 1 we present the results for the two cases of � 

= 0 a priori in (4) and � unknown, assuming that ut is white noise and AR(1). The first 

thing to note is that for the four cases examined the lowest statistics take place at r = 

T/130, which is consistent with the plot of the periodogram in Figure 3. If we focus on 

the estimators, we observe that the results are very similar for the four cases, with the 

values of d ranging from 0.311 (white noise ut with an intercept) to 0.336 (AR(1) with ut 

with no intercept). Looking at the 95% confidence interval for the non-rejection values 

we observe that all them are in the range (0, 0.5) implying a low degree of cyclical long 

range dependence behaviour. Performing several tests on the estimated residuals we 

found evidence in favour of the case of AR(1) disturbances.5 

 Next we wonder if the cyclical fractional differencing parameter has remained 

constant across the sample period. For this purpose we estimate the model in (4) and (5) 

for different subsamples of 720 observations corresponding each, to 60 complete years, 

starting from the subsample 1749M1 – 1808M12, and adding estimates moving forward 

the sample five consecutive years. The results for the two cases of white noise and AR(1) 

disturbances are displayed in Figure 4. 

[Insert Figure 4 about here] 

                                                           
4 We choose these values noting that the highest peak in the periodogram takes place at j = 24, implying 
cycles of periodicity equal to 130 periods. 
5 We use here Box-Pierce and Ljung-Box-Pierce statistics (Box and Pierce, 1970; Ljung and Box, 1978). 



 

 

 In both cases we observe the same pattern: the estimates are relatively stable in the 

first subsamples, with values above 0.3; then, there is a reduction in the degree of 

integration in the mid-subsamples, increasing again in the final part of the sample. In any 

case, all values (including the confidence bands) are in the range (0.2, 0.4) implying a 

certain degree of stability in the results. 

 Next we focus on yearly data. First, we present the results for the yearly average 

data based on the monthly observations. A plot of the time series and its corresponding 

correlogram and periodogram are displayed respectively in Figures 5 – 7. The 

periodogram presents its highest value at 24, and given that now T = 260, then 260/24 = 

10.83 periods (= years)/cycle. Because of this, we report in Tables 2 and 3 respectively 

the estimated coefficients with r = T/10 and T/11.  

[Insert Tables 2 and 3 about here] 

 The results are rather similar in the two cases. The series presents an order of 

integration above 0.5 if the disturbances are white noise, while it is slightly below 0.4 if 

the they are autocorrelated. Thus, the results seem to be very sensitive to the choice of 

the short run dynamics underlying the series. The larger values observed in the 

uncorrelated case may be due to the fact that the fractional differencing parameter is in 

this case the only parameter used to describe the dependence across the data. Also, the 

values reported in these two tables are also higher than those given in Table 1 and based 

on the monthly observations. This may be explained by the fact that the annual data are 

averaged values of the monthly observations, and aggregation has been the usual 

argument claimed to justify fractional integration (Robinson, 1978; Granger, 1980). 

Using LR tests and other statistics the evidence point out in favour of the autocorrelated 

cases. 



 

 

 Finally, in Tables 4 and 5 we want to examine if the degree of dependence may be 

affected by the monthly structure of the data. Therefore, we compute the estimates of d, 

yearly, for each month of the year, again for the two frequencies and for the two cases of 

white noise and AR(1) ut. 

[Insert Tables 4 and 5 about here] 

 The first thing we observe in these two tables is that the estimated values of d are in 

all cases smaller than those reported in Tables 2 and 3 for the yearly averaged data, 

which is consistent with the argument of aggregation mentioned in the preceding 

paragraph. Starting with the white noise case (in Table 4) we see that all the values are in 

the range (0.39, 0.53) and we also note consistently higher values at r = T/10 than at 

T/11. If r = T/10, the highest estimate of d corresponds to April (0.532) followed by 

October (0.524) and November (0.503), while the lowest value is obtained in February 

(0.396). The same pattern follows with r = T/11. If we focus now on the case of AR(1) ut 

(in Table 5) the values are substantially smaller, ranging now between 0.206 (June, r = 

T/10) and 0.265 (July, r = T/10). Similarly to the previous cases, we also perform various 

statistics to determine which of the two specifications (white noise and AR(1)) was more 

appropriate to describe the short run dynamics and the evidence pointed out in favour of 

the autocorrelated cases.  

 

4. Concluding comments 

In this paper we have examined the time series properties of the sunspot numbers, 

monthly, from 1749m1 to 2008m12. For this purpose we have employed a technique 

based on cyclical long range dependence. Using this technique we have shown that 

sunspot numbers have a periodicity of 130 months, and more importantly, that the series 



 

 

is highly persistent, with an order of cyclical fractional integration slightly above 0.30. 

That means that the series displays long memory, with a degree of dependence between 

the observations that tends to disappear very slowly in time.  

 Prediction of the sunspot numbers is a natural following-up step in this work. 

Though various numerical prediction techniques have been used for the sunspot number 

time series (curve fitting, artificial intelligence, neural networks, EMD analysis, etc.), 

these approaches although very accurate in short-term predictions are rather unreliable in 

long term (Gholipour et al.,2003, Xu et al., 2008). In this context, the use of cyclical long 

range dependence techniques can provide better predictions in the long run. 

The results presented in this work can also be used as a first step in the 

specification of a multivariate model including other variables such as temperatures 

which might be well described in terms of a cyclically fractionally integrated model (see, 

e.g., Gil-Alana, 2009). In this context, the concept and ideas of cyclical fractional 

cointegration can be a fruitful avenue for further research in the future. 
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Appendix 

Robinson (1994) proposes a Lagrange Multiplier (LM) test of the null hypothesis Ho (6) 

in (4) and (5) for any real value do. The test statistic is given by: 
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evaluated at λj = 2πj/T and g is a known function coming from the spectral density 

function of tû : ),;(
2

);(
2

τλ
π

στλ gf =  with τ̂  obtained by minimizing σ2(τ). Note that 

the test is purely parametric and, therefore, it requires specific modelling assumptions 

regarding the short memory specification of ut. Thus, for example, if ut is white noise, g 

≡ 1 and, if ut is an AR process of form: φ(L)ut = εt, g = |φ(eiλ)|-2, so that the AR 

coefficients are a function of τ.  Finally, the summation on *  in the above expressions 

are over λ ∈ M,  where M = {λ: -π < λ < π, λ ∉ (ρu - λu, ρu + λu),  such that ρu is the 

distinct pole of ψ(λ) on (-π, π]. 
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Figure 1: Monthly sunspot numbers: 1749M1 – 2008M12 
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Figure 2: Correlogram of the sunspot numbers 
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for the series used in this application. 
 
 
Figure 3: Periodogram of the sunspot numbers (for j = 1, 2, …, 100) 
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      The periodograms are computed based on the discrete frequencies �j = 2�j/T. 



 

 

 

Table 1: Estimates of the parameters in fractional cyclical models (wr = T/130) 
 No regressors With an intercept 

 d AR d Intercept AR 

White noise ut 
0.312 

(0.304,   0.320) 
--- 0.311 

(0.303,   0.320) 
52.38081 
(27.987) 

 

--- 

AR (1) ut 
0.336 

(0.325,   0.347) 
-0.097 0.335 

(0.324,   0.347) 
52.37599 
(24.277) 

-0.095 

The values in parenthesis behind the estimates of d refer to the 95% confidence bands. Those in 
parenthesis behind the estimate of the intercept refer to the t-value. 

 

 

Figure 4: Estimates of d for different recursive subsamples of 720 observations 
i) White noise disturbances 
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The thick line corresponds to the estimated values of d. The thin lines refer to the 95% confidence band. 



 

 

Figure 4: Yearly average sunspot numbers: 1749 – 2008 
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Figure 5: Correlogram of the yearly average sunspot numbers 
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The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.062 
for the series used in this application. 
 
 
Figure 6: Periodogram of the yearly average sunspot numbers (for j = 1, 2, …, T/2) 
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     The periodograms are computed based on the discrete frequencies �j = 2�j/T. 



 

 

 
Table 2: Estimates of the parameters in fractional cyclical models (r = T/10) 

No regressors With an intercept  
Yearly average 

 
d AR D Intercept AR 

White noise ut 
0.763 

(0.692,   0.839) 
--- 0.745 

(0.676,   0.821) 
52.24232 
(23.596) 

 

--- 

AR (1) ut 
0.399 

(0.338,   0.476) 
 0.618 0.395 

(0.335,   0.467) 
52.15954 
(34.342) 

 0.611 

The values in parenthesis behind the estimates of d refer to the 95% confidence bands. Those in parenthesis behind 
the estimate of the intercept refer to the t-value. 

 

 

Table 3: Estimates of the parameters in fractional cyclical models (r = T/11) 
No regressors With an intercept  

Yearly average 
 

d AR D Intercept AR 

White noise ut 
0.719 

(0.648,   0.795) 
--- 0.699 

(0.629,   0.775) 
52.29603 
(22.151) 

 

--- 

AR (1) ut 
0.385 

(0.323,   0.462) 
 0.582 0.376 

(0.319,   0.445) 
52.22245 
(33.068) 

 0.585 

The values in parenthesis behind the estimates of d refer to the 95% confidence bands. Those in parenthesis behind 
the estimate of the intercept refer to the t-value. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Table 4: Monthly estimates for the case of white noise disturbances 
 r  =  T/10 r  =  T/11 

 d Intercept d Intercept 

JANUARY 0.499 
(0.442,   0.564) 

50.16569 
(19.213) 

 

0.461 
(0.406,   0.525) 

50.19367 
(18.679) 

 FEBRUARY 0.396 
(0.352,   0.444) 

52.13392 
(20.237) 

0.359 
(0.318,   0.406) 

52.14836 
(20.214) 

MARCH 0.476 
(0.423,   0.535) 

51.01546 
(20.825) 

 

0.441 
(0.390,   0.499) 

51.04373 
(20.281) 

 APRIL 0.532 
(0.476,   0.594) 

51.76727 
(20.537) 

0.492 
(0.435,   0.555) 

51.80709 
(19.938) 

MAY 0.467 
(0.410,   0.531) 

52.94759 
(19.531) 

 

0.436 
(0.381,   0.499) 

52.99719 
(18.870) 

 JUNE 0.445 
(0.396,   0.500) 

52.58568 
(20.542) 

0.415 
(0.367,   0.469) 

52.64809 
(19.992) 

JULY 0.484 
(0.434,   0.541) 

52.61536 
(20.624) 

 

0.444 
(0.394,   0.501) 

52.66602 
(20.197) 

 AUGUST 0.488 
(0.434,   0.547) 

52.25256 
(19.866) 

 

0.459 
(0.407,   0.519) 

53.33359 
(19.104) 

SEPTEMBER 0.499 
(0.443,   0.562) 

52.77756 
(19.555) 

 

0.478 
(0.424,   0.538) 

52.88548 
(18.560) 

OCTOBER 0.524 
(0.469,   0.584) 

53.04521 
(20.180) 

 

0.487 
(0.431,   0.548) 

53.13985 
(19.495) 

NOVEMBER 0.503 
(0.448,   0.565) 

51.52662 
(19.983) 

 

0.464 
(0.409,   0.526) 

51.61503 
(19.423) 

DECEMBER 0.484 
(0.427,   0.549) 

52.39317 
(18.756) 

 

0.445 
(0.389,   0.509) 

52.50388 
(18.350) 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 5: Monthly estimates for the case of AR(1) disturbances 
 r  =  T/10 r  =  T/11 

 d Intercept d Intercept 

JANUARY 0.249 
(0.177,   0.345) 

50.14200 
(24.497) 

 

0.251 
(0.188,   0.334) 

50.14523 
(23.721) 

FEBRUARY 0.242 
(0.113,   0.414) 

52.09100 
(23.062) 

 

0.256 
(0.141,   0.342) 

52.10237 
(22.326) 

MARCH 0.234 
(0.161,   0.364) 

50.93877 
(26.176) 

 

0.248 
(0.180,   0.403) 

50.95422 
(25.106) 

APRIL 0.259 
(0.195,   0.345) 

51.72897 
(26.903) 

 

0.242 
(0.186,   0.317) 

51.74057 
(26.576) 

MAY 0.212 
(0.142,   0.300) 

52.88657 
(24.965) 

 

0.219 
(0.159,   0.299) 

52.92057 
(24.113) 

JUNE 0.206 
(0.137,   0.363) 

52.51120 
(25.482) 

 

0.223 
(0.158,   0.373) 

52.56005 
(24.500) 

JULY 0.265 
(0.191,   0.413) 

52.55519 
(25.223) 

 

0.247 
(0.185,   0.354) 

52.59073 
(24.943) 

AUGUST 0.229 
(0.164,   0.321) 

53.19266 
(25.376) 

 

0.240 
(0.181,   0.330) 

53.25668 
(24.364) 

SEPTEMBER 0.211 
(0.150,   0.292) 

52.659668 
(24.364) 

 

0.245 
(0.186,   0.330) 

52.76300 
(24.147) 

OCTOBER 0.256 
(0.190,   0.352) 

52.93225 
(26.084) 

 

0.247 
(0.189,   0.330) 

53.01456 
(25.523) 

NOVEMBER 0.241 
(0.173,   0.342) 

51.32525 
(25.576) 

 

0.234 
(0.175,   0.320) 

51.41100 
(25.023) 

DECEMBER 0.237 
(0.163,   0.339) 

52.32092 
(23.826) 

 

0.239 
(0.175,   0.325) 

52.4229 
(23.177) 

 

 


