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1. INTRODUCTION

The last decades have been witnessed of an increase interest in time series modelling. Much of the

existing econometric and statistical literature has been concerned with the parametric time series

modelling in terms of the conditional mean and variance functions given some information set. A

large body of this literature has been devoted to the estimation of the parameters in such models and

the associated inferences. On the contrary, the problem of testing the correct joint speci�cation of

the conditional mean and variance functions has been less elaborated. In this paper we consider this

problem when the information set at time t is in�nite-dimensional, thereby allowing for Markovian

and non-Markovian time series sequences in the test procedure.

More precisely, let f(Yt; Z 0t�1)0gt2Z be a strictly stationary and ergodic time series process de-

�ned on the probability space (
;F ; P ); where the real random variable (r.v.) Yt is the dependent

(predicted) variable and Zt�1 = (Yt�1; X
0
t�1)

0 2 Rm; m 2 N, is the explanatory random vector

containing the lagged value of the dependent variable and other explanatory variables Xt�1; say.

In this paper we are mainly concerned with the case in which the conditioning set at time t � 1 is

given by It�1 = (Z 0t�1; Z
0
t�2; :::)

0: It is known that under square-integrability of Yt we can write the

tautological expression

Yt = f(It�1) + h(It�1)ut;

where f(It�1) = E[Yt j It�1] is almost surely (a.s.) the conditional mean and h2(It�1) = V ar[Yt j

It�1] is a.s. the conditional variance. Then, in parametric modelling one assumes the existence of

a parametric family of functions M = ff(�; �); h2(�; �) : � 2 � � Rpg and considers the following

model

Yt = f(It�1; �) + h(It�1; �)ut(�) (1)

where f(It�1; �) and h(It�1; �) are parametric speci�cations for f(It�1) and h(It�1); respectively,

and fut(�)g is a sequence of disturbances of the model. The speci�cation (1) covers the well-known

linear ARMA-ARCH, ARMA-GARCH models as well as nonlinear conditional mean and variance

models, see, e.g., Fan and Yao (2003). When f(It�1; �0) and h(It�1; �0) are correctly speci�ed for

f(It�1) and h(It�1), fut(�0)g will be a zero mean and unit conditional variance martingale di¤erence

sequence with respect to Ft�1, the �-�eld generated by It�1: That is, the correct joint speci�cation

is tantamount to

H0 : E[e1t(�0) j It�1] = 0 a.s. and E[e2t(�0) j It�1] = 0 a.s. for some �0 2 � � Rp; (2)

where e1t(�) =Yt�f(It�1; �) and e2t(�) =e21t(�)�h2(It�1; �): The �rst conditional moment restriction

(CMR) in H0 is responsible for the correct speci�cation of the conditional mean whereas both CMR�s

are necessary for the adequacy of the conditional variance.
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The main goal of this paper is to test for H0 when the information set is in�nite-dimensional. This

problem is of certain relevancy in econometrics practice and, in particular, in �nancial econometrics

modelling where parametric models such as (1) are commonly used, see, e.g., Straumann (2005) for

a recent reference. A lack of �t in the postulated conditional mean and/or variance can lead to

misleading conclusions and statistical inferences, and to suboptimal point forecasts. Therefore, in

order to prevent wrong conclusions, every statistical inference that is based on the modelM should

be accompanied by a proper model check, i.e., a test for H0:

There is a vast amount of literature on testing the correct speci�cation of a parametric dynamic

conditional mean model, see Escanciano (2005) for an up-to-date list of references. On the contrary,

the literature on joint speci�cation tests of conditional mean and variance functions is very scarce.

The problem of testing simultaneously many CMR�s in a time series framework has already been

considered in, e.g., Li (1999) and Chen and Fan (1999), under mixing data, or in Delgado, Dominguez

and Lavergne (2005) for independent data. Ngatchou-Wandji (2005) considered joint speci�cation

tests for parametric conditional mean and variance functions. This author proposed �2-discrepancy

measures that although being simple, fail to be consistent against a large class of alternatives of the

correct speci�cation. Moreover, Ngatchou-Wandji�s (2005) test involves the critical choice of some

subsets of a Euclidean space without any guidance for this choice. Recently, Gao and King (2004)

have extended the initial smooth-based approach of Härdle and Mammen (1993) to tests for joint

speci�cations of conditional mean and variance functions.

An important limitation of the aforementioned articles is that they consider a �nite-dimensional

information set It�1, and hence, they are not suitable for testing (2) here. Moreover, even for the

case in which the information set is of �nite dimension d say, most of the proposed tests deliver a

poor power performance when d is large or moderate, due to the so-called �curse of dimensionality�

problem.

To consider an in�nite-dimensional information set and as an alternative approach to previous

literature, Hong (1999) has introduced a generalized spectral density as a new tool for testing in-

teresting hypotheses in a nonlinear time series framework. Using Hong�s (1999) approach, Hong

and Lee (2003) have proposed a diagnostic test for conditional mean and variance speci�cations

based on checking the serial independence between ut(�0) and ut�j(�0) at all lags. However, the

independence assumption on standardized errors is in general more restrictive than the null hy-

pothesis (2) and, in particular, it is possible that their test rejects a correct null model because of

higher order dependence, incurring in an increase of the Type I error probability. Moreover, the

i.i.d assumption on standardized errors may contrast with the now growing econometric literature

documenting time-varying conditional skewness and kurtosis in economic and �nancial time series,

see e.g. Gallant, Hsieh and Tauchen (1991), Hansen (1994), Harvey and Siddque (1999, 2000) or
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Jondeau and Rockinger (2003). On the contrary, the approach considered in this paper focus on the

null hypothesis (2), allowing for higher conditional moments of unknown form.

An important part of the empirical econometric literature still uses as a diagnostic tool for testing

the goodness-of-�t of model (1) the classical Portmanteau tests initially proposed by Box and Pierce

(1970) and Ljung and Box (1978), and subsequently extended to some conditional variance models

by Li and Mak (1994), see also Lundbergh and Teräsvirta (2002). The theoretical foundation of

this approach is based on the fact that under our assumptions, �(Iut�1) � �(It�1); where Iut�1 =

(ut�1(�0); ut�2(�0); :::)
0; and thus, condition (2) yields

E[ut(�0) j Iut�1] = 0 a.s. and E[u2t (�0) j Iut�1] = 1 a.s. for some �0 2 � � Rp: (3)

The latter point motivates some authors to consider speci�cation tests for the conditional mean and

variance based on checking for serial dependence (or lack thereof) of the unobserved errors fut(�0)g

and/or their centered squares. However, it is important to remark that the serial uncorrelatedness of

standardized errors (or centered square errors) imply neither condition (3) nor (2). In other words,

tests based on usual correlation or autocorrelation measures of errors (centered square errors) are

not consistent in any misspeci�ed model delivering uncorrelated errors (centered square errors),

incurring in an increase of the Type II error probability.

The aim of this paper is to proposed a large class of joint diagnostic tests for testing H0. We

summarize the main characteristics of our tests as follows: (i) they are suitable for cases in which the

information set is in�nite-dimensional, allowing for Markovian as well as non-Markovian time series

processes; (ii) they do not depend on any smoothing parameter or kernel; (iii) they are consistent

against a broad class of linear and nonlinear alternatives to H0, as we shall show in an extensive

simulation experiment below, while being robust to higher unknown conditional dependence such as

conditional skewness or kurtosis; (iv) they incorporate information on the serial dependence from

all lags and, at the same time, avoid the problem of the curse of dimensionality or high-dimensional

integration; (v) they are consistent against pairwise Pitman�s local alternatives converging at the

parametric rate n�1=2; (vi) they are valid under fairly general regularity conditions on the underlying

data generating process (DGP); and (vii) they are simple to compute.

The rationale for our test is as follows. Under H0;


j(�0) = E[et(�0) j Zt�j ] = 0 a.s. 8j; j � 1; for some �0 2 � � Rp; (4)

where et(�0) = (e1t(�0); e2t(�0))
0: Then, by appropriately choosing a parametric family of func-

tions fw(Zt�j ; x) : x 2 � � [�1;1]sg (cf. Lemma 1 in Escanciano 2005) condition (4) can be

equivalently expressed as


j;w(x; �0) = E[et(�0)w(Zt�j ; x)] = 0 almost everywhere (a.e.) in � � [�1;1]s; j � 1: (5)
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Usual examples of weight functions w satisfying previous equivalence are w(Zt�j ; x) = 1(Zt�j � x)

with x 2 [�1;1]s; where 1(A) denotes the indicator of the event A; or w(Zt�j ; x) = exp(ix0Zt�j)

with x 2 Rs. Our tests are founded on a generalized spectral distribution function approach using

the measures f
j;w(�; �0)g1j=1 and extend those considered in Escanciano (2005) to joint speci�cations

of the conditional mean and variance.

The remainder of this paper is organized as follows. In Section 2, we present the generalized

spectral distribution based-tests for testing H0. In Section 3, we study the asymptotic distribution

of our tests under the null. In Section 4, we propose and justify theoretically a bootstrap method to

implement the tests. Finally, we make an extensive simulation exercise and an empirical application

in Section 5, comparing with competing tests. All proofs are gathered in an appendix. Throughout,

Ac; A0 and jAj denote the complex conjugate, the matrix transpose and the Euclidean norm of A,

respectively. Also jAjM denotes the weighted norm A0MAc for a positive de�nite matrix M and a

complex vector A: Unless indicated, all limits are taken as the sample size n!1: In the sequel C

is a generic constant that may change from one expression to another.

2. THE INTEGRATED GENERALIZED SPECTRAL TESTS

The many procedures for testing the correct speci�cation of a parametric conditional mean can

be used to test H0 in a two step procedure: �rst, apply any consistent diagnostic test for testing

the correct speci�cation of the conditional mean, and once it is accepted that E[e1t(�0) j It�1] = 0,

i.e., the conditional mean is well-speci�ed, one proceeds to test for the correct speci�cation of the

conditional variance. Notice that, in the �rst step it is important to have tests robust to conditional

heteroskedasticity as well as tests consistent against any direction, because if the conditional mean

is misspeci�ed, then the inference on the conditional variance could give misleading results, see,

e.g., Lumsdaine and Ng (1999). In the second step, one proceeds to test the conditional variance

adequacy, i.e., E[e2t(�0) j It�1] = 0 a.s. However, the sequential use of those tests procedures requires

some caution since they are in general mutually dependent, and hence, this sequential procedure

may increase the probability of Type I error. To avoid this problem, we consider in this paper a

joint test for the two CMR in (2).

Our methodology for testingH0 relies on a pairwise approach that has been shown to be very useful

in a variety of testing problems, see, e.g., Hong (1999), Escanciano and Velasco (2003), Hong and

Lee (2003), Escanciano (2005) or Hong and Lee (2005). More concretely, we consider simultaneously

all the dependence measures f
j;w(�; �0)g in (5) and de�ne 
�j;w(�; �0) = 
j;w(�; �0) for j � 1; to

write the Fourier transform of the functions f
j;w(�; �0)g1j=�1; i.e.,

fw(u; x; �0) =
1

2�

1P
j=�1


j;w(x; �0)e
�iju 8u 2 [��; �]; x 2 �; (6)
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which contains the same information about H0 as the whole sequence f
j;w(x; �0)g1j=0: Note that

under H0; fw(u; x; �0) � f0;w(x; �0) = (2�)�1
0;w(x; �0); and hence, a test can be based on a

distance from the estimator of fw(u; x; �0) under the null and under the alternative. However,

to avoid smoothing estimation we consider a generalized spectral distribution function approach

based on the dependence measures f
j;w(�; �0)g1j=�1: Our tests are then based on the integral of

fw(u; x; �0); i.e.,

Hw(�; x; �0) = 2

��Z
0

fw(u; x; �0)du 8� 2 [0; 1]; x 2 �;

which after some manipulation can be written as

Hw(�; x; �0) = 
0;w(x; �0)�+ 2
1X
j=1


j;w(x; �0)
sin j��

j�
: (7)

Now, suppose we have a sample fYt; bIt�1gnt=1 of size n that is used to estimate the model (1). HerebIt�1 is the information set observed at time t � 1 that contains (Z 0t�1; Z 0t�2; :::; Z 00)0 and that may
contain some initial values. We obtain residuals

be1t � be1t(�n) = Yt � f(bIt�1; �n) be2t � be2t(�n) = �Yt � f(bIt�1; �n)�2 � h2(bIt�1; �n); (8)

where �n is a
p
n-consistent estimator for �0, e.g., the Quasi-Maximum Likelihood Estimator

(QMLE). The sample version of 
j;w(x; �0) for j � 1 is then given by

b
j;w(x; �n) = 1

nj

nX
t=j

betw(Zt�j ; x); nj = n� j + 1; bet = (be1t; be2t)0:
Hence, the sample analogue of (7) is

bHw(�; x; �n) = b
0;w(x; �n)�+ 2 nX
j=1

b
j;w(x; �n)(nj=n)1=2 sin j��j�
;

with (nj=n)1=2 a �nite sample correction factor that does not a¤ect the asymptotic theory and

delivers a better �nite sample performance of the test procedure. The e¤ect of this correction factor

is to put less weight on very large lags, for which we have less sample information. Under the

null hypothesis, Hw(�; x; �0) = 
0;w(x; �0)�; and therefore, tests can be based on the discrepancy

between bHw(�; x; �n) and bH0;w(�; x; �n) = b
0;w(x; �n)�, i.e.,
Sn;w(�; x; �n) =

�n
2

�1=2
f bHw(�; x; �n)� bH0;w(�; x; �n)g = nX

j=1

n
1=2
j b
j;w(x; �n)p2 sin j��j�

:

In order to evaluate the distance from Sn;w(�; x; �n) to zero, a norm has to be chosen. We consider

a Cramér-von Mises (CvM) norm,

J2n;w(�n) =

Z
�

jSn;w(�; x; �n)j2M W (dx)d� =
nX
j=1

nj
(j�)2

Z
�

��b
j;w(x; �n)��2M W (dx); (9)
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where W (�) is an integrating function depending on the weight family fw(�; x) : x 2 � � Rsg and

satisfying some mild conditions (see Assumption A5 below) andM is a 2�2 positive de�nite matrix.

Therefore, our tests consist in rejecting H0 for �large�values of J2n;w(�n). Note that J
2
n;w(�n) uses

all lags contained in the sample, does not depend on any lag order and is very simple to compute

(see Section 5). On the other hand, the range of possibilities in the choice of w; M and W creates

�exibility for J2n;w(�n) in directing the power against some desired directions. The next section

justi�es inferences based on the asymptotic theory.

3. ASYMPTOTIC NULL DISTRIBUTION

To elaborate the asymptotic theory we consider the following assumptions. We de�ne the score

g(It�1; �) with rows g01t(�) and g
0
2t(�); given by

g01t(�) = (@=@�
0)f(It�1; �);

and

g02t(�) = 2e1t(�)g
0
1t(�) + 2h(It�1; �)

@h(It�1; �)

@�0
:

To simplify notation write w(Zt�j ; x) � wt�j(x):

Assumption A1:

A1(a): fYt; Zt�1gt2Z is a strictly stationary and ergodic process.

A1(b): E[e21t(�0)] < C and E[e
2
2t(�0)] < C:

Assumption A2: Let �0 be a small convex neighborhood of �0: The functions f(It�1; �) and h(It�1; �)

are twice continuously di¤erentiable with respect to � 2 �0 a.s., with score gt(�0) � g(It�1; �)

stationary, ergodic and Ft�1-measurable. There exist functions Gj(It�1) with sup�2�0
jgjt(�)j �

Gj(It�1); with E[Gj(It�1)] < C; for j = 1; 2:

Assumption A3:

A3(a): The parametric space � is compact in Rp: The true parameter �0 belongs to the interior

of �: There exists a unique �1 2 � such that j�n � �1j = oP (1):

A3(b): The estimator �n satis�es the asymptotic expansion under H0

p
n(�n � �0) =

1p
n

nX
t=1

m(It�1; �0)et(�0) + oP (1);

where m(�) is such that L(�0) = E[m(Yt; It�1; �0)et(�0)e0t(�0)m0(Yt; It�1; �0)] exists and is positive

de�nite:

Assumption A4: The integrating function W (�) is a probability distribution function absolutely

continuous with respect to Lebesgue measure. M is a 2 � 2 positive de�nite matrix. The weight
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function w(�) is such that the equivalence between (4) and (5) holds, and is uniformly bounded on

compacta. Also, w(�) satis�es the uniform law of large numbers (ULLN)

sup
x2�c

�����n�1
nX
t=1

�tw(�t; x)� E[�tw(�t; x)]
����� �! 0 a.s.

whenever f(�t; �t); t = 0;�1; :::g is a strictly stationary and ergodic process with �t 2 R; �t 2 Rm;

E j�1j <1; and �c is any compact subset of � � [�1;1]s:

Assumption A5: The observed information set available at period t; bIt; may contain some assumed
initial values and satis�es

E

 
nX
t=1

(be1t � ee1t)!2 = o(n)
and

E

 
nX
t=1

(be2t � ee2t)!2 = o(n);
where ee1t and ee2t are computed as in (8) but with It�1 replacing bIt�1:
Assumption A1 is a condition on the DGP. Note that we do not need any mixing or asymptotic

independence assumption to derive the asymptotic theory, see, e.g., the mixing assumption A.1 in

Hong and Lee (2003). These asymptotic independence concepts are di¢ cult to check in practice,

whereas the martingale di¤erence errors assumption used in our asymptotic theory is implied from

H0. A1 can be extended to non-stationary sequences using the results of Jakubowski (1980) at

the cost of complicating further the notation. Assumption A2 is on the model and is standard

in the literature, see, e.g., Bierens and Ploberger (1997). Assumption A3 is satis�ed under mild

conditions for the NLSE (or its robust modi�cations, under further regularity assumptions) or for

the QMLE, see Koul (2002, Chapters 5 and 8), Hall and Heyde (1980, Chapter 6), Horváth et al.

(2001) or Straumann (2005). A3 implies that under H0; �1 = �0; but they may be di¤erent under

the alternative. Examples of W (�) include the cumulative distributions functions (cdf) of a N(0,1),

Double Exponential or the Student�s t� distribution: See Escanciano and Velasco (2003) for further

discussions on the choice ofW . All previous examples of functions w satisfy A4. A5 is a condition on

the truncation of the information set bIt�1 and is similar in spirit to Assumption A4 in Hong and Lee
(2003). It is straightforward to show that A5 is satis�ed for most standard examples, e.g., MA(1)

and GARCH(1,1) models, under mild conditions on the conditional mean and variance parameters

and some mild moment conditions.

To elaborate the asymptotic theory we need further notation. Let us de�ne � = [0; 1] � � and

� = (�; x0)0 2 �. In this section we establish the null limit distribution of the process Sn(�; x; �n) �

Sn(�; �n) under H0. We consider Sn(�; �n) as a random element on the Hilbert space L2(�; �;M) of

8



all bivariate complex-valued and square �-integrable functions on �; where � is the product measure

of the W -measure and the Lebesgue measure on [0,1], that is, f 2 L2(�; �;M) if

kfk2 =
Z
�

f 0(�)Mfc(�)d�(�) =

Z
�

f 0(�)Mf c(�)W (dx)d� <1:

In L2(�; �;M) we de�ne the inner product

hf; gi =
Z
�

f 0(�)Mgc(�)W (dx)d�:

If Z is an L2(�; �;M)-valued random variable; we say that Z has mean m if E[hZ; hi] = hm;hi

8h 2 L2(�; �;M): If E kZk2 <1 and Z has zero mean, then the covariance operator of Z; say CZ ,

is de�ned by CZ(h) = E[hZ; hiZ]: Denote by =) weak convergence in the Hilbert space L2(�; �;M)

endowed with the norm metric. Also, denote by
L2�! convergence in probability in L2(�; �;M); i.e.,

Zn
L2�! Z () kZn � Zk

P�! 0: Let us de�ne 	j(�) =
p
2(sin j��)=j�; bj(x;�0) = E[wt�j(x)gt(�0)];

Gw(�) � Gw(�; �0) =
P1

j=1 bj(x;�0)	j(�) and for h 2 L2(�; �;M);

�2h =
1X
j=1

1X
k=1

E

24et(�0)M Z
���

h(�1)(h
c(�2))

0wc1�j(x)w1�k(y)	j(�)	k($)d�(�1)d�(�2)M
0et(�0)

35 ;
(10)

with �1 = (�; x
0)0 and �2 = ($; y

0)0: Let V be a normal random vector with zero mean and variance-

covariance matrix given by L(�0) (cf. A3(b)), and let S0w(�) be a Gaussian process in L2(�; �;M)

with zero mean and covariance operator CS0w satisfying �
2
h = hCS0w(h); hi; 8h 2 L2(�; �;M); where

�2h is de�ned in (10). Then, under Assumptions A1-A5 we establish the asymptotic null distribution

of Sn;w in the following theorem:

Theorem 1 Under Assumptions A1-A5 and H0, the process Sn;w converges weakly to Sw on L2(�; �;M),

where Sw(�) has the same distribution as S0w(�)�Gw(�)V , with

Cov(S0w(�); V ) =
1X
j=1

E[et(�0)
m(It�1; �0)et(�0)wt�j(x)]	j(�);

where 
 stands for the Kronecker product.

The next corollary follows from the Continuous Mapping Theorem (Billingsley 1999, Theorem 2.7)

and Theorem 1.

Corollary 1 Under the Assumptions of Theorem 1,

J2n;w(�n)
d�! J21;w(�0) =

Z
jSw(�; x; �0)j2M W (dx)d�:
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The asymptotic power properties of J2n;w(�n) can be studied using the arguments of Escanciano

(2005). We do not discuss these issues here for the sake of space. To end this section, it is important

to remark that the asymptotic null distribution of J2n;w depends in a complex way on the DGP as

well as the hypothesized model under the null, so critical values have to be tabulated for each model

and each DGP, making the application of these asymptotic results di¢ cult in practice. To overcome

this problem we shall propose to implement the tests with the assistance of a bootstrap procedure

in Section 4. Alternative solutions proposed in the literature, such as the martingale transformation

used in Koul and Stute (1999) (cf. Khmaladze, 1981), are di¢ cult in our context. The main reason

is that, unlike in Koul and Stute (1999), the dependence structure of the regressors plays a crucial

role in the covariance operator of our null limit process.

4. BOOTSTRAP APPROXIMATION

Resampling methods have been extensively used in the model checks literature of regression time

series models; see, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) in an i.i.d context,

or Escanciano (2006) for time series sequences. It is shown in these papers that the most relevant

bootstrap method for regression problems is the wild bootstrap (WB) introduced in Wu (1986)

and Liu (1988). Here we extend the WB to our present context. For simplicity, we shall assume

throughout this section that the parameter � can be partitioned into two parameters �= (�0; �0)0

such that � only enters in the conditional mean and � in the conditional variance, that is, f(�; �) =

f(�; �) and h(�; �) = h(�; �). This situation covers most models of the literature and simpli�es the

bootstrap approach. Write �0= (�00; �
0
0)
0 and �n= (�0n; �

0
n)
0: Here we approximate the asymptotic

null distribution of Sn;w by that of

S�n;w(�; x;�
�
n) =

nX
j=1

n
1=2
j b
�j (x)	j(�);

with b
�j (x) = (b
�j;m(x); b
�j;v(x))0;
b
�j;m(x) = 1

nj

nX
t=j

be�1twt�j(x);
and b
�j;v(x) = 1

n� j

nX
t=1+j

be�2twt�j(x);
and where be�t = (be�1t; be�2t)0 are obtained from the following algorithm:

Step 1: Estimate the original model and obtain the residuals bet(�n):
Step 2: Generate WB residuals according to b"�1t = be1t(�n)Vt and b"�2t = be2t(�n)Vt for 1 � t � n;

with fVtg a sequence of i.i.d random variables with zero mean, unit variance, bounded support

and independent of the sequence f(Yt; bIt�1)0gnt=1.
10



Step 3: Given �n and b"�1t and b"�2t; generate bootstrap data according to
Y �1t = f(bIt�1; �n) + b"�1t for 1 � t � n; (11)

and

Y �2t = h
2(bIt�1; �n) + b"�2t for 1 � t � n: (12)

Step 4: Compute ��n = (�
�
n; �

�
n)
0; where ��n is computed from the data fY �1t; bIt�1g1t=1 in (11) and

��n is computed from the data fY �2t; bIt�1g1t=1 in (12). Then, compute be�t = (be�1t; be�2t)0 according
to be�1t = Y �1t � f(bIt�1; ��n) and be�2t = Y �2t � h2(bIt�1; ��n) for t = 1; :::; n:

Examples of fVtg sequences are i.i.d Bernoulli variates with

P (Vt = 0:5(1�
p
5)) = b and P (Vt = 0:5(1 +

p
5)) = 1� b; (13)

with b = (1 +
p
5)=2

p
5; used in, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998), or

P (Vt = 1) = 0:5 and P (Vt = �1) = 0:5; as in Liu (1988). Other sequences can be found in Mammen

(1993). The next theorem justi�es theoretically the bootstrap approximation. The unknown limiting

null distribution of J2n;w(�n); i.e., the distribution of J
2
1;w(�0); is approximated by the bootstrap

distribution of

J2�n;w =

Z ��S�n;w(�; x;��n)��2M W (dx)d�:
That is, the bootstrap distribution

F �J (x) = P
�
J2�n;w � x

�� fYt; bIt�1gnt=1�
estimates the asymptotic null distribution function

FJ (x) = P
�
J21;w(�0) � x

�
:

Thus, H0 will be rejected at the 100�% of signi�cance when J2n;w(�n) � c�n;�; where F �J
�
c�n;�

�
= 1��:

Also, we can use the bootstrap p � values; p�n say, rejecting H0 when p�n < �; where p�n =

P
�
J2�n;w � J2n;w(�n)

�� fYt; bIt�1gnt=1� : The bootstrap assisted test is valid if F �J is a consistent estima-
tor of FJ at each continuity point of FJ . When consistency is a.s.; it is expressed as J2�n;w !d J

2
1;w(�0)

a.s. See Ginè and Zinn (1990) for discussion. Remark that we say that the bootstrap statistic ��n

converges in probability a.s. to �n if for all � > 0; P
�
j��n � �nj � �j fYt; bIt�1gnt=1� ! 0 a.s., which

is expressed as ��n = �n+ oP (1) a.s. In order to show that the bootstrap assisted tests are valid, we

need to assume that the bootstrap analogs of �n satisfy an asymptotic expansion like A3(b) in the

bootstrap world.

Assumption A6 :

11



A6(a): The estimator ��n = (�
�0
n ; �

�0
n )

0 satis�es the asymptotic expansions

p
n(��n � �n) =

1p
n

nX
t=1

Vtm(bIt�1; �n)bet(�n) + oP (1) a.s.,
where the function m(�) is as in A3.

A6(b): There exists an integrable function K(It�1) with sup�2� jm(It�1; �)j � K(It�1); with

E[K(It�1)] < C:

Theorem 2 Assume A1-A6. Under the null hypothesis H0 or under any �xed alternative hypothesis,

S�n;w =)�
eSw; a.s.,

where eSw is the same Gaussian process of Theorem 1 but with �1 replacing �0 and =)� denoting

weak convergence almost surely under the bootstrap law; see Ginè and Zinn (1990).

5. FINITE SAMPLE PERFORMANCE AND EMPIRICAL APPLICATION

In order to examine the �nite sample performance of the proposed tests we carry out a simulation

experiment with some DGP under the null and under the alternative. In the simulations we set

Zt = Yt:We compare our tests with the generalized spectral test of Hong and Lee (2003) (Mn;p) and

the Portmanteau tests of Li and Mak�s (1994) (LMm). We brie�y describe our simulation setup. We

denote by J2n;I our new Cramér-von Mises test based on w(Yt�j ; x) = 1(Yt�j � x) and the empirical

distribution function of fYt�1gnt=1 as the integrating measure, i.e.,

J2n;I =

nX
j=1

nj
n(j�)2

nX
t=1

�
m1b
2I;j;m(Yt�1; �n) +m2b
2I;j;v(Yt�1; �n)� ;

where b
w;;j;m(x; �n) = 1b�1enj
nX
t=j

be1tw(Yt�j ; x);
b
w;;j;v(x; �n) = 1b�2enj

nX
t=j

be2tw(Yt�j ; x);
and b�2je = 1

n

nX
t=1

be2jt; j = 1; 2:

The subindex I in b
I;;j;m and b
I;;j;v corresponds to the use of w(Yt�j ; x) = 1(Yt�j � x): Note that
the use of the empirical cdf does not a¤ect the asymptotic theory, see Escanciano (2005). For the

joint test we consider (m1;m2) = (1; 1): The marginal tests D2
n;I;m and D2

n;I;v correspond to the

choices (m1;m2) = (1; 0) and (m1;m2) = (0; 1); respectively.

12



Analogously, we de�ne J2n;C ; D
2
n;C;m and D2

n;C;v based on w(Yt�j ; x) = exp(ixYt�j) and the

integrating function �; the density function of the standard normal random variable, which yields

the test statistic

J2n;C =
nX
j=1

1

nj(j�)2

nX
t=j

nX
s=j

�
m1b�21ebe1tbe1s +m2b�22ebe2tbe2s� exp(�0:5 � (Yt�j � Ys�j)2):

Our test statistics J2n;I and J
2
n;C are representatives of the CvM tests based on the most used

weighting functions. These CvM tests are based on the choice M with rows (m1; 0) and (0;m2).

Hong and Lee�s (2003) test is given by

Mn;p =
h
HLn;p � bC0K2

i
=
h
2 bD0K4

i
; (14)

where HLn;p is de�ned by

HLn;p =

Z n�1X
j=1

k2(j=p)(n� j) jb�j(y; x; �n)j2W (dy)W (dx); (15)

where b�j(y; x; �n) is the sample covariance between exp(iyut(�n)) and exp(ixut�j(�n)); k(�) is a
kernel function, p is a bandwidth and W is a weighting function.

Moreover, K2 =
n�1P
j=1

k2(j=p); K4 =
n�1P
j=1

k4(j=p) and the centering and scaling factors are, respec-

tively bC0 = �Z b�0(y;�y; �n)W (dy)�2
and bD0 = �Z jb�0(y; x; �n)j2W (dy)W (dx)�2 :
Under the null hypothesis of i.i.d standardized errors and some assumptions Hong and Lee (2003)

showed that Mn;p converges to a standard normal random variable. As in Hong and Lee (2003), we

use the density function W (�) � �(�) and the Daniell kernel k(z) = sin(�z)=�z.

Throughout "t and vt are independent sequences of i.i.d. N(0; 1): We consider the nominal level

5%. The results with other signi�cance levels are similar. The number of Monte Carlo experiments is

1000 and the number of bootstrap replications is B = 500. In all the replications 200 pre-sample data

values of the processes were generated and discarded. For the bootstrap approximation we employ

a sequence fVtg of i.i.d Bernoulli variates given in (13). The power in the non-bootstrap cases

is level-adjusted by using the empirical values obtained under the corresponding null hypothesis,

although the di¤erence is not substantial. To examine the impact of the bandwidth on Mn;p we

consider p = 2 to 11. For Li and Mak�s (1994) (LMm) test we use m = 2 to 11. For simplicity, we

only present in tables the values m; p = 2; 6 and 10:
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5.1 Conditional Variance Models

Now, we examine the adequacy of an ARCH(1) model against misspeci�cations in conditional

mean, conditional variance and both conditional mean and variance. We compare our marginal tests

D2
n;I;v and D

2
n;C;v with Mn;p and LMm for linear and nonlinear conditional variance speci�cations.

With the null ARCH(1) model, we examine the level and power against misspeci�cations in the

conditional variance, their power against apparent ARCH structures and against chaotic processes

with similar autocorrelations in squares to an ARCH(1). Our null model is an ARCH(1) model:

Yt = ht"t; h2t = a+ bY
2
t�1:

We examine the adequacy of this model under the following DGP:

1. ARCH(1) model: Yt = ht"t; h2t = 0:9 + 0:1Y
2
t�1:

2. ARCH(2) model: Yt = ht"t; h2t = 0:1 + 0:1Y
2
t�1 + 0:8Y

2
t�2:

3. GARCH(1,1) model: Yt = ht"t; h2t = 0:01 + 0:29Y
2
t�1 + 0:7h

2
t�1:

4. EGARCH(1,1) model: Yt = ht"t; lnh2t = 0:01 + 0:9 lnh
2
t�1 + 0:3(j"t�1j � (2=�)1=2)� 0:8"t�1:

5. Stochastic Volatility (SV) model: Yt = ht"t; h2t = 0:1Y
2
t�1 + exp(0:98 lnh

2
t�1 + vt):

6. Bilinear model (BIL): Yt = 0:8"t�1Yt�1 + "t:

7. Logistic Map (LM): Yt = 4Yt�1(1�Yt�1); where Y0 is generated from the uniform distribution

on [0,1].

8. Non-Linear Moving Average model (NLMA): Yt = 0:8"2t�1 + "t:

These models have been considered in Hong and Lee (2003) except for the parameter values of model

2 (we have changed the parameter values to a better discrimination among the tests). To compute the

statistics D2
n;I;v and D

2
n;C;v; we use the residuals be2t(�n) := Y 2t �h2(Yt�1; �n) where h2(Yt�1; �n) =ba + bbY 2t�1; and �n = (ba;bb) is the least squares estimators (LSE) in the regression of Y 2t against a

constant and Y 2t�1: In Mn;p, and LMm we use standardized residuals but(�n) = Yt=h(Yt�1; �n): The
sample size is n = 100: In Table 1 we report the empirical rejections probabilities (RP) associated

with the models 1 to 8 to examine the empirical level and power of tests. The tests D2
n;I;v; D

2
n;C;v;

LMm and Mn;p show an excellent empirical level.

Table 1 also examines the empirical power of the tests against the conditional variance models

2 to 8. Our tests D2
n;I;v and D

2
n;C;v have excellent empirical power against the EGARCH, SV,

BILINEAR, LOGISTIC MAP and NLMA models, and moderate empirical power against ARCH(2)
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and GARCH(1,1). It is observed that D2
n;C;v outperforms D

2
n;I;v for conditional variance models,

this �nding is similar to the well documented fact in the goodness-of-�t literature of distribution

functions, see e.g. Feigin and Heathcote (1976), that indicator based tests have low power against

changes in scale, whereas exponential functions have good power properties for changes in scale and

mean. Hong and Lee�s (2003) test Mn;p has good empirical power against ARCH(2), EGARCH,

BIL and LOGISTIC MAP models and moderate power against the rest of models. Notice thatMn;p

is very sensitive on p for ARCH(2) and SV models. Li and Mak�s (1994) test LMm has excellent

empirical power against the models ARCH(2), GARCH(1,1) and SV, and has low power against

BIL, LOGISTIC MAP and NLMA alternatives.

� � � � � � � � � � �

TABLES 1 AND 2 ABOUT HERE

� � � � � � � � � � �

It is shown in these simulations that D2
n;I;v and D

2
n;C;v have omnibus power against all linear and

nonlinear alternatives considered. Notably, the exponential based test D2
n;C;v has excellent empirical

power properties against EGARCH, SV, BIL, LOGISTIC MAP and NLMA alternatives. Now, we

consider joint conditional mean and conditional variance models.

5.2 Joint Speci�cations of Conditional Mean and Variance

In this subsection we examine the adequacy of an autoregressive conditional heteroskedastic model

(AR(1)-CH(1)) against misspeci�cations in conditional mean, conditional variance and both condi-

tional mean and variance. We compare our joint tests J2n;I and J
2
n;C ; with the marginal tests D

2
n;I;m;

D2
n;C;m; D

2
n;I;v; D

2
n;C;v, and Mn;p. The simulation design is the same as before. Our null model is:

Yt = aYt�1 + ht"t; h2t = b+ cY
2
t�1:

We examine the adequacy of this model under the following DGP:

1. AR(1)-CH(1) model: Yt = 0:6Yt�1 + ht"t; h2t = 0:9 + 0:1Y
2
t�1:

2. AR(1)-BIL model: Yt = 0:6Yt�1 + 0:4Yt�1"t + "t:

3. AR(2)-CH(1) model: Yt = 0:6Yt�1 � 0:5Yt�2 + ht"t; h2t = 0:9 + 0:1Y 2t�1:

4. TAR model: Yt = 0:9Yt�1 + "t if jYt�1j � 1 and Yt = �0:3Yt�1 + "t if jYt�1j > 1:

We report the RP for J2n;I , J
2
n;C ; D

2
n;I;m; D

2
n;C;m; D

2
n;I;v; D

2
n;C;v, and Mn;p in Table 2. The samples

sizes considered are n = 50; 100 and 200: The empirical level of the joint and marginal test statistics is
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excellent against the AR(1)-CH(1) model, and more or less satisfactory forMn;p: For the AR(1)-BIL

the conditional mean is well speci�ed and the conditional variance is misspeci�ed, this is re�ected

in the empirical powers of J2n;I , J
2
n;C ; D

2
n;I;m; D

2
n;C;m; D

2
n;I;v and D

2
n;C;v: Hong and Lee�s test has

reasonable empirical power. Among all statistics, our tests J2n;I and J
2
n;C have the highest empirical

powers against the AR(1)-BIL. The AR(2)-CH(1) is a model with misspeci�ed conditional mean

and well speci�ed conditional variance, again this is re�ected in the empirical powers of J2n;I , J
2
n;C ;

D2
n;I;m; D

2
n;C;m; D

2
n;I;v; D

2
n;C;v: The empirical powers of J

2
n;I and D

2
n;I;m are the highest for this

alternative. The empirical power of Mn;p is more or less good but very sensitive to p. Finally, the

TAR model has misspeci�ed conditional mean and variance. For this model, the marginal tests

Di;v and Dexp;v are not able to detect the incorrect speci�cation in the conditional variance. One

possible reason that may explain this fact is that the marginal tests for the conditional mean and

variance speci�cations might be negatively correlated, so a misspeci�cation of the conditional mean

is delivering a lack of power in the test for conditional variance misspeci�cation. Nevertheless, we

observe that for this alternative our test statistics J2n;I , J
2
n;C ; D

2
n;I;m and D2

n;C;m outperform Mn;p:

� � � � � � � � � � �

TABLE 2 ABOUT HERE

� � � � � � � � � � �

These simulations have con�rmed the ability of our joint test to detect misspeci�cations in both

the conditional mean and variance functions. Furthermore, we have shown that the use of the

marginal and joint tests may be a useful inference procedure to detect if the misspeci�cation is in

the conditional mean, in the conditional variance or in both, although some caution is necessary for

variance speci�cations when the conditional mean is misspeci�ed.

5.3 Empirical Application: S&P500 Dynamics

We now apply our testing methodology to the well-known and extensively studied S&P500 daily stock

index. The debate on whether the dynamics of economic and �nancial time series are determined

by the conditional mean or the conditional variance has important implications on many other

applications including portfolio selection and asset pricing. Model-based �nancial decisions such

as hedging, risk management or option pricing rely on the correct speci�cation of the dynamics of

the underlying asset price process. The S&P500 daily stock index is a representative of the data

for which the GARCH model has been extensively used, see e.g. Bollerslev, et al. (1992) and

references therein. We consider a sample period from January 1, 1988 to May 28, 1993. The data

are taken from Bera and Higgins (1997) and like they, we delete the last 10% observations, remaining

1210 observations. Bera and Higgins (1997) try to discriminate between a GARCH and a bilinear
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speci�cation. Their results are inconclusive. Here, we only check if a GARCH(1,1) speci�cation is

adequate. As Bera and Higgins (1997) we specify an AR(1)-GARCH(1,1) model to the log di¤erences

of the S&P500 (Yt), such as

Yt = �0 + �1Yt�1 + "t

h2t = �0 + �1"
2
t�1 + �3h

2
t�1;

where "t = htut and h2t is the conditional variance. The parameter estimation is by Gaussian

Maximum Likelihood and the results are reported in Table 3, we also include the estimation results of

Bera and Higgins (1997) for a better comparison, and as usual the standard errors are in parenthesis.

� � � � � � � � � � �

TABLE 5 ABOUT HERE

� � � � � � � � � � �

If we apply our tests to the S&P500 daily stock index with the same Monte Carlo setup as before we

obtain that the conditional mean is well speci�ed with a p-value of 0.416 for D2
n;I;m and 0.233 for

D2
n;C;m; whereas, the conditional variance is misspeci�ed, as can be deduced from the zero p-value

of J2n;I , J
2
n;C ; D

2
n;I;v and D

2
n;C;v. These results are con�rmed with Hong and Lee�s (2003) test, which

rejects the correct speci�cation for all values of p. Therefore, we �nd that the conditional mean of

the S&P500 in this period is linear and that additional e¤ort has to be dedicated to investigate the

functional form of the conditional variance.
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APPENDIX: PROOFS

First, consider three useful lemmas. Lemma 1 is a trivial multivariate extension of Lemma 1 in

Escanciano and Velasco (2003, hereafter EV).

Lemma 1: Suppose we have a random element in L2(�; �;M) of the form hn(�) =
nP
j=1

hj;n(x)
p
2 sin j��
j� :

Assume that W is of bounded total variation and that

(i)
R
Rs
E jhj;n(x)j2M W (dx) < C uniformly in j � 1.

(ii) supx2�c
jhj;n(x)j = op(1) 8j; 1 � j � n; for all compact subsets �c � �:

Then, hn(�) converges in probability to zero in L2(�; �;M); i.e. khnk2 = op(1):

Proof of Lemma 1: EV.

Lemma 2: Under A4 and A5 the e¤ect of estimating the information set It�1 by bIt�1 in f(It�1; �n)
has no e¤ect on the asymptotic theory. That is,


Sn;w(�; �n)� eSn;w(�; �n)


2 P�! 0:

where eSn;w(�; �n) is the same process as Sn;w(�; �n) but with It�1 replacing bIt�1:
Proof of Lemma 2: Note that for any vector A there exists a constant C such that jAjM � C jAj :

Write

E



Sn;w(�; �n)� eSn;w(�; �n)


2

� C
nX
j=1

1

(j�)2
n�1j E

0@ nX
t=j

(be1t � ee1t)
1A2

+ C
nX
j=1

1

(j�)2
n�1j E

0@ nX
t=j

(be2t � ee2t)
1A2

= o(1);

where the last equality is due to A5.

For simplicity, we rename eSn;w(�; �n) again as Sn;w(�; �n). The next Lemma establishes the asymp-
totic linearization of the process Sn;w(�; �n) under the null.

Lemma A2: Under (2) and the assumptions A1-A5,

kSn;w(�; �n)� Sn;w(�; �0) +Gw(�; �0)V k2
P�! 0:
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Proof of Lemma A2: By the Mean Value Theorem and A1-A5,

Sn;w(�; �n) = Sn;w(�; �0) +
@Sn;w(�;e�n)

@�0
(�n � �0); (16)

where e�n is a mean value satisfying ���e�n � �0��� � j�n � �0j a.s. Note that the process Sn;w(�; �n) can
be written as

Sn;w(�; �n) =
1p
n

nX
t=1

et(�n)
tX

j=1

n1=2n
�1=2
j wt�j(x)

p
2 sin j��

j�
=

1p
n

nX
t=1

et(�n)Qt;w(�);

where Qt;w(�) is implicitly de�ned. Hence,

1p
n

@Sn;w(�;e�n)
@�

=
1

n

nX
t=1

@et(e�n)
@�

Qt;w(�)

= �
nX
j=1

1

n

nX
t=j

n1=2n
�1=2
j gt(e�n)wt�j(x)	j(�)

= �
nX
j=1

bj;n(x;e�n)	j(�);
where bj;n(x;e�n) = n�1Pn

t=j n
1=2n

�1=2
j gt(e�n)wt�j(x): Assumptions A1-A5, the uniform argument

of Jennrich (1969, Theorem 2) and Lemma 1 in EV yield





 1p
n

@Sn;w(�;e�n)
@�

+

nX
j=1

bj(x; �0)	j(�)







 P�! 0:

The last display, Assumption A3 and (16) imply the result.

Proof of Theorem 1: We apply Lemma A2 here and Theorem 1 in EV but with wt�j(x) replacing

exp(ixYt�j) there.

Proof of Corollary 1: By A5, Theorem 1 and the Continuous Mapping Theorem (see e.g. Billings-

ley 1999) the result holds.

Proof of Theorem 2: Write b"�t = (b"�1t;b"�2t)0,
S�n;w;m(�; x;�

�
n) =

nX
j=1

n
1=2
j b
�j;m(x)	j(�);

and

S�n;w;v(�; x;�
�
n) =

nX
j=1

n
1=2
j b
�j;v(x)	j(�):

Hence, from the arguments of Theorem 2 in Escanciano (2005) it can be shown that

S�n;w;m(�;�
�
n) = n

�1=2
nX
t=1

b"�1tQt;w(�)� n1=2(��n � �n)0G1w(�; �1) + oP (1) a.s., (17)
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and

S�n;w;v(�;�
�
n) = n

�1=2
nX
t=1

b"�2tQt;w(�)� n1=2(��n � �n)0G2w(�; �1) + oP (1) a.s., (18)

where bhj(x;�0) = E[wt�j(x)ght(�0)]; Ghw(�; �0) =
P1

j=1 bhj(x;�0)	j(�) for h = 1; 2; and

Qt;w(�) =
tX

j=1

n1=2n
�1=2
j wt�j(x)

p
2 sin j��

j�
:

From this point, the proof follows exactly the same steps as in Theorem 1 in Stute, González-

Manteiga and Presedo-Quindimil (1998). The details are omitted for the sake of space.
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Table 1. Empirical Size and Power of Tests at 5%. Conditional Variance Models.

n = 100 ARCH(1) ARCH(2) GARCH(1,1) EGARCH SV BIL LM NLMA

D2
n;I 4.5 18.0 19.8 82.8 54.2 88.0 99.7 21.6

D2
n;C 4.6 52.5 31.2 90.8 67.0 96.7 99.3 77.5

Mn;2 5.3 11.2 14.4 89.0 30.4 93.6 100 65.2

Mn;6 4.9 63.0 28.4 95.0 49.4 90.0 100 51.0

Mn;10 6.3 60.2 31.0 94.0 52.6 82.0 100 33.2

LM2 4.4 88.3 39.9 49.2 42.8 23.1 19.0 22.6

LM6 3.8 77.7 60.6 53.4 59.8 16.5 14.8 11.9

LM10 3.7 72.8 61.4 48.0 58.1 15.3 14.7 10.4

Table 2. Empirical Size and Power of Tests at 5%. Conditional Mean and Variance Models.

n = 50 AR(1)-CH(1) AR(1)-BIL AR(2)-CH(1) TAR

D2
n;I;m 3.8 4.0 76.1 27.5

D2
n;I;v 6.8 77.7 4.2 9.6

J2n;I 5.2 68.7 36.1 18.1

D2
n;C;m 3.3 5.9 34.9 40.2

D2
n;C;v 4.8 65.5 4.9 8.5

J2n;C 4.4 51.7 20.7 31.0

Mn;2 3.3 42.4 16.0 21.6

Mn;6 3.9 35.7 62.0 17.1

Mn;10 5.7 27.9 62.7 14.9

Table 3. Empirical Size and Power of Tests at 5%. Conditional Mean and Variance Models.

n = 100 AR(1)-CH(1) AR(1)-BIL AR(2)-CH(1) TAR

D2
n;I;m 4.9 5.7 98.0 57.9

D2
n;I;v 6.2 95.7 4.0 16.2

J2n;I 6.2 92.6 77.4 37.1

D2
n;C;m 4.7 7.0 75.2 77.0

D2
n;C;v 5.4 89.3 6.2 15.6

J2n;C 5.6 82.0 57.6 63.9

Mn;2 3.2 79.9 44.1 43.1

Mn;6 3.3 76.6 92.4 34.3

Mn;10 4.7 66.5 92.5 27.4
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Table 4. Empirical Size and Power of Tests at 5%. Conditional Mean and Variance Models.

n = 200 AR(1)-CH(1) AR(1)-BIL AR(2)-CH(1) TAR

D2
n;I;m 5.3 7.5 100.0 91.5

D2
n;I;v 6.3 97.5 3.5 39.0

J2n;I 5.9 94.0 100.0 75.0

D2
n;C;m 6.9 7.9 99.5 97.0

D2
n;C;v 6.3 92.0 1.0 37.0

J2n;C 6.6 85.0 74.0 92.5

Mn;2 4.0 99.0 87.0 80.0

Mn;6 3.3 99.5 100.0 69.0

Mn;10 4.6 95.5 100.0 57.5

Table 5. Estimates of AR(1)-GARCH(1,1) model for the S&P500 daily stock index.

Parameters Our Estimate Bera and Higgins (1997)�s Estimate)

�0 0.059 (0.026) 0.052 (0.025)

�1 0.080 (0.032) 0.066 (0.031)

�1 0.049 (0.014) 0.011 (0.006)

�2 0.026 (0.008) 0.013 (0.005)

�3 0.890 (0.029) 0.968 (0.013)
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