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ABSTRACT

This paper proposes a model of the US unemployment rate which accounts for
both its asymmetry and its long memory. Our approach introduces fractional
integration and nonlinearities simultaneously into the same framework, using a
Lagrange Multiplier procedure with a standard null limit distribution. The
empirical results suggest that the US unemployment rate can be specified in
terms of a fractionally integrated process, which interacts with some non-linear
functions of labour demand variables such as real oil prices and real interest
rates. We also find evidence of a long-memory component. Our results are
consistent with a hysteresis model with path dependency rather than a NAIRU
model with an underlying unemployment equilibrium rate, thereby giving support
to more activist stabilisation policies. However, any suitable model should also
include business cycle asymmetries, with implications for both forecasting and
policy-making.
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1. Introduction

Two well-known facts about the unemployment rate @) the high persistence of
shocks, or hysteresis (see Blanchard and Summ@83),1which is a feature, among
others, of “insider” models (see Lindbeck and Smpwi®88), or of models in which
fixed and sunk costs make current unemploymennaetion of past labour demand (see
Cross, 1994, 1995), and (i) its asymmetric behavionamely the fact that
unemployment appears to rise faster in recesskansit falls during recoveries. Both are
well documented, especially in the case of the & (e.g., Rothman, 1991). The former
can be modelled using a fractional integration #amwrk, where the number of
differences required to achieve 1(0) stationaryeseis a real value. As for the latter, one
possible explanation is the presence of asymmattjestment costs of labour, such as
hiring and firing costs, which have been shown ¢ooant well for movements in the
unemployment rate in Europe after 1973 (see Bdiat@ind Bertola, 1990), even though,
as pointed out by Hamermesh and Pfann (1996), asyiynat firm level does not
necessarily imply asymmetry at macro level. Otheggested explanations include
asymmetry in job destruction (i.e., the fact thaltg disappear at a higher rate during
recessions than expansions — see Caballero and blamrb994), and/or in capital
destruction (see Bean, 1989).

Any satisfactory model of the unemployment rate teabe able to account for
these two properties, i.e. long memory and norality In particular, overlooking non-
linearities can result in misleading in-sample dasfics (see Potter, 1995). Further, non-
linear specifications might lead to an improvemewér conventional linear forecasts

(see, e.g., Parker and Rothman, 1997, Montgomesyi, €6998, and Rothman, 1998).



Moreover, the fact that most standard models fer &5 unemployment rate assume
either a unit root (I(1)) or a stationary 1(0) pess with the autoregressive (AR) root
close to 1, restricts the analysis to the casenteiger orders of differentiation (0 or 1).
Fractional integration allows for a much wider edyi of model specifications that
include the above cases as particular cases.

Various non-linear models have already been estinat the literature, starting
with the seminal paper by Neftci (1984) (see theemsive survey by Pfann, 1993, and
also Potter, 1995). In a number of cases models avingle or infrequent shifts in the
mean of the unemployment rate have been adoptedhient examples are Bianchi and
Zoega (1998), whose Markov-switching model onlpatkd for a switch in the intercept
in order to analyse the issue of multiple equiband Papell et al. (2000), who tested
for multiple structural changes. Several studies &ased on smooth transition
mechanisms. These include Rothman (1998), who asinAR, (S)TAR (smooth
transition autoregressive) and bilinear models gogdicting US unemployment, and
Hansen (1997), who fitted a TAR (threshold autogegive) model to US
unemployment. Other contributions using differeppr@aches are Parker and Rothman
(1998), who applied Beaudry and Koop’s (1993) aurrgepth of recession approach;
and Franses and Paap (1998), who developed AR med#i censored latent effect
parameters. More recently, Coakley et al. (2001ehaied to complement the regime
shift literature with business cycle asymmetriepecfically, they combine a single
regime shift in the equilibrium level with asymmieg in the speed of adjustment, which
are modelled using a momentum threshold autoregreésl-TAR) model characterised
by fast-up, slow-down dynamics over the businesgecyin a more theoretical paper,

Caner and Hansen (2001) examine a two-regime TAR@gJel with an autoregressive



unit root. They develop an appropriate asymptotieoty, and show that the joint
application of two tests — for a threshold anddainit root — enables one to distinguish
between nonlinear and nonstationary processes. fihéythat the US unemployment
rate is a stationary nonlinear threshold autoresgpas

An interesting study is due to Skalin and Teraav{2002), who argue that the
observed asymmetry can be captured by a simple Inbheded on the standard logistic
smooth transition autoregressive (LSTAR) model ftre first difference of
unemployment, but also including a lagged leveiteBuch a specification allows for
asymmetry by introducing “local” nonstationarity anglobally stable model. They stress
that their analysis has implications for policy-raed who should take into account the
fact that asymmetric forecast densities mean that grobability of erring is also
asymmetric. Further, there are implications for tmwatiate modelling: if the
unemployment rate is in fact a stationary nonling@cess, linear VARs based on the
assumption that it is a 1(1) variable and includowntegrating relationships with other
I(1) regressors will be mis-specified. Thereforene papers analyse the joint dynamics
of US output and unemployment in the context of lim@ar VARs. For instance,
Altissimo and Violante (2001) estimate a threshddR model of output and
unemployment in the US, in which nonlinearity asié®m including a feedback variable
measuring the depth of the current recession, lamthreshold growth rate separating the
two regimes (expansions and recessions) is endaggndetermined.

Further evidence on nonlinearities in unemploymbat been obtained by
estimating linear models, and then carrying outtilne domain test of time reversibility
(TR) on the residuals introduced by Ramsey andiRath(1996). For instance, Rothman

(1999) finds that ARMA models of US unemploymergpday TR, indicating that the



true DGP is not linear, a result which appears dordbust to differencing and linear
detrending when the model allows for conditionalam&onlinearity; however, it is not
robust to allowing for GARCH effects.

All these studies typically assume that the disiades follow an 1(0) stationary
process, and adopt an AR, MA or ARMA specificationthe error term. One of the few
exceptions is the study by van Dijk et al. (2002here a fractional integration smooth
transition autoregression time series [FISTAR] ntode estimated and shown to
outperform rival specifications. In this paper weoamodel unemployment as a non-
linear process, and allow for the disturbances ddfractionally integrated. However,
unlike van Dijk et al. (2002), who employ a sequanprocedure, we introduce both
fractional integration and nonlinearities simultangly into the same framework, which
has the obvious advantage of requiring a singlecquore for testing the order of
integration of the series. Moreover, the suggetstis a Lagrange Multiplier (LM) one,
and, therefore, it has a standard null limit dmttion. A limitation of our approach lies
in the specification of the non-linear (in the wadnes) process, which is such that it
becomes linear in the parameters to avoid thedaten with the fractional differencing
parameter. Specifically, we use non-linear tramsdions of the variables, which are
regressed in a linear model and do not involve lmar estimation. Thus, the
parameters to be estimated and tested are thosesgonding to the short-run
components of the series and the order of integragspectively. However, despite this
limitation, our specification does enable us tocatt not only for asymmetry (as other
nonlinear models do), but also for the high peesisé of shocks and the long memory of
the unemployment process. Candelon and Gil-Alar@03R showed that fractional

integration can be used to reproduce business cyaeacteristics in the US and other



countries. The present study goes further in thesesghat we also incorporate non-
linearities to take into account the asymmetrig@écyl of business cycles.
(Insert Figure 1 about here)

As previously mentioned, most time series modelsn¢a into account non-
linearities (e.g. Markov-switching, threshold aeigressive or smooth transition
autoregressive models) assume the presence ofrtwmi@ regimes within the sample,
with the series being modelled either in levelsiroffirst differences. Our fractional
integration framework enables us to examine theadya structure of the series in a
much more flexible way. As a simple illustratione wonsider the following time series
model:

Ve = f(0) +x; A-0L%¢ = u, t=12., (1)
where @) = a I(#.1 > Vi), I(*) is the indicator function, and is assumed to be white
noise. Figure 1 in the paper displays simple raatias of the model in (1), with T =
100, assuming (in the left-hand side plots) thatGa(i.e. without non-linearities), and a =
2 (right-hand side plots). We set d equal to 050®75 and 1, and find that the higher d
is, the higher is the dependence between the diigmms. When allowing for non-
linearities, we note that the cyclical structuramtpes along with dependence between
the observations.

The outline of the paper is as follows: Sectionr2spnts the model and the
procedure for testing the degree of integratiothefseries. In Section 3, the procedure is
applied to the US unemployment rate. Section 4udses model selection, whilst
Section 5 focuses on the forecasting propertieshef selected model. Section 6

concludes.



2. Testing of 1(d) hypothesesin non-linear models
Let us suppose that {yt = 1, 2, ...T} is the time series we observe dur case,
unemployment) and that it is related to some exogencomponents from both the

demand and the supply side,through the relationship:
y. = f(z:6) + x, t=12 .., (2)
where0 represents the unknown coefficients apis xiriven by:
a-Lu*x =u, t=1212.., (3)
with x; = O for t< 0, where d may be a real value anisu(0)! Note that the fractional

polynomial can be expressed in terms of its Binbexgansion, such that:

@-1L = i[ﬂ(—w U=1-dL+ 30D
i=o\J 2

for all real d. Clearly, if d = 0 in (3);% u, and a ‘weakly autocorrelated; is allowed
for. However, if d > 0, xis said to be a long memory process, also cabewrigly
autocorrelated’, because of the strong associagtween observations widely separated
in time. If d is an integer value,; xill be a function of a finite number of past
observations, while if d is real; Hepends strongly upon values of the time series fa
away in the past (see, e.g. Granger and Ding, 1996éker and Asea, 1998).

The time series literature has usually focused lmn dases of d = 0 (weak
dependence) or d = 1 (a unit root). However, toexmily determine d is crucial from a

statistical viewpoint. If dJ (0, 0.5) in (3), xis covariance-stationary and mean-reverting,

having auto-covariances which decay at a much sloate than those of an ARMA

1 For the purpose of the present paper, we defink0) process as a covariance stationary progitss

spectral density function that is positive andtérat the zero frequency.



process - in fact, so slowly as to be non-summabte[] [0.5, 1), the series is no longer
covariance-stationary, but it is still mean-revegti with the effects of shocks

disappearing in the long run. Finally,> 1 implies non-stationarity and non-mean-
reversion. Therefore, the fractional differencingrameter d plays a crucial role in
describing the persistence behaviour of the settieshigher d is, the higher will be the
association between the observations.

Robinson (1994) proposed a Lagrange Multiplier (LiBt of the null hypothesis:
o (4)
for any real given value,dn a model given by (3), where may be the errors from the
regression (linear) model:

Y, = B'z + X, t=12.. (5)
The test is based on the null differenced modé€B)r- (5):
a-L%y = g@-L %z + u, t=12.., (6)
and its functional form can be found in various eiogl applications (e.g., Gil-Alana
and Robinson, 1997; Gil-Alana, 2000, 2001).

In this paper, we extend Robinson’s (1994) procedorthe case of non-linear
regression models, i.e., testing ¢4) in a model given by (3) and (5). Note that emtthe
null hypothesis given by (4): d 5,d2) and (3) become:

A-L%y, = @-L%f(z:;0) + u, t=12... (7)
The main problem with this equation lies in theemction between the fractional
polynomial @ - L)% and the possibly non-linear function f, and thenestion of the

parameters involved in such a relationship. Forpghgose of the present study, let us



assume that f(z8) = 8 g(z), where g is of a non-linear nature. In such aec#%)
becomes:

A-L)%y, = &w + u, t=12.., (8)
where w = (1- L)%g(z), and hence, the "non-linearity" is not in terms thé
parameters, but in terms of certain nonlinear fioncof the variables;zWe can obtain

the OLS estimate df and residuals:

-1
T T
G, = @-L%y, - 8w, 6 = [Z:Wt Wt'} ZWT Q-1 %y,,
t=1 t=1

and the same type of analysis as in Robinson (1€&4be conducted here. Denoting the
periodogram of )

T

1/2 A
R=f2% f= [IJ 2 ©)
where T is the sample size and
8= 22N 00 e0n 0 67 = 02 = LY gt At )
T . i i i’ T . i i’
-1

j=1

A= TE[ZW,)Z —Zm)éu,-)'x(Zémi)éu,—)'j xZé(AJ)w(A,)J

Al 0 . 2wy, . . 2
@(Aj) = log 25|n7; £(Aj) = Elogguj;r); Aj = ?; T = argminygy o°(7),

where H is a compact subset of th& Ruclidean space, and the function g above is a

known function coming from the spectral densitydiion of y,



2
f(A;o%T) = g—”g(A;r), -m<A s

Note that these tests are purely parametric, &edefiore, they require specific modelling
assumptions about the short-memory specification. dfhus, if wis white noise, then g
= 1, and if wis an AR process of form(L)u; = &, g =|e(€™)[?, with 6 = V(gy), so that
the AR coefficients are a function of

It is clear then thaté is a consistent estimate 6f G, satisfying the same

properties as in Robinson (1994), and thus, uneieaio regularity conditions:

A

R -y x5, a T o (10)

Consequently, unlike in other procedures, we are iolassical large-sample testing
situation for the reasons explained by Robinsor®4).9who also showed that the tests
are efficient in the Pitman sense against localadepes from the null. Because
involves a ratio of quadratic forms, its exact rdifitribution could have been calculated
under Gaussianity via Imhof’'s algorithm. Howevesimple test is approximately valid
under much wider distributional assumptions: anr@xijmate one-sided 1006 level
test of H (4) against the alternative -l > d, (d < d,) will be given by the rule: “Reject
Hoif I >z, (f <-z)", where the probability that a standard normaiata exceeds,z
isa.

To capture nonlinear features in a time series,aamechoose from a wide variety
of nonlinear models (see Franses and Van Dijk, 2@@0a recent survey). A model
which enjoys a fair amount of popularity, mainlyedio its empirical tractability, is the

smooth transititon autoregressive (STAR) model; ia

2 These conditions are very mild and concern tieehassumptions to be satisfied ).
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Yo = (@0 + GiaYea + o+ Op Vip) A= G(z: 1, 0)) + (6a0 + Go1Via + -+ O Vi-p) (%115 ©) + &,

whereg; is a white noise process and the transition fonc@(z; y; ¢) usually is assumed
to be the logistic function:
G(zi;yi0) = L+ exp{-y(z —0)/o,)™ (11)

with y > 0, and where;zs the transition variable (possibly a set of extogus regressors),
0z is the standard deviation of ¥ is a slope parameter and c is a location parameter
The parameter restrictiopn> 0 is an identifying restriction. The value oftlogistic
function (11), which is bounded between 0 and pedés on the transition variableas
follows: G(z;y; c) - 0as z— -0, G(z;y; c)=0.5forz=c,and Ggy;c) - lasz-
+00.4

In our application we do not consider the paranseadiecting (11) because of the
interaction with the fractional integration polynia and thus we assume thyat 1 and
c = 0° This is a further restriction in the model butdisne in order to obtain a more
tractable approach of the nonlinear fractionaliggrated model. Moreover, in this way
we do not have to take into account the lag strectd the dependent variable gince
this will be contained in the (possible) weak aotoelation structure ofun (3). Thus, a

simple smooth transition model is:

.
9(z) = 910[1_G(Zt)] + 60,,G(z,); G(z) =;' = izzz’
=1

; s
-z, a7
1+ expl—
S

Applications of the STAR model and the closedjated TAR model to unemployment rates can be
found in Montgomery et al. (1998); Koop and Potte999); Caner and Hansen (2001) and Skalin and
Terasvirta (2000) among others.

® |n the empirical application carried out in folowing section, we work with demeaned seriesvoid

the influence of the location parameter.

4
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where zrepresents each of the variables affecting uneynmat. Clearly, G does not

involve the estimation of any parameters, and thasnodel under the null becomes:

k
Qa-L%y, = Z(%SJI - ezos'a) + Uy, t=12..,

=1
wheres}, = - L)% [1-G(z,)] and sl = 1 - L)*G(z,). Under K (4), the disturbances u
are assumed to be I(0), and therefore standarditgets can be applied.

Finally, in this section, we examine the implicagsoof testing the order of
integration when non-linearities of the form givien(11) are present but are not taken
into account, and also the reverse case, i.e. asgue non-linear structure (with
fractional integration) when that is not presentthe data. In both cases we use the
parametric procedure described above, reportingethdts in Table 1.

We assume that the true model is given by

Vi = 05S; + 08Sy + x; @ - L)%x = u,
where S = (1 — 1/exp(-€s)); S = 1 - S and y and z are white noise independent
processes.

In Table 1 we compute the rejection frequencietheftest statistic given by (9) in
the model given by (5) and (3), withz (S, S’ and d, in (4) equal to 0O, 0.10, ..., 1.
We use sample sizes T = 200 and 400, and Gaussi&s svere generated by the
routines GASDEV and RAN3 of Press, Flannery, Teslkphnd Vetterling (1986).

(Insert Table 1 about here)

Case a) in Table 1 is the case where we truly itkethtthe non-linear and the
fractionally integrated structures. Thus, testing M) with d, = 0.50 gives us the
empirical size of the test. We see that the vadwesslightly upward biased (6.4% with T

= 200 and 5.7% with T = 400, for a significancedkeuf 5%). However, as we depart

12



from the null, the rejection frequencies substdlgtiacrease, and they are close to 1 for
d < 0.10 or d> 0.70 (with T = 400). Case b) refers to a situatwehere we test for
fractional integration ignoring the existence aian-linear structure. In other words, we
test H (4) in (5) and (3) assuming that= 0. In such a case we note that the lowest
rejection frequencies do not occur when d = 0.5rétlter for a slightly smaller value, d

= 0.4, (10.8% with T = 200 and 11.6% with T = 40@)plying that there is a bias in
favour of smaller orders of integration. Finalljywe test for fractional integration and
the non-linearities in a model without a non-linstiucture (Case c)), we see that the
procedure correctly identifies the order of integma an obvious result if we note that

the coefficients in (5) are then correctly estirdegeound O.

3. TheUScase

In this section the testing procedure describedsattion 2 is used to identify the
dynamics of the US unemployment rate. The mainveglee of the analysis from an
economic viewpoint is whether it can shed any light the adequacy of hysteresis
models with path dependency (see, e.g., BlanchaddSaimmers, 1987) versus NAIRU
models (see, e.g., Friedman, 1968), as discussee imaletail in the conclusions. The
unemployment series used is the logistic transfoonaf the unemployment rate in the
US®, and we also consider real oil prices and rearést rates, quarterly, for the time
period 196091 to 2002qg3. Specifically, we use dnpoce index (the industrial price

index for refined petroleum and coal products, Wwhis the available series with the

® We use a logistic transformation on the dependariable to avoid the problem of boundedness ef th
unemployment rate. Note that, in the context ofttfomal integration, bounded variables may be in
theoretical contradiction with the explosive beloaviof 1(d) process for some values of d (see Walli
1987 for a justification based on the logistic sfmnmation being defined betweehoo so that standard

13



longest time span), and the 5-year benchmark govemhbond yield (end of the month).
The real oil price and real interest rates serimgehbeen constructed using the GDP
deflator. All series are seasonally unadjusted,aapdaken from Datastream.

The variables employed are the same as in Cartwath @998). In that paper, the
authors examine the relationship between these thagiables by means of classical
cointegration techniques. We use the term “clabsicahe sense that it is assumed that
all individual series are nonstationary 1(1), white equilibrium long-run relationship is
stationary 1(0). Carruth et al. (1998) assume taaisality in the model is uni-directional:
only prices matter, while real interest rates dse acluded as another relevant variable
operating at the world level, and hence causdilityslmay also be bi-directional. If one
wanted to rationalise it in terms of general equilim, one would say that the US is an
economy with a stable set of supply-side policiegplying a high degree of wage
flexibility in the labour market. The main variabléhat have shifted the long-run labour
demand up the (“wage-curve” or efficiency wage)olabsupply would be changes at
world level in input prices and in the cost of d¢api(Note that real interest rates are
implicitly assumed to have no or at most a wealeaffon the labour supply via
intertemporal substitution).

In this paper, we depart from the Carruth et 8@9@8) model from an econometric
viewpoint: rather than assuming a linear relatigmstwe introduce non-linearities.
Moreover, instead of using integer orders of indéign, we allow for the possibility of
fractional values. This is motivated by earlier woeported in Caporale and Gil-Alana
(2002), who found cointegration between the santeot&ariables for Canada in the

presence of autocorrelated disturbances, suggestaigtheir relationship also has a

distributions apply). In any case, when using thigioal data (i.e., the US unemployment rate), the

14



dynamic component. Furthermore, they reported exiéeof fractional (as opposed to
classical) cointegration, which implies long memangd slow reversion to equilibrium.
Denoting the logistic transformation of the US upémgment rate by UNE, real oil
prices by ROP, and real interest rates by RIR, mwel@y the model:
UNE, = 65 [1 - G(ROR,)] + 83, G(ROR) + 3L - G(RR] + X, (12)
and (3), testing ki(4) for values granging from 0 to 2 with 0.2 increments, using tehi
noise and autocorrelated disturbantes.

Table 2 reports the values of the one-sided statistn (9). We observe that
if we assume that; is white noise, the only value of tbr which H, cannot be rejected is
0.80, implying long memory and mean-reverting baémhav However, if we allow for
autoregressive (AR) behaviour ip the unit root null cannot be rejected. We algmre
the results based on the Bloomfield’'s (1973) exptinemodel for the 1(0) disturbances
W. This is a non-parametric approach to modellipgvith the spectral density function
given by:

f(A;1) = 0—2 ex;{z ijrr cos(Ar)],
2m r=1
where p is now a parameter describing the shortdguramics of the series. Like the
stationary AR(p) model, the Bloomfield (1973) modehs exponentially decaying
autocorrelations, and thus can be used to maqdel(@). The formulae for Newton-type

iterations for estimating, are very simple (involving no matrix inversionjpdaso are the

updating formulae when p is increased; in the Appendix can be replaced by the

population quantity:

conclusions were practically the same as thoseteghn the paper.

15



%o: |_2 = i - & -2
|:p+l 6

which indeed is constant with respect to th@unlike the AR case). Similarly to the AR
case, if yfollows the Bloomfield's (1973) exponential spattmodel, the unit root (i.e.,
do = 1) is the only non-rejected value. Finally, iiew of the quarterly structure of the

series, we also tried seasonal autoregressiome ddbtm:

4p
U =D @u.,, t=12., (13)

r=4
with p = 1 and 2. In this case, we find that thé isurejected for all values of d smaller
than or equal to 1. If p = 1, the non-rejectionueal occur for gi= 1.20, 1.40 and 1.60,
and if p = 2, d = 1.20 is the only non-rejection value. Thus, résults appear to be very
sensitive to the specification of the 1(0) disturbes, values of d smaller than, equal to,
or higher than 1 being obtained depending on whetiedisturbances are white noise,
non-seasonally and seasonally autocorrelated.
(Insert Tables2 and 3 around here)

Table 3 displays, for each type of disturbances,a5%-confidence intervals of
those values of gdfor which H, cannot be rejected. These intervals were constluas
follows: first, we choose a value of d from a grldhen, we form the test statistic testing
the null for this value. If the null is rejectedtae 5% level, we discard this value of d.
Otherwise, we keep it. An interval is then obtaiaéi@r considering all the values of d in
the grid. Along with the intervals, we also reporthe table the value corresponding to

the lowest statistic in absolute value, Jd which will be an approximation to the

" Note that we do not include in the regressionlehG(RIR) to avoid the problem of exact
multicollinearity.

16



maximum likelihood estimatdrWe see that if wis white noise, all values are below
unity. If u follows an AR process, the intervals include thet woot and the same
happens with the Bloomfield model, while d is highthan 1 for seasonal
autoregressions.

The large differences observed in the values ohdnseasonal autoregressions are
taken into account suggest that seasonality shalstul be considered. Seasonal dummy
variables were first included in the regression elodl2), but the coefficients
corresponding to the dummies were found to be migogntly different from zero. Note
that the tests of Robinson (1994) are based onuhelifferenced model, which exhibits
short memory, and thus standard t-tests apply.h@rother hand, the large values of d
observed in Table 2 whenig a seasonal AR process may suggest that sedgonalf a
nonstationary natureTherefore, we decided also to use another versidRobinson’s
(1994) tests, which is based on the model:

@a-LH% % = u, t=12... (14)
In such a casd, takes a similar form to (9), bui is now defined as:
0, = @-LH%y, - 6w,

and

A
¢(A;) = log sun?

by
+ Iog[Zcos;J] + Iog| Zcosxlj|; &A1) = ailog 9(A;; 1),
T

and the test statistic still has the same standalfdimit distribution. Ooms (1995) also

proposed tests based on seasonal fractional mo@leésy are Wald tests, requiring

8 Note that the LM procedure employed in this papebased on the Whittle function, which is an
approximation to the likelihood function.

° Several studies conducted by Montanari, RossoTadu (1995, 1996, 1997) in a hydrological context
showed that the presence of periodicities migHuarfce the reliability of the estimators of thecfranal
differencing parameter at the zero frequency.
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efficient estimates of the fractional differencingarameter. He used a modified

periodogram regression estimation procedure dutagsler (1994). In addition, Hosoya

(1997) established the limit theory for long memprgcesses with the singularities not
restricted at the zero frequency, and proposed af spiasi log-likelihood statistics to be

applied to raw time series. Unlike these methoks,tésts of Robinson (1994) do not
require estimation of the long-memory parametergesithe differenced series have short
memory under the nutP

(Insert Tables4 and 5 about here)

Table 4 reports the results for the same valuesl,ond the same type of
disturbances as in Table 2, but using (12) alorth thie new model (14). We see that if
U is white noise, the unit root null hypothesis égected in favour of higher orders of
integration, and Kl (4) cannot be rejected whep d 1.20, 1.40, 1.60 and 1.80. If is
AR(1), the non-rejection values arg=0.80 and 1.00, and if it is AR(2) the values are
slightly higher: 1, 1.20 and 1.40. Using the Bloaid exponential spectral model, the
results are the same with one or two parametedsHarrannot be rejected at ¢ 0.80,

1, 1.20 and 1.40. Finally, including seasonal ABcpsses of the form given by (13), the
values coincide with those using white noise disnces, i.e., 1.20, 1.40, 1.60 and 1.80.
Table 5 is the counterpart to Table 3 with seasinaational integration, reporting the
confidence intervals and the values gf fbr each type of disturbances. If is white
noise or seasonal AR, the values are higher th&orlthe remaining four cases (AR and
Bloomfield u) the values are around 1. In the following sectiga try to select the best

model specification from all these potential rispkcifications.

19 Empirical applications based on this version obiRson’s (1994) tests can be found, among others, i
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4. Model selection
First, we focus on the models presented in Tablaad23 and choose, for each type of
disturbances, the model with the lowest statistialbsolute value. The selected models
are described in the upper part of Table 6 (denbtetS#)'* Simple visual inspection
of the residuals for the models NS1-NS3 suggestd these are not adequate
specifications, in view of the seasonal structdileapparent in the residuals (the charts
are not included in the paper for reasons of spdda)s, we only compare the models
NS4 and NS5 on the basis of their diagnostics.

(Insert Table 6 about here)

The lower part of Table 6 describes the selectedetsan Tables 4 and 5 based on
seasonal fractional integration. They are now dethdity S#. Here, we observe that S4
and S5 (the models based on seasonal autoregr@®sproduce results very similar to S1
(based on a white noisg) un terms of the estimated coefficients of the +iorar
variables. Moreover, the coefficients of the seab@&R parameters are in both cases
close to zero, suggesting that seasonal autorégmesare not required in the context of
seasonal fractional integration. Therefore, we Haxee potential models to describe the
series of interest: NS4, NS5, S1, S2 and S3. Wefeesno serial autocorrelation by
means of a slight modification of the test propolsgdEitrheim and Terasvirta (1996) for
the standard STAR model. In particular, the nulbdiypesis of no autocorrelation in the

residualse; can be tested against the alternative of serigémigence up to order q, that

is, under the alternativg satisfies:

Gil-Alana and Robinson (2001) and Gil-Alana (2002).
1 Note that the models based on Bloomfield (197&ucbances are not considered since they do et ha
a parametric formula for the weak dependence streict
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E = Q&4 * ..t A, T 8,

where eOi.i.d. (0,0%. The null hypothesis is given by,Hb; = a, = ... = g = 0
which, following Eitrheim and Terasvirta (1996)tested by means of an LM test. Here
the only difference compared to that test is that needs to include the gradient of e
with respect to the fractional differencing paraened, evaluated undero,HUnder the

null & = g, so that

Performing the tests on the five selected modeésrésults reject the null hypothesis of

no serial correlation in all models except S3, ®stjgg that a plausible model might be:

UNE, = -2212[1-G(ROR)| + 3254G(ROR,) + 0567[1-G(RIR)] + x,;
(0418 (0.155 (0.11))
a-LH"x = u; u = 0714u,_, + 0101u,_, + &, (15)

(standard errors in parentheses), with the imptioathat unemployment is nonstationary
and non-mean-reverting. These findings allow us to discriminate betweewalri
unemployment theories. Specifically, a natural ratelel would require the process to
obey mean reversion, the effects of shocks dyingyaand the unemployment rate
reverting to its underlying equilibrium level. Bputrast, in a hysteresis model the short-
run equilibrium level depends on actual past leva$sshocks are not mean reverting, at
least in a finite time horizon. The evidence présérhere clearly gives support to the

latter type of model, and to arguments in favoumefe active stabilisation policies.

12 Note that even though d is higher than 1 in thislel, the unit root null (d = 1) cannot be rejdcae the
5% level (see Table 5).

3 Harding and Pagan (2002) assess the usefulnessndinear models (specifically, a simple Markov-
chain process, and one exhibiting duration depeargjeior replicating the business cycle feature&) 8f
GDP, and find little evidence that non-linear effeare important to the nature of the cycle. Howgve
theirs is a univariate approach, and as suchivtiglirectly comparable to our multivariate model.
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A limitation of the procedure we follow is that ilnposes the same order of
integration at zero and the seasonal frequenciete that the polynomial (14 can be
decomposed into (1-L)(1+L)(1#), where each of these polynomials correspond go th
zero, the annualtj and the bi-annual(2 and 3v2) frequencies. Thus, the large
coefficient of the fractional differencing parameteay be partly due to the joint effect
of the trend and the seasonal components. The désbinson (1994) described in
Section 2 also allow us to consider the case éémiht orders of integration at each of
these frequencies (see, e.g. Gil-Alana, 2003),thist is not within the scope of the

present paper.

5.  Forecasting properties
In this section we compare the model selectedamtievious section with another model
with a linear structure. In particular, we consitle® same class of models as in Table 5
but replacing the non-linear specification by @&énone, namely:

UNE; = fpRIR + BiROR + X. (16)

Note that, although only actual values of the inpatiables are explicitly
presented in the regression model (16), the lagirdture is included through the
fractional polynomials ((1-1%and (1-1%)% and the autoregressive terms.

(Insert Table 7 about here)
The selected models are described in Table 7,aleet®on criteria being the same
as before. It can be seen that, when using norsabspecifications (NS#, i.e., (1)f),
the orders of integration are very similar to thog@able 6. They are smaller than 1 df u
is white noise or AR(2); exactly 1 for AR(1) didbances; and higher than 1 for seasonal

autoregressions. When using the seasonal fractipaginomial (S#), the orders of
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integration vary substantially depending on howspecify the 1(0) term: d is equal to
1.51 for a white noiseuit is close to 0 (d = 0.13) with AR(1) disturbas¢ and higher
than 1 in the remaining cases. Performing the s@sits as in Section 4, we reach the
conclusion that the best model is the seasonalidread one with AR(2) disturbances,

i.e.,

UNE; =— 0.033RIR, +3.348ROR, +%; (1- LYY 8% =u,; u, =0.688u,_; +0.124u,_, + &
(0.037)  (0.308

(17)

Next, we compare the two models (i.e. the non-lirseead the linear one), on the
basis of their forecast accuracy. We use data 200293 to 2005qg1 for the out-of-
sample forecasting exercise. We could also havdagmeg other non-linear and linear
models. However, in another recent application,dgééon and Gil-Alana (2003) showed
that simple fractional models could better chamstemacroeconomic series than other
more complex models.

The accuracy of different forecasting methodstspéc of continuing interest and
research (see, e.g., Makridakis et al., 1998 ankritlizkis and Hibon, 2000, for a review
of the forecasting accuracy of competing forecgstimodels). Note, however, the
criticism of Clements (2002), who emphasises thatforecast performance of dynamic
models including some exogenous variables may @@t ¢pood guide to their adequacy.

Since the two specifications (models (15) and (&r¢) based on dynamic models,
we use predictions of the actual values of the deget variables. Note that the two
models impose a seasonally fractionally integragerdcture on these variables, and,
therefore, predictions can be easily obtained thindginomial expansions.

(Insert Table 8 about here)
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Table 8 displays the k-period ahead forecast ewbithe two models. It can be
seen that the non-linear one (model (15)) prodbetter results in practically all cases.
Also, the RMSE is lower in the non-linear case. @tirse, this measure of forecast
accuracy is a purely descriptive device. Theretesageral statistical tests for comparing
different forecasting models. One of these tesigely employed in the time series
literature, is the asymptotic test for a zero expadoss differential due to Diebold and
Mariano (1995). On the basis of this test, we ogect the null hypothesis that the
forecast performance of models (15) and (17) isakdgu favour of the one-sided

alternative that model (15) outperforms its riviedtee 5% significance level.

6. Conclusions

This paper has proposed a model of the US unemg@oymate which can account for
both its asymmetry and its long memory. Our appnipadhich is based on the tests of
Robinson (1994), introduces fractional integratma nonlinearities simultaneously into
the same framework, unlike earlier studies emplgyansequential procedure (see van
Dijk et al, 2002). Conveniently, ours is insteadingle-step procedure based on the
Lagrange Multiplier, therefore following a standamdl limit distribution. The empirical
results indicate that the US unemployment ratebsaspecified in terms of a fractionally
integrated process, which interacts with some mugat functions of the labour demand
variables (real oil prices and real interest raté# find that the order of integration of
the series is higher than 1, implying that, everenvkaking first differences, they still
possess a component of long memory behaviour, thighautocorrelations decaying
slowly (hyperbolically) to zero. Although d = 1.1fhe unit root hypothesis cannot be

rejected. Also, given the fact that the logistiansformation we are considering is
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unbounded, its observed nonstationary behavious doeraise any difficulties in terms
of economic interpretation. Moreover, it is consigt with other studies that model
unemployment in terms of a cointegrating relatigmsh

On the whole, our findings suggest that a hystenesidel with path dependency
(see, e.g., Blanchard and Summers, 1987) is saifabkthe US unemployment rate. This
implies that there exists no constant long-run ldguum rate, with the effects of
exogenous shocks not dying away within a finiteetinorizon, and unemployment being
nonstationary. Evidence of nonstationarity was atgmrted, within a standard unit root
framework, by Mitchell and Wu (1995), Carruth et(@998), and Strazicich et al. (2001)
inter alia, whilst Wilkins (2003) found an order oftegration higher than 1 at the
seasonal frequencies. By contrast, in a NAIRU (Martelerating Inflation Rates of
Unemployment) model, in which shocks are not lamgd, the unemployment rate
reverts back to its underlying equilibrium levelegs e.g., Friedman, 1968). The
implications for policy-makers are of great impoxta, as, on the basis of our results,
activist policies to combat unemployment can besped. In particular, monetary policy
can be effectively used without immediate inflaionconsequences, since it can affect
the microeconomic foundations of the labour masdatilibrium. However, our analysis
also confirms that any adequate model should irchubiness cycle asymmetries, which
might arise for a variety of micro- or macro-economeasons (see, e.g., Bentolilla and
Bertola, 1990, and Caballero and Hammour, 1994¢. &tistence of such nonlinearities
should be an essential feature of empirical moaélshe unemployment rate, and

represents important information for both forecastnd policy-makers. For instance, it

4 Note that the I(d) structure observed in the psecenight be a consequence of the non-linear
transformations that are being applied to the palgunemployment series (see Dittman and Granger,
2002).

24



implies that the probability of erring in forecastiis asymmetric, and so are the costs in
terms of foregone output and higher output varigbfior a given objective function.
This should be clearly taken into account when fdating stabilisation policies.

Other approaches, such as the semiparametric tpe®ideveloped by Beran,
Geng and Ocker (1999) and Beran and Ocker (200Bven the nonlinear cointegration
technique of Granger and Hallman (1991), could d&seoused. It should be stressed,
however, that the approach employed in this pap@ot concerned with the estimation
of the fractional differencing parameter involvedtihe nonlinear relationship of interest,
but simply computes diagnostics for departures feog real value d. Thus, it is not
surprising that, when fractional hypotheses aresiclened, many non-rejection values are
found. It may also be worthwhile to obtain pointimates of the parameters of interest
by means of maximum likelihood or Whittle approxiioas, though our expectation is
that the results would be in line with those repdrhere. Furthermore, the tests for the
order of integration are dependent on the partictype of nonlinearity assumed (i.e.
STAR), which is not tested against a linear altevesbut simply assumed. However, the
coefficients corresponding to the selected model ai significant, suggesting the

validity of such a model.
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FIGURE 1

Fractional integration with non-linear models
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TABLE 1

Rejection frequencies of the procedure in Sectidfractional integration and non-linearities

T = 200 T = 400
Casea) Caseb) Casec) Casea) Caseb) Casec)
0.00 0.996 0.967 0.995 1.000 0.998 1.000
0.10 0.972 0.862 0.972 0.999 0.988 1.000
0.20 0.871 0.602 0.872 0.994 0.891 0.993
0.30 0.567 0.264 0.567 0.880 0.477 0.881
0.40 0.181 0.108 0.180 0.361 0.116 0.361
0.50 0.064 0.261 0.065 0.057 0.403 0.057
0.60 0.234 0.609 0.234 0.396 0.882 0.395
0.70 0.599 0.888 0.599 0.904 0.996 0.905
0.80 0.884 0.982 0.885 0.996 1.000 0.997
0.90 0.982 0.998 0.983 1.000 1.000 1.000
1.00 0.998 0.999 0.999 1.000 1.000 1.000

Case a) refers to the case where we truly idedttfie non-linear and the fractionally integratedctures.
Case b) refers to the situation where we testrietional integration ignoring the existence of tiun-
linear structure. In Case c) we test for fractianétgration and non-linearities in a model withauton-

linear structure.
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TABLE 2

Testing the order of integration with the test®kobinson (1994) in a fractional model

000 | 020 | 040 | 060 | 080 | 100 | 120 | 140 | 160 | 180 | 2.00

Whitenoise | 1555 | 1198 | 822 | 398 | -0.05| -283 | -440 | -527 | -580 | -6.15 | -6.41
AR (1) 501 | 408 | 342 | 280 179 | -0.09 | -1.69 | -275 | -3.39 | -3.77 | -4.00
AR (2 351 296 | 248 190 | 0.08 | -1.22| -275 | -400 | -490 | -550 | -5.92
Bloomfield (1) | 508 | 315 | 295 | 249 197 | 0.10 | -210 | -395 | -535 | -6.38 | -7.17
Bloomfield (2) | 701 | 496 | 368 | 344 | 272 | 0.13 | -289 | -545 | -7.37 | -8.80 | -9.89
Seasonal 1136 | 922 | 707 | 523 | 3.70 | 241 | 1.26 0.19| -0.82| -1.79 | -2.69
Seasonal 16.10 | 1522 | 1358 | 1040 | 6.16 | 285 | 0.20 | -1.85 | -3.36 | -441 | -5.15

In bold, the non-rejection values of the null hifpsis at the 5% level.

TABLE 3

Confidence Intervals of the non-rejection valueddt the 95%

significance level

Disturbances | Confidence Intervals d
White noise [0.72 - 0.90] 0.80
AR (1) [0.82 - 1.19] 0.99
AR (2 [0.69 - 1.05] 0.82
Bloomfield (1) [0.85 - 1.15] 1.01
Bloomfield (2) [0.89 - 1.11] 101
Seasonal AR (1) [1.14 - 1.76] 1.44
Seasonal AR(2) [1.09 - 1.37] 1.22
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TABLE 4

Testing the order of integration with the testfRobinson (1994) in a seasonal fractional model

000 | 020 | 040 | 060 | 0.80 1.00 1.20 1.40 1.60 1.80 | 2.00

White noise 664 | 609 | 553 | 480 | 3.73 | 255 1.54 0.74 | -0.08| -0.47 -1.96

AR (1) 314 | 289 | 244 | 220 | -0.86 | -1.44| -1.92 | -232 | -265 | -294 | -3.18

AR (2) 661 | 624 | 519 | 38 | 233 | 092 | -0.26| -1.23| -1.98 | -255 | -2.97

Bloomfield (1) | 234 | 219 | 188 | 173 | 0.89 | 0.05| -0.73| -1.38 -1.94 | -242 | -2.84

Bloomfield (2) | 213 | 2.01 192 176 | 0.92 0.05| -0.75| -1.42 -199 | -249 | 292

Seasonal 473 | 398 | 316 | 316 | 295 | 259 1.50 1.39 1.17 0.26] -1.92

Seasonal 6.17 | 409 | 291 2.15 1.95 1.69 1.20 1.00 0.17| -1.34 -2.33

In bold, the non-rgj ection values of the null hypothesis at the 5% level.

TABLE 5
Confidence Intervals of the non-rejection valueddt the 95%
significance level

Disturbances | Confidence Intervals d
White noise [1.22 - 1.97] 1.59
AR (1) [0.70 - 1.13] 0.94
AR (2) [0.90 - 1.50] 1.15
Bloomfield (1) [0.66 - 1.50] 1.06
Bloomfield (2) [0.69 - 1.48] 1.05
Seasonal AR (1) [1.17 - 1.90] 1.70
Seasonal AR(2) [1.08 - 1.84] 1.62
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TABLE 6

Selected models from Tables 1 and 2

NSL UNE, = -2136V, - 0960V, + 2624V, + x,; (L - L)%x = ¢
(L00) (@110 (1050
NS UNE, = -2073V, - 1462V, + 2870V, + x; (@1 - L)*x, =u,; u, =-0268u_, + &
L017) (1223  (L097)
N3 | UNE = —2132V; - 1033V, + 2665V + x; (L= L) 082y =u,; u, =-0.090u,, + 0.165),_, + &
(0987 (1106  (L039
NS UNE, = —1755V, — 1494V, + 2824V, + %; (- L)*x =u,; u, =0839%,_, + &
(0679 (0895 (0.766
Nes | UNE = —1926V; - 1606V, + 2908V5+ x; (- L)%, = u,; u, =-0091u,_, + 0.781,_¢ + &
(0757  (0.78)  (0.84)
Selected models from Tables 3 and 4
s UNE, = -4.268V, — 2815V, + 4075V, + x,; (- L™ = g
0779 (0712  (0.707)
- UNE, = —-2725V, + 2770V, + 0.141V;+ x; (- L)% =u; u, = 0791, + &
(04270 (0159  (0.440
o3 | UNE = —2212V; + 3254V, + 0567V + x;; (1- LY x, = u,; u, = 0.714u,_, + 011Qu,_, + &
(0418 (0155  (0.11)
- UNE, = -4.270V, -312004/, + 3882V, + x; (@1 - L)% =u,; u, =-0014u,_, + &
(0650 (0627 (0.619H
o5 |UNE: = -4268V; - 2805V, + 4078V3+ X (L= L*)181x, = u,; u, = -0.011u,_, + 008u,_¢ + &

(0617 (08189 (0.729

Standard errors in parentheses.

36




TABLE 7

Selected models based on fractional non-seasordgiso

NS1

UNE, = -0.184RIR + O0677ROR + x; (1- L)% = g
(0.076) (0.489

NS2

UNE; =-0194RIR + 0311ROR + x; (@L-L)Y%%% =u; u =-0279u_; + &
0078 (0466

NS3

UNE; =-0.186RIR, +0.628ROR, +X; (1- L) 982x =uy; uy =— 0.092u;_; + 0169 _, + &
0075 (0474

NSHA

UNE; = -0176RIR + 0062ROR + %; (- L)*3% =u; u =0842u_, + &
(0.052) (0.283

NS5

UNE; =- 0.188RIR. +0.125ROR +; (1- L) 3% = u; uy =—0.094u,_4 +0.77U; _g + &
0059  (0.779

Selected models based on seasonal fractional models

UNE, = —0319RIR +1261ROR + x; (L- L% = g

S1
(0.052) (0.400)
s | UNE, = —0020RIR, +3523R0R +x; @1-LH™3x =u; u =0768u_; + &
(0.040) (0.339)

sz | UNE; =- 0.033RIR, +3.348ROR, +x;; (1- LY)M8x = u;; u =0.688u;_1 +0.124u_, + &
(0037  (0.308

o1 |UNE; = —0295RIR, +0.699ROR + x; (- Y% =u; u =-0566u_,4 + &
(0.039 (0.309)

s5 | UNE; =— 0.288RIR, +0.665R0R, +x;; (1- L*)1%x =uy; uy =—0.049u;_4 + 003U _g + &

(0034 (0279
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TABLE 8

Forecast prediction errors of the selected models

Time period Model 15 (non-linear) | Model 17 (linear)
200294 0.3202 0.3263
2003g1 0.0664 0.0658
200392 -0.0817 -0.0782
200393 -0.2351 -0.2281
200394 -0.1879 -0.1903
200491 -0.3561 -0.3562
200492 -0.0715 -0.0665
200493 0.0461 0.0485
200494 0.0872 0.0902
200591 0.3517 0.3583
RMSE 0.906 0.958
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