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1 Introduction

Inference problems on potentially cointegrated models involving fractionally integrated time series
have recently received much attention in the econometric literature. Within this line of research,
an important effort has been devoted to analysing properties of estimates of the cointegrating pa-
rameters (Kim and Phillips, 2000, Robinson and Marinucci, 2001, 2003, Chen and Hurvich, 2003,
Robinson and Hualde, 2003, Robinson and Iacone, 2005), and testing for cointegration or determi-
nation of the cointegrating rank (Robinson and Yajima, 2002, Breitung and Hassler, 2002, Chen and
Hurvich, 2003, Hassler and Breitung, 2004, Marmol and Velasco, 2004). All these problems have
been tackled satisfactorily in the standard cointegrating set-up with unit root levels and weakly de-
pendent cointegrating errors (emphasized since Engle and Granger, 1987), but in the more general
setting of fractional cointegration many difficulties arise, especially when no restrictions are imposed
on the integration orders of the observables and/or possible cointegrating errors. In addition, while
it is assumed that fractional cointegration describes a situation where a linear combination of the
components of a (fractionally) integrated vector has reduced memory in some sense, there is no
agreement in the precise specification of this idea. For example Robinson and Yajima (2002), RY
hereinafter, presents several definitions already proposed in the literature (Johansen, 1996, Flores
and Szafarz, 1996, Robinson and Marinucci, 2003), and offer a new one. While it is true that all
these definitions are identical if all the observables share the same integration order, there are impor-
tant discrepancies among them when the vector of observables is composed of series with different
integration orders. Furthermore, in a fractional cointegration framework, the real nature of the
integration orders entails additional difficulties, because it seems unrealistic to assume knowledge of
their precise values. Note that this is a distinctive feature from the traditional framework referred
to above, where the knowledge of the integer degree of integration of the observables permits a

variety of cointegration tests (see e.g. Johansen, 1988, Phillips and Ouliaris, 1990).

In the general fractional cointegration setting there are relatively few proposals of testing for
cointegration, and these are based on different testing strategies. Marinucci and Robinson (2001)
proposed a Hausman-type of procedure comparing different estimates of the memory of the ob-
servables, and recently Robinson (2005b) provided rigorous theoretical support to this idea. RY
based their test on the analysis of the rank of a generalized long run variance matrix of the weakly
dependent error vector generating the fractionally integrated observables. They also developed a
specific-to-general procedure for testing the necessary condition for cointegration of equality of at
least some integration orders of the observables, while their cointegration testing procedure is able
to determine the cointegrating rank (see also Chen and Hurvich, 2003, for a related approach). Bre-
itung and Hassler (2002) proposed a test which extends Johansen (1988), and allows to determine
the cointegrating rank of a vector of fractionally integrated processes. Hassler and Breitung (2004)
test for the null of no cointegration by applying a modified LM test to single equation regression
residuals. Their statistic corrects for the endogeneity caused by the regressors, and enjoys standard
asymptotic properties. Lasak (2005) extends the likelihood ratio tests proposed by Johansen (1988)
allowing for unknown cointegration order. But perhaps the closest idea to the test we propose in the
present paper is the methodology designed by Marmol and Velasco (2004), MV hereinafter, which
checks for the absence of cointegration comparing the ordinary least squares (OLS) and a generalized
least squares (GLS) type of estimate of the cointegrating vector. These estimates enjoy opposite
asymptotic properties under the null of spurious relationship and the alternative of cointegration.

Their slope estimates are based in turn on memory estimates, which, as exploited in Marinucci and



Robinson (2001), may be consistent only under one of such hypothesis, or alternatively, may serve
as a basis for comparing the memory of the levels and a possible cointegrating relationship. The
estimation of memory parameters of the observables and cointegrating error is a feature also em-
ployed by Hualde and Robinson (2001, 2004, 2005), Robinson and Hualde (2003), RH hereinafter,
which designed GLS-type estimates of the cointegrating parameter with standard asymptotic distri-
bution (normal or mixed normal), leading to Wald-type test statistics with chi-squared null limiting

distribution.

Based on these ideas, we concentrate in this paper on the problem of devising a general cointegra-
tion testing procedure with standard asymptotics valid for a general class of fractionally integrated
processes. Thus, using a preliminary estimate of an appropriate projection vector obtained from the
short run structure of the fractionally integrated observables and differencing these series properly,
we can recover the same type of standard asymptotics of the previously mentioned references under
the null of no cointegration, deriving a null distribution free test, hence avoiding the null non stan-
dard limit distribution of the MV test. Under the alternative of cointegration, the same reasoning
of MV guarantees consistency of the test when cointegration induces consistency of OLS or narrow

band (NB) regression, and therefore of OLS or NB residual based memory estimates.

We emphasize the use of test statistics based on semiparametric assumptions, although we will
also comment on the precise circumstances in which parametric test statistics (which could enjoy
better finite sample properties), could be adequate. The semiparametric approach allows for a
great deal of flexibility, accommodating situations with fractional processes of arbitrary positive
memory (including simultaneous analysis of the stationary range not covered by MV, and the
nonstationary one, not covered by RY), and dealing effectively with a vector series with components
with different integration orders (which is not covered by MV, RY, Breitung and Hassler, 2002, or
Hassler and Breitung, 2004). MV, who limited the maximum integration order allowed in their
work to 3/2, indicate in their Remark 2 that their assumption of equal memory for all series is
not critical, and give some hints on how to proceed if this assumption is not satisfied. However,
the practical implementation of their test statistic when this condition does not hold could be very
difficult, because the null limiting distribution of their test statistic in this case would depend on
all the different orders involved in the vector of observables, and calculation of the critical values
from several integration order estimates could introduce important noise in the procedure. On the
contrary, our method is not designed to check for the cointegrating rank (as does RY), being only
valid for assessing statistically for the existence or not of cointegration. However, we expect similar
consistency results in higher order rank cointegrated systems as in MV. Therefore, although limited,
we believe that given the previously mentioned improvements and extensions in some directions over

existing works in the literature, our test procedure fills some relevant gaps.

The rest of the paper is organized as follows. In the next section we analyze a model for a vector of
fractionally integrated time series which could potentially lead to fractional cointegration. Section 3
presents a simple (parametric) setting where the main ideas of our testing strategy are introduced.
Section 4 deals with the general model mainly from a semiparametric perspective, commenting also
about the plausibility of a parametric version of the proposed test statistics. Section 5 presents our
assumptions and the asymptotic properties of these tests. Finally, Section 6 shows the finite sample

behaviour of our test procedures. All proofs are relegated to the Appendix.



2 A potentially fractionally cointegrated model

Throughout the paper we consider the p x 1 vector of fractionally integrated time series z; given by
2 = A;l (&) {us1(t >0)}, (1)
where 1 (-) denotes the indicator function, A, (0) = diag {A‘SO, A% LAY }, p =141, with

dp > max §; >0, min §; > 0; (2)
1€[1,1] i€[1,1]
the fractional difference operator A~ is defined in terms of A = 1 — L, where L is the lag operator,

and the formal series, for any real o # —1, -2, ...,

I iy Tt
(1-2) —jz::oaj(a)z, ag(a)—m,

where T' is the gamma function and T'(0)/T'(0) = 1; u; is a multivariate weakly dependent (perhaps
only asymptotically) covariance stationary process for which specific regularity conditions will be
given in Section 4. The truncation in (1) is necessary when §; > 0.5, because the weights a;(d;)
are not square summable in this case, but leads to nonstationary series for all §; # 0, though
asymptotically stationary for §; < 0.5. The same type of model has been used by Robinson and
Marinucci (2001) and RH among others to study the properties of parameter estimates in fractionally
cointegrated systems. Other works on fractional cointegration have used an alternative definition
of fractional nonstationarity built on long memory stationary increments. In this case the levels are
constructed as partial sums of such increments and are denoted Type-I nonstationary processes by
Marinucci and Robinson (1999), whereas z; is termed Type-11. We will refer to the i-th component

of z; as an I (J;) process.

Condition (2) has several implications. First, we do not deal with antipersistent observables,
which are processes with negative memory. These are rare in practice, and while cointegration
involving this type of processes is possible in the strict sense, it does not have empirical appeal. For
similar reasons we set max; d; > 0, so we deliberately avoid cointegration among I (0) exclusively.
More importantly, the first component of z; is assumed to have the highest integration order. As
will be seen later, the identification of the component with the highest integration degree is one of
the key requirements of our procedure. This is certainly slightly restrictive, but seems unavoidable
in view of the great generality that our framework permits. Note that this requirement does not
cause any difficulty in the traditional framework where cointegration among processes with the same
integration order is considered, and in practical terms, it is always possible to base the choice of
the particular component with highest memory on consistent estimates of the individual integration

orders of the observables.

We adopt the following definition of cointegration given by Flores and Szafarz (1996).

Definition 1 We say that z is cointegrated if there exists a px 1 vector a # 0 such that &'z ~ I (7)
with v < dg, and at least a non-zero scalar component of o multiplies one component of z, with

integration order equal to dg.

Obviously this definition implies that for z; being cointegrated is needed that at least one
observable apart from the first one have integration order dg. Note that this definition could miss

some cointegrating relations (see e.g. RY for a good example) where variables I () are not present.



However, we do not find this worrying, because in those particular cases the I (dg) variables would
not be involved in any relation of cointegration, so they could be taken out from the model and
interpret the new vector of observables without these variables in terms of Definition 1. Note that
the test statistics which will be presented in subsequent sections test for the null of no cointegration
against the alternative of cointegration. Thus, the purpose of introducing Definition 1 here is to
identify the precise type of cointegrating relations our test is able to assess. Of course, our test
will be able to detect more restrictive versions of cointegration (e.g. Marinucci and Robinson, 2001,

where v < min; 0;).

If f (\) represents the spectral density matrix of u; (or of its covariance stationary approximation
if u; is only asymptotically stationary, see below for a definition), a necessary and sufficient condition
for the existence of cointegration among the elements of z; is that f (0) is singular. If, on the contrary,
£(0) is full rank, we say that z; is spuriously related, because any non-trivial linear combination
with a non-zero component multiplying an I (dg) element of z; is also I (dp). This discussion
makes apparent that the weak dependence structure of the innovation u; is essential in order to
design any inferential procedure on the existence of cointegration. When dealing with multivariate
fractionally integrated processes like z;, the weakly dependent error input process u; is usually
viewed as depending only on a vector of short-memory parameters. However, in a cointegrating
framework it usually depends also on memory parameters, this dependence possibly vanishing if
there is not cointegration in the model. These ideas are nicely captured by the following structure.
First, we partition the basic vectors as z; = (ys, })’, ur = (uys, uly)’, with a4, ugy being I x 1, noting
that y; ~ I (dp), the critical condition in (2) playing a role here. Next, denoting for any scalar or

vector sequence (,
gt (C) = A°¢ {Ctl (t > O)}a

suppose there exists a weakly dependent covariance stationary scalar process vy, a real number ~y
such that 0 < v < dg, and a [ x 1 vector 5 # 0 such that

Uy, = 3wy (80) + vyt (5o — ) - (3)

Model (1) with (3) and v < dp leads to a multivariate extension of the bivariate cointegrated system
involving Type II fractionally integrated processes considered in Hualde and Robinson (2001) and
RH, which for this case is

y = Baitou (=), (4)
= A7 (0) {uwnl(t>0)}, (5)

where 4 (3) = diag {A‘Sl, o A } Therefore, in view of Definition 1, testing the hypothesis of no
cointegration against that of cointegration in the previous framework can be formulated in terms of

the memory parameters, so

Hy:60=7~ vs Hy:09>n. (6)

Note that assuming that u,; is a covariance stationary I (0) process and v < dp, under (3), u,; is
only asymptotically stationary due to the truncation on vy (0 — ). Other asymptotically stationary
elements of the linear combination forming u,; may arise if some of the components of z; have
integration orders strictly smaller than dy. However, based on the following definition we could

easily obtain the covariance stationary approximation of ;.



Definition 2 Given a < 1/2, let &, be a covariance stationary I (0) process, and

t

G = Zaj (@) & ;-

Jj=0

Then, we say that Zt is the covariance stationary approximation of C, if

Zt = Zaj (@) ft—j- (7)

Note that setting the difference equation

A%C =&, (8)

both ¢,, {,, are solutions of (8) (given certain initial conditions in the case of ¢,), but while ¢, is not
stationary, ¢, is the stationary solution of (8), which exists because Z;io a? (o) < o0 for a < 1/2;
and the process (7) is well-defined. For o > 1/2; (8) does not have a stationary solution. The
covariance stationary approximation of u,, is given by

Uy = B {AAT(8) } gy + A% Ty,

Here, it is interesting to analyze the connection between 8 in (4) and f ()), the spectral density

matrix of (i, ;). Partition f as

| SN e (V)

and also let 8 = (B’l7 B’Q)I, where 3, and 3, are I3 x 1 and I3 x 1 vectors corresponding to components
of z; with integration orders equal to 6y or smaller than 8, respectively, with 11 + 1, = 1. If v < do,
£ (0) is singular, and if §; = dg for all ¢ = 1,...,1, and there is no cointegration among the elements
of x, B is the fundamental vector (cf. Park, Ouliaris and Choi, 1988)

Jaz (0) fay (0) = B-

If on the contrary I; <,
!
F (0) £y (0) = (81,05,)

where 0, is a ¢ X 1 vector of zeroes.

3 The test procedure in the white noise case

We find convenient to present the basic ideas behind our test strategy in a simple setting, which
will be generalized in several dimensions in Section 4. In particular, throughout this section we will
consider the case where all the observables share the same integration order, denoted by 6. This
condition is certainly restrictive, but it is also introduced by Breitung and Hassler (2002), Hassler
and Breitung (2004), MV and effectively also by RY, which only tests for cointegration among
subsets of variables with the same integration order. Also, we will focus on the case where in (3)



the p x 1 vector wy = (vy,uly,)" is independent and identically distributed (ITD) with zero mean

/
Q _ wyy wzy
- )
Way Qmm

where we assume that 2, is also positive definite. Furthermore, the IID condition of w; will be

and nonsingular covariance matrix

taken as known, so the procedure described in this section is parametric. For these reasons, this
section could be considered of reduced empirical relevance, but, on the contrary, we find it very
informative in order to grasp the intuition behind our test methodology.

Using (3) we find that (u, u’,)" has spectral density matrix

F\) = (9)

1wy RV + 28wy Re {h (W)} + B'QawB whyh(N) + B/ Qe
2 Wayh (—N) + Qa8 Qs ’

where h(\) = (1— e"’\)éfv. Then, when v = 0§, (uys,uly;)" = (ty,ul,) is a white noise sequence
with nonsingular constant spectral density matrix, f (A) = f (0), which does not depend on ~ or §
because h(0) = 1 in this case. However, when v < §, we find that f(0) is singular because then
h(0) =0, so that z; is cointegrated.

In view of (6), estimates of § and « can be useful to derive hypothesis tests of the null of no
cointegration, and although the values of the nuisance parameters § and 3 are in general unknown,
these could be estimated from data, and from these estimates, in turn, we may be able to estimate
~ consistently from residuals, as is discussed later. However, following the route of MV, we use such
estimates through a procedure that takes advantage of the divergence of the sample moments of
zt, which, for example, also leads to non standard asymptotic properties of usual statistics, such as
OLS coefficients. Note that the estimation of v from residuals is inherent to our approach, so our

test, although nonstandard, could be regarded as a “residual based regression test”.

We define the projection vector

1= fow (0) fuy (0), (10)
noting that
n = Q;xlwmy + 3, under Hy,
= 0, under H;.

Letting ¢, h, be any possible value or estimate of the parameters v, 7, define also the fractionally
differenced residuals

v (¢, h) = y; (¢) — h'xy (c)

which are one of the key elements of our first approximation to the cointegration test problem.
Under Hy, it is evident that v, (7,7) is a white noise with variance

Wy.z = 27 fyy (0) (1 - Pix) ) (11)

where pi_m is the squared coefficient of multiple correlation between u,; and u,; given by

> Jfye (0) 52 (0) fuy (0)
Pue = T © (12
More importantly, under Hy),
E (xtvt (’7’ 77)) =0, (13>



for all ¢, whereas, noting that for any [ x 1 vector (,

Ut (’Ya C) = (T’ - C)/ Tt (’Y) + Vyt,

we have that under Hy, v; (7, () is I (0 — 7) and correlated with a; when ¢ # 7. Thus, it appears that
a sensible strategy for testing (6) is to base our procedure on an appropriately normalized version
of the sample counterpart of (13) using consistent estimates of v and 7 under the null. Under the
alternative, however, inconsistent estimation of n guarantee that (13) fails and the residuals v; are

no longer I (0).
Thus, setting

Tn(c,h) = th,lvt (c,h), (14)

(we explain later in this section why x;_1 replaces the “more natural” z; in (14)), it can be shown

that under additional regularity conditions (to be detailed in the next section),
0= 21 (v,m) —a N (0,wy.0 B (Te3})) (15)

if § < 1/2, where
oo
575 = ZCL]' (5) Ug t—3j-
=0

By contrast, denoting by “=" convergence in the Skorohod topology on the appropriate metric
space,

1
WO (1) = / W, (r:6) dW, . (r). (16)
0

when § > 1/2. Here the (Type-II, Marinucci and Robinson, 1999) fractional Brownian motion
(fBm) W, (r;0) is defined as

W, (r;0) =T (5)" / (r— )L W (s)
0
in terms of the last I components of the p x 1 vector Brownian motion (Bm) W (r) = (W, (r), W.(r))’

with covariance matrix 27 f (0), and the univariate Bm
Wy (r) = Wy (r) = Wy (r)n,

is independent of W,.. The right side of (16) is a mixed normal distribution, so that in view of this
result and also (15), it is expected that an appropriately normalized statistic based on 7., (y,7n) has
a x? limiting distribution irrespective of whether § < 1/2 or § > 1/2. In fact, defining for b # 0 the
statistic .

7, (¢, h) (Z:;l xtflxé,l) Tn (¢, h)

2, (bye,h) = 5 ,
it is straightforward to show that
En (Wy.wv v 77) —d X12 under HO- (17)

As mentioned before, one of the key elements of this test procedure is the residual v (y,7),
which is constructed from the differenced processes y; (7) and x4 (7). Note that under Hy, the
observables y;, x;, are filtered by their integration order because v = d, whereas under H; they are

underdifferenced, and will not deliver I (0) residuals if 7 is not estimated consistently. An argument



against this strategy could be that differencing in possibly cointegrated frameworks is usually not
appropriate and could imply a loss of power. However, Hualde and Robinson (2001) and RH have
found that “proper” differencing in cointegrated models leads to estimates of the cointegrating
vector with optimal asymptotic properties. This is precisely the type of filtering we propose in our
cointegration tests, although of course it is not obvious that optimal properties in estimation would
automatically be translated into testing situations, and, undoubtedly, further research would be

needed to explore this connection.

These results can serve as a basis for a distribution free test of the null of no cointegration based
on rejecting H for large values of =,, compared with a X12 distribution, once that consistent estimates
of the unknown +, 7 and wy,., are found. As it will be seen in the next section, under correlated (0)
innovations we should replace the basic OLS-type fluctuations 7,, by those of alternative statistics
that preserve a similar orthogonality property to that achieved by v (,7n) with x; by accounting

for such weak dependence in a general framework.

Obviously, Z,, (wy.z,7,m) is an infeasible statistic since, in general, both the elements of f (0)
and v are unknown. However, given an estimate J of §, we can easily estimate the elements of f (0)
by

fyy __Zyt vfwy :%Z A g ﬁcz :%Z A A (18)

and then from (10), (11), (12), obtain easily corresponding estimates of  and w,, , respectively. 5
could be recovered from levels y; or either x;, or from (asymptotically) stationary increments Ay,

or Az, with a rate of convergence,
5:5—|—Op(n7"), k> 0. (19)

Most analysis of usual parametric and semiparametric memory estimates use the alternative Type-I
definition of nonstationary processes, but they can be shown to have the same properties under (1)
using the techniques of Robinson (2005a) and Velasco (2004). Thus, under (19), building on the
results of RH, it is not difficult to show that the estimates &, 5, 7 of w,. , and 1 based on (18) are
\/n-consistent due to their parametric nature.

To obtain consistent estimates of v we can use the OLS or NB residuals
i]\t =Yt — x;ﬁv

to get
Y=74+0,(n""), k>0, (20)

under both hypotheses. If Hy is true, so v = §, since B is inconsistent for /3, v; is a linear combination
(with stochastic coefficients) of I (§) processes in a non-cointegrating direction, so that 7 is expected
to be a consistent estimate of 6. We give a richer justification of this fact in the following section. On
the contrary, under Hy, v < §, we have that B is consistent (note that the OLS could be inconsistent
if 0 < 1/2, but the NB suffices), so residuals 9, are approximately () and can be used to estimate
consistently 7 < 4. See e.g. Velasco (2003) and Hassler, Marmol and Velasco (2006), which justified

residual semiparametric memory estimation under weak assumptions for Type-I fractional processes.

Then, proceeding as in RH, given /n-consistent estimates 7], &0, ,, the rate in (19) is sufficient
to show that under Hy
—n (@y,ma/’% ﬁ) - En (wy-l’v ’Ya 77) = OP (1) 9

10



so that our feasible test statistics share the same (first order) asymptotic properties as the infeasible
ones,

— (i~ o~ 9
=n (Wy.x77, n) —d Xx; under Ho,

for both 6 < 1/2 and § > 1/2. When ¢ < 1/2, the effect of the estimation of 7 is negligible thanks
to the utilization of the regressor x;_1 in 7, instead of other alternatives, such as x;. However in a
general parametric framework a similar strategy seems to be not possible, see Remark 4 in Section 5
below. On the contrary, when § > 1/2 it is indifferent to use x; or z;_; in (14).

Finally, to conclude the analysis of the white noise situation we present a brief justification of the
different sources of power of the test. These ideas are again better described in this simple setting,
although similar reasoning would apply to the general test procedures we present in Section 4. First,
under Hy, v (7, n) is still an I (0) process uncorrelated to z;_1, but, as mentioned before, for any
¢ #n, v (v,¢) is I (6 —~) and correlated with x;_;. Thus, following Robinson and Marinucei’s
(2001) results, we can obtain the following sharp rates for 7, (v, ¢) under Hj :

o200y, (,0) = 0, (n'V?), §<1/2,

= 0,(n'™%), §>1/2,26—y<1,

= 0O, (nlf‘slogn) , 0>1/2,20 —y=1
(

= 0,(n°7), §>1/2,26—v>1,

all diverging with n, in contrast with (15), (16) under the null. Thus, the key is to employ an estimate
of n consistent under the null but inconsistent under the alternative. Following MV’s ideas, there
are ways to increase these divergence rates under Hy, for example by proposing consistent estimates
of n under Hy which diverge under the alternative. For our simple model, this could be

n= (Z"_l Ty (3)562(5)) -1 27;1 z:(V)ye(7), (21)

t= t

for which the following sharp rates can be derived:

o= 0,(1), b-y<1/2,
Op<logn)7 6_7:1/27
- 0, (n2(6_7)_1) L oy >1/2,

so that, in case 6 — v > 1/2, the divergence rate of the feasible 7, under H; can be improved upon
by using 7 instead of 7. Note that under Hy, it is asymptotically equivalent to use 7) or 7, as both

are /n-consistent estimates of 7.

The second source of power is due to the fact that pf/_x = 1 under Hy, so that provided one can
get \/n-consistent estimates of pg_z under Hy, ﬁ;‘;m -1=0, (nil/ 2), and noting the denominator

of Z,, (Wy.z,7,7), this rate also adds to previously reported divergence rates under H;. Thus, in

11



this case, the exact divergence rates of the test statistic under H; are

—n (Qyma;‘/\,,ﬁ) OP (nS/Q) 9 5 < 1/2,
5/2- 25), §>1/2,20 —~ <1,

. n®/?2= 2‘510an>7 0>1/2,20 —v =1,

hS]

Oy (n
O (
- Op(n“ V“/?), §>1/2,20—y>1, 6—~<1/2
0 (n“ V“/?logn), §>1/2,6 —~v=1/2,
O (

pAE=- 1/2), §>1/2,8 —~>1/2.

p

4 The general cointegration test

The arguments used to construct the test in the previous section are only valid when, under Hy,
the weakly dependent vector u; is an IID process, and, moreover, this circumstance in known to
the researcher, so the procedure was essentially parametric. This case was adequate to illustrate
the idea behind our test procedure but, undoubtedly, is very restrictive. Thus, throughout this
section we will work under a condition which imposes some regularity on the dynamics of u; (see
also Assumptions A-E in MV), while keeping, as in the white noise situation, the modelization
proposed in (1). The main distinctive feature of our approach now will be that under correlated
I(0) innovations we replace the basic OLS-type fluctuations 7,, by those of alternative statistics
that preserve a similar orthogonality property to that achieved by v (v,n) with z, cf. (13), by
accounting for such weak dependence in a general framework. As will be seen, there are different
ways of achieving this, but we will emphasize the use of semiparametric procedures over parametric
ones. There are three important reasons which drive this choice. First, a parametric procedure
requires knowledge, up to a finite vector of unknown parameters, of the model generating u;. Here,
even if ways of testing for this have been proposed in the literature, this knowledge could be difficult
to justify especially when the dimensionality of wu; is high. In practice, the researcher could take
the approach of fitting to u; a relatively large vector autoregressive moving average (VARMA)
process, but estimation of a large number of parameters could entail difficulties. Furthermore,
corresponding asymptotic theory developed in the next section holds in a fully parametric approach
only if all the observables are purely nonstationary. Sometimes this requirement is not very strong,
since it is widely assumed that nonstationary processes have a very important role in economics,
but, undoubtedly, introduces an additional limitation. Finally, from a practical point of view, it
seems that the identification of the parametric structure of u; is only feasible if all the observables

share the same integration order (see below for an explanation of this point).

Thus, a semiparametric approach which, while still stressing the fractionally integrated nature
of z;, does not assume any parametric model for u, could be certainly preferable. Fortunately,
this approach allows us to propose test statistics which are valid for any nonnegative value of §;,
i=0,...,1, excluding 1/2, so basically no a priori knowledge of the type discussed before is needed

in order to apply the following techniques.

Denote by Iy, the k x k identity matrix, by ||-|| the Euclidean norm, and consider that a function
g (z) (defined on an interval I) satisfies a Lipschitz condition of order « (g € Lip («v)) if there exist
two positive constants M, «, such that |g(z) — g (y)] < M |z —y|® for all z,y € I. We set the
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following condition which will characterize the short run dynamics of u;.

Assumption 1 For 0 <~ < {y, there exists a lx 1 vector 8 # 0 such that (3) holds and the process

wy = (Vye, ul,), t=0,%1,... has representation
Wy = A(L)Et

where
oo

A(s) =1, + Z:Ajsj7

j=1
and the A; are p X p matrices such that
()
det {A(s)} #0, |s| =1;
(ii) A(e*) is differentiable in \ with derivative in Lip(e), € > 1/2;
(iii) The ¢ are IID vectors with mean zero, positive definite covariance matriz Q, and E ||g¢]|? < oo,
q>4,q>2/(2mings,51/20; — 1).

Assumption 1 is sufficient to apply the functional limit theorem of Marinucci and Robinson
(2000), which will be needed to obtain the asymptotic null distribution of our test statistics. The
conditions on the process w; set by this assumption are identical to those in Assumption 1 of RH
and hold easily for stationary and invertible ARMA processes. Under Hy,

1 BAYA (8
uy =C(L)w;, C(L)= g r0) ,
0; I
so that, in general the spectral density of u; depends on memory parameters. In the important case
where ¢; = dp for all ¢ € [1,1], this dependence disappears and C (L) reduces to

o[t F
cw-o-(1 7).

In this particular case f () inherits the smoothness properties of A (e*), but, if the equality of
the orders of the observables does not hold, the presence of components like (1 —e**)® for some
a > 01in f(\), affects severely the smoothness of f, and this could have important effects on the

properties of the estimate of f, which is required in order to obtain our feasible test statistics.

As mentioned before, when short run correlation is allowed in the basic I(0) input of the fractional
processes, some short of prewhitening or previous orthogonalization should be performed to maintain
a test statistic with standard asymptotic distribution. With this purpose, we use the random
fluctuations of GLS type inspired by Hualde and Robinson (2005), controlling for the short run
correlation of the weakly dependent u;. Thus, we propose frequency-domain test statistics which
we find more natural in our semiparametric setting. Defining, for any sequences a;, by (possibly

identical to at), the discrete Fourier transform and (cross-)periodogram as

wWe () = W Zat exp (iAt), I (N) =we N wy (=X), I.(A) = Lua(N),
™ t=1

and

pN)=CFN,
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where ¢ = (1,0))’, given any real function g (\), A € [~m, 7], we consider statistics based on

?m (C,E, g) = Z Sj Rew, (7>‘j) g (AJ) wz(cﬂ) ()‘J) ) ?Sn (Ca aa g) = Zsj Rew, (7>‘j)g (0) wz(cﬁ) (AJ) ’
7=0 j=0

(22)
where \; = 2j/n are the Fourier frequencies, d = (di, ...,d;)’, 2 (¢,d) = (g1 (¢) , 214 (d1) , .o, zit (),
m is a sequence tending to infinite such that m < n/2, and s; = 1,5 = 0,n/2; s; = 2, otherwise,
and in all cases we will set

gV =N =TV,
where f (A) is a nonparametric estimate of f (A) for which precise conditions will be imposed below.

Denoting by [a] the integer part of a, note that due to the symmetry properties of the Fourier
transform, we have that, for example
n
Troja (€d:D) = D wa (M) PO w,(oz) ().
j=1
which, due to the presence of all the Fourier frequencies, could be referred as a full band statistic.
When m/n — 0 as n — o0, Ty, (C,E, g) only considers frequencies on a shrinking neighbourhood
around zero, being for this reason usually referred as a NB statistic. Some of the results below
will also apply to cases where m/n — K < 1/2 as n — oo, but these do not have much intuitive
appeal and are hardly stressed in the literature. ??n (c, d, 1’5) is related to what Hualde and Robinson
(2005) denoted as “zero-frequency” statistic, because the weighting factor p is only evaluated at zero
frequency, so that, strictly speaking, the GLS weighting is not correct but only approximate, noting
that if f is smooth around 0 and m/n — 0 this approximation should be appropriate. As we show
below, under certain conditions on m, the statistic leads to the same asymptotic results as if the
weighting factors are evaluated at the different Fourier frequencies.

We propose now our semiparametric test statistics. Defining, §(\) = ¢'f ()\)_1 ¢,

b= s ReG(N) L (V) b =G(0)Y siL (N)),
j=0 =0
we will reject the null of no cointegration for large values of

T (e.d.0) = 7, (e.0.0) b (e.d) . 0 (edg) =70 (e.dg) (B) 7% (e.dg)

where the unknowns (c, d, g) are replaced by appropriate estimates of (7,37 p) .

Alternatively, considering the known function f(\;h), h € RF, where for a k x 1 vector § of
unknown parameters f (A, 0) = f()\), it is straightforward to design a parametric version of our
test statistics. In order to develop this extension, it is important to take into account important
aspects which differ from the semiparametric situation. First, although theoretically, it is possible
to carry out the analysis of the parametric case allowing the integration orders of the components of
z to differ, in practical terms this is not very relevant, because, if this is the case, it is not feasible
to identify the parametric model driving u; under Hy. While the model for wu,; is identifiable
from residuals based on fractional differences of x; (from estimates of the respective integration
orders of its components), u,; is a linear combination of I (0) and overdifferenced z;’s under Hy,
if some integration orders are smaller than §y, which makes practically infeasible to identify the

parametric structure of the whole vector u; on which the orthogonalization we need to apply is
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based. Fortunately, if all observables share the integration order dg, u,; is a linear combination
of T(0) processes, and its parametric structure could be recovered. Note that assuming common
memory does not imply any loss of generality with respect to previous works, but, undoubtedly, is

a limitation of the approach.

Then, under the assumption of common memory, a natural parametric statistic which exploits

all the information contained in f and could be the basis of our test procedure is
o (e h) = > we (=2)) p (i h) wage) (A) 4 (23)
j=1

where p(A\;h) = ¢'f~1 (\;h). The feasibility of the test depends now on estimates of v and 6 to

replace ¢ and h, respectively, in 7, (¢, k). Finally, defining

n

bn (h) = ZQ()‘j§h) I, ()‘j),

Jj=1

our parametric test statistic is

T, (¢,h) =7 (¢,h) bt (h) T () h) .

Given a consistent estimate of v, calculating the residual vector z;(7) it is possible to identify
the parametric model driving u;, and, on building on the results of RH, it is simple to show that
parametric estimates of 6 based on z;(7) enjoy the same asymptotic properties as those based
on uy, for which y/n-consistency and asymptotic normality is fully developed in the multivariate
framework (see e.g. Dunsmuir and Hannan, 1976, Dunsmuir, 1979). Here, methods which estimate
simultaneously short and long memory parameters could be also useful. For example, inference
in multivariate fractionally integrated vectors has also been pursued recently by Gil-Alana (2003),
extending the work of Robinson (1994), and in (possibly) cointegrated systems by Dueker and Startz
(1998) and Hassler and Breitung (2004).

5 Asymptotic properties of cointegration tests

In order to derive the asymptotic properties of our test statistics we need first some conditions on
the estimates of the integration orders and f (\). Thus, we impose

Assumption 2 Under the null and the alternative hypotheses, there exists a K < oo and estimates

4, 6 of v, 6, respectively, such that

Al + HSH <K, (24)
and k > 0 such that R
A=7+0,(n""), §=56+0,(n""), (25)
where, as n — 00
n*limlfmax{min{él,...,5;,1},1/2} 10gm = 0. (26)

There are several important remarks related to this assumption. First, (24) is not restrictive if
our semiparametric estimates are optimizers of corresponding loss functions over compact sets. Next,
the likability of (25), (26) for 7, which was briefly described in Section 3, is definitely not a trivial
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issue. Under Hy, the residuals (e.g. OLS or NB) on which the estimation of v should be based, are a
linear combination (with stochastic coefficients) of fractionally integrated processes with dominant
order dg. The presence of these stochastic coefficients complicates matters substantially, and while a
very detailed analysis goes beyond the scope of the present paper, we offer a brief justification of why
(25) holds for a particular estimate of , the Gaussian semiparametric, proposed by Kiinsch (1987)
and analysed by Robinson (1995a). First, suppose that all observables share the same integration
order g, and for simplicity let 1/2 < §o < 3/2. Denote by 5 the OLS or NB estimate of 3. Under
Hy, it can be shown that B converges weakly, so B =0, (1) and HBH > 0 with probability tending

~ BNV ~
to one. Define b = (1,6/) ’(1,5/) , so that
1, the spectral density of Az; behaves like

’3” =1, and 7y (3) = z. Clearly, under Assumption

faz ()‘) ~ GAZ)\_Q((SO_U as A — 0,

for a certain p X p matrix G, which is positive definite under Hy. Then, following the arguments
in Chen and Hurvich (2004), replacing the true constant of the spectral error sequence by the
random quantity VG AZB, which is strictly positive (with probability tending to one) by the positive
definiteness of G a ., all the results on consistency of 74 hold following the results of Robinson (1995a)
and Lobato (1999). It can also be obtained that ¥ — v = O, (m~'/2), where m satisfies the usual

restriction
1 mit?r

—+
m

2
logm — 0 as n — oo,
n2e

with p € (0, p*), where, as in Robinson (1995a), p* € (0, 2] is the parameter related to the smoothness
of the spectral density of Az; around frequency 0. Thus, in the most favourable case the least strict

bound for the convergence rate of § is n=2/5log!/® n (if p* = 2).

When the integration orders of the observables are not all equal, the situation is much more
complicated. In this case, those components of B corresponding to processes with integration order
smaller than &g typically are not bounded in probability, invalidating in principle the estimation of
v based on the residuals y; — B/xt. For the sake of an easy exposition, collect those components of
B inal*x1 vector 3*, where [* € [1,1 — 1], and correspondingly let 2} be the vector of components
of x; with integration order strictly smaller than dy. To describe the procedure we propose in this
situation let also B be a NB estimate. Then, it can be easily shown that if dp < 1/2 (see e.g.
Robinson and Marinucci, 2003), the rate of divergence of B* can be made arbitrarily small (up to
a power rate), by letting the rate at which the NB bandwidth increases be arbitrarily close to (but
smaller than) n. Thus, letting the bandwidth employed in the estimation of v grow slower than that
used in the NB estimation of 3, the contribution of B*/xj to the spectral density of the residuals
Yr — Blmt can be made negligible, so the terms with g memory dominate. Note that this strategy
is only valid if §y < 1/2, but if we suspect that for example 1/2 < §g < 3/2, the same reasoning
applies if we estimate 8 from the NB regression of Ay; on Ax;, obtaining B, and then estimating ~y
from y; — B/xt. Higher §y’s could be treated by estimating 8 from higher integer differences of the

observables.

Under Hy, if §p = 0; for all 4 € {1,...,1}, the first part of (25) is well known for an estimate of
~ based on OLS or NB residuals (see e.g. Velasco, 2003). Here, OLS residuals are not a good proxy
of the true cointegrating errors if dg < 1/2 (so there is the so-called stationary cointegration), but
NB ones suffice. When ¢; < dg for some i € {1,...,l}, if v < min,; J;, our estimate of § will be
consistent (although its rate of convergence could be very slow), because taking integer differences of

-~/
the observables the cointegrating structure is preserved. Thus, estimating ~ from y; — § x; will lead
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to a consistent estimate of v under H; and the test will gain power. If v < §y but v > d; for some
i€{1,...,1l}, some of the components of B could diverge, but as under Hy, this rate of divergence
could be made arbitrarily small, and similarly, the estimation of v is not going to be affected if we
restrict the rate of growth of the bandwidth employed in the estimation of v accordingly.

The conditions for E are satisfied for standard semiparametric estimates of §, based on the
corresponding components of z;. Finally, (26) reflects a trade off between the rate of growth of
m and the smoothness of f through the positive relation between this smoothness and k. Note
however that even if k is very small, (26) could be satisfied by constraining the rate of growth of
m appropriately. This is of primal importance, because, as mentioned before, depending on the
values of the memory parameters of the observables, the lack of smoothness of f is a very realistic
possibility. If m grows at the same rate as n and dg > 1/2, almost /n-consistent estimates of the
orders might be necessary, so some bias-reduction estimation procedures might be required (see
Hualde and Robinson, 2004).

We impose on f either of the following conditions which will be used for 7,, (c, d, g) and
?Om (c, d, g) respectively.

Assumption 3 Uniformly in j, there exist > > 0, ¢ > 0, such that

(AJ) (/\j) = Op(niﬂ)a
FOu = F i) = (FON = F ) = 0,(n7),

where, as n — 00

n—zml—max{min{él,..4,6171},1/2}

n—¢m2—max{min{617..4,61,1}71/2}

~ 0, (27)

— 0.

Assumption 4 There exists > > 0 such that

for which (27) is satisfied.

Both assumptions are unprimitive but Hualde and Robinson (2004) justified them rigorously
under general conditions for particular estimates of f. Note that these estimates could be based
on residuals z; QS\), for a certain estimate of § consistent under both hypotheses, or alternatively on
residuals z;(7, d), which under Hy behave similarly to z;(d), but under Hy, could lead to divergent
estimates of f, which could add power to the test. As for the estimates of the orders, m could be

restricted appropriately in order to deal with the lack of smoothness of f.

We do not consider the specific case where components of z; have an integration order equal to

1/2, for which we introduce the following condition.
Assumption 5 ¢; # 1/2 for all i =0, ..., 1.
In order to get a neat asymptotic theory, without loss of generality, we reorder the variables in

x¢ according to
51252225120
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Thus, we set

3= (51,8,)  where Dy = (91,,01)' s 82 = (Bry1, 00
with §; > 1/2,i=1,....,01 and 0; < 1/2, i =1; + 1,...,1, where l; = [ indicates that all integration
orders of the a’s are strictly larger than 1/2, {1 = 0 meaning that all the orders are smaller than

1/2.
Finally, we impose some conditions on the bandwidth m.

Assumption 6 Ifly <, for e in Assumption 1,

log!/? n 4+ m>+2¢ /n>t2¢ 0, as n — .

mmaxicy 41,1 6i—1/2

Assumption 7 Assumption 6 holds and if l; > 0

m/nmitennl % (0, as n — oo.

C(L)A(L), W (r) be the p x 1 Bm with

We introduce some additional notation. Let D (L)

covariance matrix €2,
J— I
W (r) =2n¢' (D)) @7 'W (r),

and define the I; x 1 column vector

J=1,..,lx

W(r,sl)z (O,i;-)r(laj>/(r—s)§j1D(1)dW(s) ,
0

where i; is a [ x 1 vector of zeroes except 1 in the jth position; denoting by fi; (A) the (4, j)-th

element of f(A), let
7 fij (0)
0) = | —L——~— .
f(0) L —8; — 0 |i=tit1,..0
j=li+1,...,1
finally set
A () = diag (om0, m /2R

We next present the null limiting distribution of the statistic 7,,(7,9, p)

Theorem 1 Under Assumptions 1, 2, 8, 5, 6 and Hy, as n — oo,
1 —_ — —

W (r;01) dW (r)
Z

A ()7 (3,5,5) = / . (28)

where Z is a (I —1y) x 1 vector of random variables normally distributed with E (Z) =0 and

Var (Z) = %q (0) f22(0),

The proof of Theorem 1 is given in the Appendix. Denoting by T;‘n any of the Y’m(ﬁ 8,D)

19,(3,3,5), we have
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Corollary 1 Under the conditions of Theorem 1 and Hy, as n — oo,

~

* 2
Tm —d X1 -

Remark 1. The distribution on the right of (28) is mixed normal because W (r;0) and W (r) are

not correlated, hence the corresponding test statistics have chi square null asymptotic distribution.

Remark 2. In the most important case emphasized in the literature, that is when all the observables
share the same integration order (see e.g. RY, MV), we could simplify substantially our statistic
by replacing the process z:(7,0) by simply 2z:(), where the same filtering is applied to all the
observables. Note that in this case z:(7) is a good proxy for u; under Hy. However, if we allow
the integration orders to vary across the components of z;, z;(5) would have some overdifferenced
components under Hy, and the orthogonalization in (22) with g (A) = p(\) would not be correct.
This problem is avoided by considering z; (/7\,3) instead, noting that this modification should not
imply any loss of power, because under Hy, y; (7) is underdifferenced, so it is the leading component
in z(7,90).

Remark 3. The “zero-frequency” statistic has a direct interpretation relative to that proposed for
the white noise situation. Clearly

n

s (15.8) = = S0 (1 (1) — e (0) 72 (0) A (B) )

YT =1

although, in view of our assumptions, this statistic enjoys nice properties only when 6; > 1, i =
0,...,1, since otherwise the incorrect treatment of the short-memory components by weighting only

at frequency zero distorts heavily its asymptotic behaviour.

For the analysis of the parametric test we set

Assumption 8 (i) Assumption 1 holds;
(i) f(X;h) satisfies the technical smoothness conditions imposed in Assumption 2 of RH;

(iii) There exist estimales 7, [ of 7, 0, respectively, for which Assumption 2 (for 7, without the
need of (26)) holds and
529—&—0,, (n_%);

(v) §; = ¢ for alli € [1,1], where 69 > 1/2.

Thus, we have the following results, whose proof is given in the Appendix.

Theorem 2 Under Assumption 8 and Hy an equivalent result to (28) holds for T, (3,5)

Corollary 2 Under the conditions of Theorem 2 and Hy, as n — oo,

Tn —a Xl2

Remark 4. Theorem 2 uncovers another important limitation of the parametric setting, because the
result is only given for the §y > 1/2 case, so one should know a priori the (purely) nonstationary
condition of the observables. When 6y < 1/2 it can be shown that under our conditions n=/27,, (v, 0)
is asymptotically normal, but even if 0 is \/n-consistent the asymptotic distribution of the properly

-~

normalized statistic 7,,(7, ) differs from that of the infeasible one, unlike in the semiparametric
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setting where feasible and infeasible statistics share the same limiting distribution. Here, it should
be possible to determine that n=/27, (ﬁ,/ﬁ\) is asymptotically normal, but the asymptotic variance
of the normalized statistic is not the same as in the case where 6 is known, and depends on the
particular form of 0. Dealing appropriately with the § < 1/2 case was the precise reason why
x4 replaces (the more natural) z; in (14), but in our general setting the problem of calculating
the limiting distribution of the normalized feasible statistic is complicated, because 0 is generally
implicitly defined, although letting u; be a finite vector autoregressive (VAR) process the task is
simpler (see Hualde and Robinson, 2001).

Remark 5. Theorem 2 mainly uses (in a different framework) results from RH, the main distinguish-
ing feature being now that the requirement on the estimate of the order ¢y (under Hy) is much less
stringent than in RH. In particular, RH derived a related result under the condition (translated to
our framework) that £ > max (0,1 — d¢), so almost y/n-consistency of 7 was needed in case 6y were
just above 1/2. This assumption was unavoidable in RH’s framework, but exploiting our particular
orthogonalization, we manage to avoid this requirement in the present setting. This relaxation is
not trivial, since the theory for estimating parametrically (hence obtaining /n-consistent estimates)
long and short-memory parameters simultaneously in a multivariate setting is only fully developed
in the stationary case. More importantly, v needs necessarily be estimated from a sort of residuals
(like OLS ones), so it is unclear in which sense one can base parametric estimates of v on these

residuals.

Remark 6. Note that in the semiparametric case we need some extra requirements (given in (26)) on
the convergence rates of the estimates of the orders apart from £ > 0. This is due to the non-unique
differencing applied to the observables in the test statistics, an issue which also arises in Hualde
and Robinson (2005).

6 Monte Carlo evidence

In order to offer some evidence of the finite sample behaviour of these test procedures, we present
a small Monte Carlo experiment. There are two parts to our study, the first comparing the perfor-
mance of semiparametric and parametric versions of our test in the simple bivariate situation where
the error input process w; is white noise, and the second focusing on the semiparametric case with
correlated wy, and with three observables whose orders could possibly differ. In the first part of the
study, we generated a univariate process x; of lengths n = 64, 128,256,512, 1024, as in (5) for the
different values of § = 0.3,0.6,1,1.4, and y; as in (4) (for the same lengths as x;) with =1 and ~

taking four different values for each corresponding d, which are
vy=20,0—0.2,0—0.4, 60— 0.6,

except for = 0.3, where v = 0.3,0.2,0.1,0, the first value representing in all cases the situation
of absence of cointegration. The error input process w; was generated as a mean-zero bivariate

Gaussian white noise with a covariance structure leading to a white noise u; with covariance matrix

p 1

with p = 0.5, noting that in view of the Monte Carlo results of Hualde and Robinson (2004), the

tests are expected to behave in a better (worse) way as |p| decreases (increases), being relatively
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unaffected by the sign of p. The parametric test statistic was computed following these steps.

. Estimate ¢ from the raw series z; as in Beran (1995), fixing the optimizing interval [§ — 1, + 1].

. Compute the NB estimate for 5 (see e.g. Robinson and Marinucci, 2001), choosing bandwidths

m = 25,40,65,120,220, for n = 64,128,256,512,1024, respectively. Note that the OLS
residuals are adequate to estimate v under Hy if § > 0.5, but if § < 0.5, the OLS estimate is

in general inconsistent.

. Estimate v with the NB residuals by the same procedure as in 1., optimizing over the interval

[y — 1,7+ 1]. Note that both intervals are infeasible but in practice their length could be
adequate.

. Compute &, , using corresponding estimates of components of the spectral density matrix (at

frequency zero) calculated as in (18), noting (11),(12), and estimate n by 7 (see (21)).

. Compute the feasible test statistic Z,, (0y.o,7,7)-

We compare the behaviour of =,, with two semiparametric versions of the test, one where the

GLS weighting referred before is evaluated at all Fourier frequencies, the other weighting only

frequency 0. Given that in the present setting u; is a white noise process, both test statistics are

expected to enjoy a similar behaviour, and this is corroborated by the results of our experiment. In

order to calculate the semiparametric statistics, we use the following steps.

1.

@

Estimate § and ~ by 5 and 7, by Robinson’s (1995b) versions of the log-periodogram of
Geweke and Porter-Hudak (1983) (with bandwidths m given in 2.), without trimming or
pooling applied to the series Ty, vy, where T = 2,1 (6 < 1) + Az 1 (6 > 1), 0, = 0,1 (6 < 1) +
AD;1(6 > 1), denoting by 7; the NB residuals, and adding back one to the estimates of the

orders when the corresponding differenced series are employed.

Compute the unweighted estimate of f (\),

R 1 j+m
fxg) = om+ 1 qumfz(ﬁ) (Ak) -

Note that we used here the same bandwidth as for the estimates of the orders, and m will be

also the corresponding bandwidths used for the semiparametric statistics.

0
m>

Compute the following slightly modified versions of Tm, Y0 | which exploit the bivariate

framework and add power. The only modification affects 7,,, 7o, in (22), because instead of

this statistic we compute

f12() f12(0
_ zm: Re {1,570 (1)) B o 5)e (M)}, o Re {Lme ) = 2297, () }
Tm = Sj — = = y Tm = Sj -~ 7 £
=0 fll ()\]) _ le(ﬁ;)(.i\ZJl)( j) =0 f11 (0) o fl2§§i]{;;(0)

where ﬁj is the (i, j)-th element of f and
_ 1 jtm
fi2(Nj) = e > Ly@ee ),

k=j—m

which diverges under Hq, being this the source of additional power.
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Results of the proportion of rejections over 10.000 replications when comparing the values of
the statistic with the o = 0.01,0.05,0.1 nominal critical values of the x? distribution are reported
in Tables 1-4 for the different values of §. Overall all the three tests are oversized, but, in almost
all cases sizes react appropriately as n increases. As expected, in terms of size, the parametric test
performs best, followed by Ym7 with T?n being worst, although for cases 6 = 1,1.4, its behaviour
is very similar to that of ?m For the parametric test, sizes are best for 6 = 0.3, showing also
a better performance for the mean-reverting case (6 = 0.6) than for the non mean-reverting ones
(0 =1,1.4), the case § = 1 being worst. The mean-reverting and (asymptotically) stationary cases
also favour the semiparametric statistics in terms of size when n is small, but here, especially the
proportions of rejections corresponding to T?n do not show a very clear convergence pattern to the
nominal sizes as n increases, unlike in the 6 = 1,1.4 cases where it appears to be a monotonic
convergence towards the nominal values. Clearly, the parametric test is most powerful for 6 = 0.6,
with a very good performance relative to other values of 0 for which the reduction of the order of
the observables under Hj is just 0.2 (where indeed the increase of the proportion of rejections as n
increases could be very slow). This perhaps indicates that the jump from nonstationary observables
to (asymptotically) stationary cointegrating errors (which does not appear for other combinations of
0,7 =0—0.2) is important. In terms of power, the semiparametric statistics are comparable to the
parametric one (although note that the proportion of rejections are not size corrected). Similarly
to the parametric test, the semiparametric ones have also problems to detect the alternative when
0 = 1,1.4 (but not when 6 = 0.6) and v = 0 — 0.2, the proportion of rejections being here higher
than for the parametric test when n is small, although increasing at a slower rate as n increases.
In almost all cases the proportions of rejection react appropriately as n and the cointegrating gap

(0 — ) increase.

In the second part of the experiment, we analyse the behaviour of the semiparametric statistic
Y,,, in a multivariate framework (with three observables), with possibly different integration orders.
We generated ¢; (see Assumption 1) as a trivariate zero-mean Gaussian white noise with covariance

matrix

1.5 =0.75 —=0.75
Q=1 -0.75 1 0.25 )
—-0.75  0.25 1

noting that if A (L) = I3 in Assumption 1, this covariance structure leads to a white noise u; with

covariance matrix

105 05
=105 1 025 [,
05 025 1

so the scenario is similar to that described in the first part of the experiment. However, we introduced
further short-memory structure to our design by setting A=! (L) = I3 — ®L, ® = diag (0.5,0.5,0.5)
and generate w; accordingly. Then, denoting x; = (x4, $2t)l, Ugt = (Ugp1t, ’U,zg)t)/, T1g, Top are
generated from the input processes uz1 ¢, Uz2,¢, as fractionally integrated processes of orders d1, 02,
respectively, where 0; = 1.4,1, and 63 = 61,01 — 0.2,0; — 0.4. Finally, y; was generated as in (4)
with 8 = (1,1)" and

v =461,01 —0.2,6; —0.4.

Note that in the present setting, especially when do < d1, the covariance structure of wu; is very
distant from that of the white noise situation, so the use of Y,, instead of T seems more appro-

priate, although both statistics are, at least to first order properties, asymptotically equivalent. In
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order to compute the statistic and the estimates of the nuisance parameters, we employed the set
of bandwidths m = 12,20, 31, 60,110, for n = 64, 128,256,512, 1024, respectively. Note that these
bandwidths are approximately half of the ones used in the first part of the experiment, and they
were chosen on the observation that when short-memory structure is present smaller bandwidths
than in the white noise situation are warranted. The orders dg, d1, do are estimated by 25\0, 25\1, 25\2,
which are calculated by the same procedure described in the first part of the experiment, from the

series ¥y, 14, Tog, respectively. Also

R 1 j+m/2
TM=557 > La O,

=j—m/2

where 9 = (30,31,32)’ . Here, note that on the estimation of f we chose bandwidth m/2, because,
especially when d5 < d1, the estimation of f at a particular frequency gets rapidly distorted when
incorporating information from frequencies which are relatively far from this particular frequency.
As in any semiparametric procedure, the choice of bandwidth is fundamental, and while a more
extensive Monte Carlo checking the sensitivity of the test to variations of all bandwidths (and indeed
of the short-memory parameters) involved is interesting, our proposed bandwidths give general hints

to practitioners on possible choices which behave relatively well.

As mentioned in Section 5 the main issue here is to estimate . Following the strategy described
there, we compute the NB estimate from the regression of Ay, on Az, and estimate v from residuals
Yr — B/xt by the method described in the first part of the experiment, and finally obtain Tm Our
results are presented in Tables 5, 6. As in the bivariate case, when n is small our test is clearly
oversized (especially for §; = 1.4), although as n increases size reacts in the appropriate direction, so
they are very close to the nominal ones when n = 1024 (the statistic being in some cases undersized
for large n). For small n, a decrease in 2 implies a decrease in size, this effect disappearing as n
increases. In terms of power, the test behaves in a very similar way for both §; =1 and §; = 1.4
cases. Power decreases with Jo and reacts appropriately as n increases. Now we can notice that
the test is able to detect the alternative v = §; — 0.2, although especially when 05 = 67 — 0.4 the
increase in power as n increases is slow. Overall, we find that the results in this second part of the
experiment, which described a more realistic situation than the first one, are certainly encouraging,
noting that for simplicity we did not apply the provision made in Section 5 about the rate of growth
of the bandwidth used in the estimation of v (in comparison to that used in the estimation of (),
and also that we did not use sophisticated estimates of the nuisance parameters. In fact, estimation
procedures of these parameters using bias-reducing devices are readily available (see Hualde and

Robinson, 2004), and using them could lead to even better finite sample results.

APPENDIX
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A Proof of Theorem 1

The proof follows on showing

oo o [ [, FETATE ) (20)

A®) (Fn(:8,0) = Fu (1:6,0) = 0,(1). (30)

First, (30) follows directly from Propositions 2 and 3 of Hualde and Robinson (2005). Next, the
proof of (29) follows from the application of the steps in the proof of Proposition 1 of Hualde and
Robinson (2005) to a somewhat different framework. Denoting by acgl) the I3 x 1 vector of the first

Iy components of x; (the purely nonstationary ones), it can be easily shown that

n t—1 !
A(n) ?m (776ap) = A(TL)Z (zt(il)lp 5t76tzcll+l 7"'762201—1)60) +OP (1) )
v=1

t=2

where for k € [ll + 1, l]
= —g E 0 OS t)\
™ ¢ C )

and
PP = (1—e )73 () p () ifD (e ™) Q3
+(1- ei)‘) FQ3D (e™)irp (—A) D (e=™) Q.

Then, (29) holds as in Hualde and Robinson (2005) by analyzing the joint convergence of the vector
c(r) = (ci (r),ea(r), ¢ (r), where

1 1 !
ca(r) = Wzl,[nr]a e W«’Czl,[m] )
[nr]

Co (T) = n1/2 Zp Eta

/
Sty 41 [n7] [nr] -1

Am l1+1 )\§l
C3 (T) = m1/2 Z 7 ml/2 Z&:tzct v€

Thus, (29) follows by Marinucci and Robinson (2000), Brown (1971), and Kurtz and Protter (1991),

the independence between the components being due to the result that the processes ¢y (), ca (1),

c3 (r) are uncorrelated.

B Proof of Theorem 2

The proof follows on showing that

1

n=7, (7,0) = / W (r;60) dVV (r). oy

0
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where

W (rsb0) = 1) D () gz [ (= aW (), W) =2e¢ (D)) 27w ().
0

and

First, noting that under H,
Tn 77 wa - /\ 9) (A)v

(31) follows from a trivial multivariate extension of Propositions 1-3 of RH, the only significative
difference being now that the vector w, (—\;) replaces the discrete Fourier transform of a filtered

scalar process x; in RH, but this could be straightforwardly accounted for.

Regarding (32), we only show

Fu(3,0) = Fu(7,0) = 0, (n°) (33)

the rest of the proof following directly by Propositions 7 and 10 of RH. The result in (33) corresponds
to Proposition 9 in RH, but our present situation is more delicate because we just require that 7
satisfies (25) with x > 0. Thus, our proof strategy is substantially different, and it is worth giving
a detailed analysis.

The transpose of the left side of (33) is

n n t—1
o S PO Y (65— ) ™ zx et
j=1 t=2 m=1
R—-1 (5_/\ n n t—1
_ Z Zp Z Z agrrL)( Utf ezt)\ Zx/ —isA; (34)
r=1 j=1 t=2 m=1
(5*/\) n n t—1
Jrﬁ Zp()\j)z al) (6 —7) ur_me Z:E’ —ishj (35)
j=1 t=2 m=1

where p (A\) = p(\;6), ag)(c) = d"as (c) /dc", and |§ —§] < |3 —§|. First, as in RH, the second
term in (35) can be shown to be of smaller order for R large enough. Next, we show that the r-th
term in (34) is O, (n™""n°"¢) for any € > 0. First

n n t—1
1 —is
%ZP(AJ)Z a(r) B zt)\ Zml Aj
j=1 =2 m=1
1 n T n—1 ]
= 5= Yp ) [ Sl @D, - Z 0t (8) €™ Dy — Ny)f () Eds,
Jj=1 e os=1

(36)
where D;(\) = 3t _, ¢** is the Dirichlet kernel. Noting that for any A, p(\) f (A) € is identically
zero, by periodicity, (36) can be written as

T n—1 n—1

> p(y) / Dol (0) N Da(=p) Y ar (8) €N Dua(n) [F (1 Ag) = f (A)] €
j=1 t=0

—T
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which, by summation by parts, is

=300 [ el 0D, () {D W1 (1 39) ~ F A€ D ey
j=1 e s=1 t=0

t=0 h=0

= [flp+X) = FO)IE 2 (ar1Dp—s-1(p) = arDnt(1)) Y e‘”’”du-} : (37)

Because Zt “lemith = n, j = 0, mod n; = 0, otherwise, and f is boundedly differentiable, the
contribution of the first term in braces in (37) is bounded in norm by

ol / 11D (= p2) (3%)

where throughout K denotes a generic finite positive constant. Noting that for 0 < A < 7,
1D,(\)| < Kmin{w—l,t}, (39)

(see Zygmund, 1977), it can be easily shown that, uniformly in s,
/ |1l [ Dp—s(—p)| dp = O (1),

so that by Lemma D.4 of RH, (38) is bounded by

n—1 -1

1
KnS— 12 og' s (57110g7”8).
Regarding the second term in (37), noting that

a1 Dp——1 (1) — ar Dyt (1) = (ars1 — ap) D1 (p) — e Diay, (40)

the contribution of the first term on the right of (40) to the second term of (37) is 0 for 5 = 1, as
in this case a;y1 = ay, t =0,...,n — 2. For 5 # 1, this contribution is bounded in modulus by

1
2 3

1f (e + X)) — fF () dp

n

Kn™! Z /
j=1

—T

n—1
Z agr) (0) €' Dy—s(—p)
s=1

(M

2

n—2
/ S (arss = a0) D () (De(=A) + D] [f (it A) = FODldup . (a1)
t=0
The term in the first braces is bounded uniformly in j by
n—1n—1 )
K / 03" 3l (0)al” (0) ¢ Dy () Dy ()
s=1 t=1

n—1 2
< K / 1Y () ©) s~ dp < K Togn,
Zr s=1

because by Zygmund (1977)

[ 1] die = 0 10g).
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Next, the term in the second braces is bounded by

G n—2n—2
K / 0SS (s (6) = a0 (6)) Due1 () (De(=Ay) + 1)
“r t=0 s=0

X (@541 () — as (6)) Dp—s—1(—p) (Ds(Aj) + 1) dp
2
n
= O|j ?*n%logn (Z t52> ,
t=1
by Lemma C.1 of RH and (39), which is O (j?n?lognl (6 < 1) 4+ j?n* lognl (§ > 1)), implying

that (41) is O (log2 nl(d <1)+n’tlog?nl (§ > 1)). Finally, the contribution of the second term
on the right of (40) to the second term of (37) is bounded in modulus by

2 ™
du/

The first integral inside braces is O (log% n) by (39), whereas noting that

[SIE

n—2 2
Z ez’(n—t)uat (0) (De(=Aj) +1)| dp
t=0

— 2
K303 [l
=1

n—1
Z ag) (0) e'*N Dy—s(—p)
s=1

(42)

/ e—i(s_t)”du =2m, s =t; =0, otherwise,

—1T

the second is bounded by K S7_ a? (8) | D+();)|?, so that (42) is bounded by Kn~"log" n Sy {n25+1j’2}1/2,
which is O (n®~1/21log"*" n), implying that the left of (36) is O (n'/2lognl (§ < 1) +no~/2log" ™ n1 (6 > 1)).
Next, by straightforward calculations and application of Lemma C.2 of RH
1 ¢ SN () it - I —is\; 20+€
Var %;p()\j)zz% (0) ur—je J;xse il =0 (n*t),

t=2 j=1
for any € > 0, which implies that the r-th term of (34) is O, (n™*"7¢)  for any € > 0, so that (33)
holds for any x > 0 on choosing € < k, to conclude the proof.
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TABLE 1

PROPORTION OF REJECTIONS OF Z,,, T,,, Y% . BIVARIATE CASE, § = 0.3

5 3 2 1 0

Al 01 05 10| 01 05 10| .01 .05 .10 | .01 .05 .10

64 |.015 .059 .113|.030 .087 .149 | .073 .162 .245 | .141 .263 .357

128 | .012 .056 .108 | .032 .109 .184 | .098 .245 .355 |.190 .373 .484

Z, 256 | .011 .052 .103 |.065 .191 .290 | .242 .470 .595 | .347 552 .652
512 | .012 .055 .104 | .166 .362 .487 | .594 .804 .879 | .614 .767 .826

1024 | .009 .053 .101 | .396 .642 .754 | .931 .981 .993 | .843 .907 .932

64 |.036 .051 .068|.000 .118 .141].191 .237 .269 | .331 .382 417

128 | .037 .060 .083|.128 .173 208 | .304 .371 .412 | .542 .607 .648

Y, 256 |.043 .076 .111|.196 .257 .304 | .490 .567 .611 | .790 .839 .863
512 | .030 .063 .099 | .223 .306 .364 | .653 .730 .769 | .943 .960 .969

1024 | .029 .066 .109 | 295 .398 .465 | .856 .899 .920 | .996 .998 .999

64 |.039 056 .072].097 .130 .154 | .207 257 .290 | .352 410 .446

128 | .046 .073 .099 | .152 204 .238 | .344 416 .464 | .591 .660 .696

YO 256 | .058 .100 .140 | .232 301 .354 | .548 623 .666 | .839 .879 .901
512 | .044 085 .133 | .276 .366 .425 | .721 .788 .820 | .964 .977 .982

1024 | .044 .096 151 | .375 477 .542 | .900 .934 .951 | .998 .999 .999

Proportion of rejections over 10000 replications of =,,, '/fm when compared with the critical value of a X%

distribution with nominal size . For -y = ¢ this is simulated size and for 7 < § simulated power.

TABLE 2

PROPORTION OF REJECTIONS OF Z,,, T,,, Y0 . BIVARIATE CASE, § = 0.6

5 6 4 2 0

Al 01 05 10| .01 05 10| .01 .05 .10 | .01 .05 .10

64 | .035 .098 .159 | .111 .205 .284 | .379 .488 564 | .691 .754 .789

128 | .028 .085 .142 | .120 274 .380 | .468 .591 .660 | .855 .886 .905

Z, 256 | .022 070 .124 | 246 469 .594 | 565 .661 .714 | 956 .966 .971
512 | .018 .067 .118 | .550 .766 .846 | .643 .719 .765 | .996 .997 .997

1024 | .015 061 .113 | .889 964 .981 | .757 809 .835 | 1.00 1.00 1.00

64 | 051 .088 .130 |.198 .242 286 | .540 589 .623 | .844 874 887

128 | .050 .092 .137 | 277 338 .390 | .780 .816 .837 | .981 .986 .988

Y, 256 |.051 .100 .149 | 407 477 523 |.949 961 .968 | 1.00 1.00 1.00
512 | 034 .082 .132 | 496 .575 .625|.997 998 .999 | 1.00 1.00 1.00

1024 | .028 078 133 | .649 728 .769 | 1.00 1.00 1.00 | 1.00 1.00 1.00

64 | .053 .092 .136 | .205 .252 .293 | .555 .607 .638 | .859 .885 .900

128 | .056 .103 .150 | .296 .360 .410 | .801 .833 .855 | .985 .989 .991

YO 256 | .057 .112 .163 | 431 502 551 | .957 .968 .974 | 1.00 1.00 1.00
512 | .039 .093 .143 | .526 .605 .654 | .998 .999 999 | 1.00 1.00 1.00

1024 | .033 088 .147 | .684 755 .792 | 1.00 1.00 1.00 | 1.00 1.00 1.00

Proportion of rejections over 10000 replications of =,,, T,,, when compared with the critical value of a X?

distribution with nominal size . For v = 0 this is simulated size and for v < § simulated power.
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TABLE 3

PROPORTION OF REJECTIONS OF Z,,, T,,, Y . BIVARIATE CASE, § = 1

5 1 8 6 A
Al 01 05 10| 01 05 10| .01 .05 .10 | .01 .05 .10
64 | .052 .118 .188|.099 .175 245 | .374 463 528 | .752 .795 .826
128 | .037 .094 .159 | .071 .169 .253 | .402 .501 .576 | .885 .908 .921
S, 256 | .023 .077 .137|.077 206 .301 | 447 549 616 | 970 .977 .981
512 | .019 .069 .124 | .121 .287 403 | .520 .612 .670 | .998 .999 .999
1024 | .014 061 .114 | .210 418 .543 | .633 .712 .747 | 1.00 1.00 1.00
64 | .048 103 152 | .179 245 .304 | .498 548 586 | .842 .866 .879
128 | .042 .094 .147 | .181 245 .304 | .663 .707 .735 | .971 .980 .9%4
Y, 256 |.038 .089 .138|.204 271 .327 | .840 .869 .885 | .999 .999 .999
512 | .029 .076 .129 | .181 .255 .316 | .953 .965 .971 | 1.00 1.00 1.00
1024 | 025 075 127 | .176 260 .331|.995 .997 .998 | 1.00 1.00 1.00
64 |.049 102 .152 | .182 .247 307 | .500 554 593 | .849 .870 .884
128 | .043 095 .146 | .184 249 311 | .668 .713 .739 | .973 982 .98
YO 256 | .038 .090 .139 | .208 276 .333 | .844 872 .888 | .999 .999 .999
512 | .029 .077 .131|.183 .260 .322 | .954 .965 .971 | 1.00 1.00 1.00
1024 | .024 074 128 | .178 265 .336 | .995 .997 .998 | 1.00 1.00 1.00

Proportion of rejections over 10000 replications of =,,, Y,, when compared with the critical value of a X%

distribution with nominal size . For -y = ¢ this is simulated size and for 7 < § simulated power.

TABLE 4

PROPORTION OF REJECTIONS OF Z,,, T,,, Y0 BIVARIATE CASE, § = 1.4

5 1.4 1.2 1 8
01 05 10| .01 .05 .10 | .01 .05 .10 | .01 .05 .10

64 | .046 .106 .176 | .070 118 .174 | .288 .350 .409 | .660 .697 .729

128 | .030 087 .150 | .037 .086 .149 | .287 350 .404 | .77T9 .805 .825

Z, 256 | .020 .072 .134 | .026 .085 .140 | .309 .370 .423 | 889 .907 .916
512 | 018 .065 .125 | .030 .099 .163 | .346 .412 465 | .970 .975 .979

1024 | 014 .057 .109 | .052 .138 .208 | .407 471 512 | .995 .996 .996

64 | .052 113 .164 | .080 .124 174 | 278 325 368 | .771 .798 .816

128 | .041 .092 .142 | .084 .126 .174 | .404 452 490 | .898 .913 .924

Y, 256 | .031 .078 .131|.091 .145 .196 | .556 .606 .642 | .973 .978 .980
512 | .024 .074 121 | .079 135 190 | .677 .721 .746 | .996 .997 .998

1024 | .022 071 .123|.075 .138 .197 | .780 .813 .835 | 1.00 1.00 1.00

64 | .053 113 .165|.080 .124 175 | 278 327 370 | .772 799 818

128 | .041 .091 .141 | .084 .126 .176 | .404 451 491 | .898 .914 .924

YO 256 | .030 .079 .131|.092 .145 .199 | .554 .607 .640 | .973 .977 .980
512 | .024 .073 121 | .080 .137 192 | .675 722 .748 | .995 996 .997

1024 | 022 070 .122|.075 .139 .199 | .779 .814 835 | 1.00 1.00 1.00

Proportion of rejections over 10000 replications of =,,, T,,, when compared with the critical value of a X?

distribution with nominal size . For v = 0 this is simulated size and for v < § simulated power.
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PROPORTION OF REJECTIONS OF ?m, TRIVARIATE CASE, §; =1

TABLE 5

vy=1 v=.8 v=.6
0o la=.01 a=05 a=.10la=01 a=.05 a=.10|a=.01 a=.05 a=.10
1 132 183 222 427 .500 .546 .704 .762 795
64 .8 071 .106 .140 292 .362 415 .598 .669 .706
.6 .048 .078 .109 213 .269 317 .532 .610 .650
1 .089 135 A7l 497 BTT .623 .843 .882 .900
128 .8 .038 .067 .096 313 .395 .450 744 .804 .832
.6 .029 .055 .081 .236 312 .364 .696 762 794
1 071 112 153 .601 678 724 941 961 .970
256 .8 .026 .054 .086 415 503 .560 .884 917 .932
.6 .021 .044 072 310 .400 A57 .868 .905 .923
1 .039 .074 110 720 798 .838 .990 1995 997
512 .8 .016 .046 .083 .504 .610 .668 974 .986 .990
.6 011 .036 073 379 494 .564 967 .982 .986
1 .019 .048 .080 .849 .906 .933 1.00 1.00 1.00
1024 .8 .009 .040 .084 .642 744 .800 .998 .999 .999
.6 .010 .047 .094 488 .629 .703 .998 .999 .999

Proportion of rejections over 10000 replications of '/fm (:y\,g, p) when compared with the critical value of a

X% distribution with nominal size . For v = 7 this is simulated size and for 7y < ¢7 simulated power.

TABLE 6

PROPORTION OF REJECTIONS OF Ym, TRIVARIATE CASE, §; = 1.4

vy=14 v=1.2 vy=1
02 |a=.01 a=.05 a=.10la=.01 a=.056 a=.10|a=.01 a=.05 «o=.10
1.4 .168 .226 271 464 534 579 738 .789 .816
64 1.2 122 176 219 .341 .405 .450 .644 704 .740
1 101 .149 .190 270 337 387 .585 .650 .692
1.4 113 163 204 .509 .583 627 .850 .889 .906
128 1.2 .073 118 157 .339 .420 467 .750 .805 .833
1 .070 114 151 276 .353 .405 704 764 .796
1.4 .085 135 179 .589 .661 .705 927 .950 .960
256 1.2 .058 .100 .146 .397 AT8 534 .863 .899 917
1 .048 .089 130 .326 .408 .468 .836 .878 .899
1.4 .046 .086 124 .650 127 .769 .963 973 .980
512 1.2 .034 .068 .108 434 .526 .583 924 .949 .960
1 .031 .067 .103 .369 .465 523 910 939 .952
1.4 .023 .053 .085 741 .807 .843 979 .986 .989
1024 1.2 .017 .047 .079 497 .599 .654 957 970 978
1 .016 .048 .083 416 522 .586 .953 .968 975

Proportion of rejections over 10000 replications of '/fm (ﬁ,g, D) when compared with the critical value of a

X% distribution with nominal size . For ¥ = 7 this is simulated size and for 7 < §1 simulated power.
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