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This paper proposes a consistent test for the goodness-of-�t of parametric regression models

which overcomes two important problems of the existing tests, namely, the poor empirical power

and size performance of the tests due to the curse of dimensionality and the choice of subjective

parameters like bandwidths, kernels or integrating measures. We overcome these problems

by using a residual marked empirical process based on projections (RMPP). We study the

asymptotic null distribution of the test statistic and we show that our test is able to detect local

alternatives converging to the null at the parametric rate. It turns out that the asymptotic

null distribution of the test statistic depends on the data generating process, so a bootstrap

procedure is considered. Our bootstrap test is robust to higher order dependence, in particular to

conditional heteroskedasticity. For completeness, we propose a new minimum distance estimator

constructed through the same RMPP as in the testing procedure. Therefore, the new estimator

inherits all the good properties of the new test. We establish the consistency and asymptotic

normality of the new minimum distance estimator. Finally, we present some Monte Carlo

evidence that our testing procedure can play a valuable role in econometric regression modeling.
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1. INTRODUCTION

The purpose of the present paper is to develop a consistent, powerful and simple diagnostic test

for testing the adequacy of a parametric regression model with the property of being free of any

user-chosen parameter (e.g. bandwidth) and at the same time, being suitable for cases in which the

covariate is of high or moderate �nite dimension. Most consistent tests proposed in the literature

give misleading results for this latter empirically relevant case. This problem is intrinsic and is

often referred to as the �curse of dimensionality�in the regression literature, see Section 7.1 of Fan

and Gijbels (1996) for some discussion on this problem. More precisely, let (Y;X 0)0 be a random

vector in a (d+1)-dimensional Euclidean space, Y represents the real-valued dependent (or response)

variable, X is the d-dimensional explanatory variable, d 2 N; and A0 denotes the matrix transpose

of A. Under E jY j <1; it is well-known that the regression function E[Y j X] it is well-de�ned and

represents almost surely (a.s.) the �best�prediction of Y given X, in a mean square sense. Then,

it is common in regression modeling to consider the following tautological expression

Y = f(X) + ";

where f(X) = E[Y j X] is the regression function and " = Y � E[Y j X] is, by construction, the

unpredictable part of Y given X; and therefore, it satis�es

E[" j X] = 0 a.s.

Much of the existing literature is concerned with the parametric modeling in that f is assumed to

belong to a given parametric familyM = ff(�; �) : � 2 � � Rpg and, by analogy, one considers the

following parametric regression model

Y = f(X; �) + e(�); (1)

with f(X; �) a parametric speci�cation for the regression function f(X), and e(�) a random vari-

able (r.v), disturbance of the model. Parametric regression models continues to be attractive to

practitioners because these models have the appealing property that the parameter � together with

the functional form f(�; �) describe, in a very concise way, the relation between the response Y and

the explanatory variable X: Since we do not know in advance the true regression model, to prevent

wrong conclusions, every statistical inference which is based on model f should be accompanied by

a proper model check. As a matter of fact, proper modeling is important in model-based economic

decisions and/or to interpret parameters correctly.

Note that f 2M is tantamount to

E[e(�0) j X] = 0 a.s.; for some �0 2 � � Rp: (2)
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There is a huge literature on testing consistently the correct speci�cation of a parametric regression

model. Although the idea of the proposed consistent tests is similar in all cases, namely, comparing

a parametric and a (semi-) non-parametric estimation of a functional of the conditional mean in (2),

they can be divided in two classes of tests. The �rst class of tests uses nonparametric smoothing

estimators of E[e(�0) j X]:We called this approach the �local approach�, see Eubank and Spiegelman

(1990), Eubank and Hart (1992), Wooldridge (1992), Yatchew (1992), Gozalo (1993), Härdle and

Mammen (1993), Horowitz and Härdle (1994), Hong and White (1995), Zheng (1996), Li (1999),

Horowitz and Spokoiny (2001) or Koul and Ni (2004) for some examples. A related methodology

to the local approach is that of empirical likelihood procedures as proposed in Chen, Härdle and

Li (2003) or Tripathi and Kitamura (2003). The local approach requires smoothing of the data in

addition to the estimation of the �nite-dimensional parameter vector and leads to less precise �ts.

Tests based on the local approach have standard asymptotic null distributions, but their �nite sample

distributions depend on the choice of a bandwidth (or similar) of the nonparametric estimator, which

a¤ects the inference procedures.

The second class of tests avoids smoothing estimation by means of reducing the conditional mean

independence to and in�nite (but parametric) number of unconditional orthogonality restrictions,

i.e.,

E[e(�0) j X] = 0 a:s:() E[e(�0)w(X;x)] = 0; 8x 2 �; (3)

where � is a properly chosen space, and the parametric family w(�; x) is such that the equivalence (3)

holds, see Stinchcombe and White (1998) or Bierens and Ploberger (1997) for primitive conditions

on the family w(�; x) to satisfy this equivalence. We call the approach based on (3) the �integrated

approach�, because it uses the integrated (cumulative) measures of dependence E[e(�0)w(X;x)]: In

the literature, the most frequently used weighting functions have been the exponential function, e.g.

w(X;x) = exp(ix0X) in Bierens (1982, 1990), where i =
p
�1 denotes the imaginary unit, and the

indicator function w(X;x) = 1(X � x), see, for instance, Stute (1997), Koul and Stute (1999),

Whang (2000), Li, Hsiao and Zinn (2003) or Khmaladze and Koul (2004). Di¤erent families w

deliver di¤erent power properties of the integrated based tests. Most tests based on the integrated

approach have non-standard asymptotic null distributions, but they can be well approximated by

bootstrap methods, see, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998).

A common problem of the local and integrated approaches, is that, when the dimension of the ex-

planatory variable X is high or even moderate, the sparseness of the data in high-dimensional spaces

leads to most of the above test statistics to su¤er a considerable bias, even for large sample sizes. In

particular, tests based on the local approach or tests based on the family w(X;x) = 1(X � x) tend

usually to underrejection when the dimension of the regressors is moderate and the alternative at

hand is nonlinear, see Escanciano (2004) and Section 4 below. This is an important practical limi-
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tation for most tests considered in the literature because is not uncommon in econometric modeling

to have high order models. Some statistical theories have been developed to overcome this prob-

lem, cf. Generalized Linear Models (GLM), see, e.g., McCullagh and Nelder (1989), or Single-Index

Models, see, e.g., Powell, Stock and Stoker (1989). However, these theories are semiparametric, and

therefore, need of smoothing techniques. In addition, they do not cover all possible models.

Here, we propose a new consistent test within the integrated framework which overcomes the main

problems a¤ecting to the indicator and exponential weighting families, namely, the biased due to

the curse of dimensionality and the subjective choice of the integrating measure on �; respectively.

At the same time, it is simple to compute, does not need of user-chosen parameters or high di-

mensional numerical integration, is robust to higher order dependence (in particular to conditional

heteroskedasticity) and presents excellent empirical power properties in �nite samples, see Section

4 below. Furthermore, our test procedure provides a formalization of some well-known traditional

exploratory tools based on residual-�tted values plots.

The layout of the article is as follows. In Section 2 we de�ne the residual marked process based

on projections (RMPP) as the basis for our test statistic. In Section 3 we study the asymptotic

null distribution and the behavior against Pitman�s local alternatives of the new test statistic. For

completeness of the exposition, we consider in this section a new minimum distance estimator for

the regression parameter based on the RMPP and we show its consistency and asymptotic normality

under similar assumptions as in the testing procedure. Also, because the asymptotic null distribution

depends on the data generating process, a bootstrap procedure to approximate the asymptotic

critical values of the test statistic is proposed. In Section 4 we make a simulation exercise comparing

the new proposed test with some competing tests considered in the literature. This Monte Carlo

experiment shows that our new test can play a valuable role in parametric regression modeling.

Proofs of the main results are deferred to Appendix A. Appendix B contains a simple algorithm to

compute the new test statistic.

2. THE RESIDUAL MARKED PROCESS BASED ON PROJECTIONS (RMPP)

Let fZi = (Yi; X
0
i)
0gni=1 be a sequence of independent and identically distributed (iid) (d + 1)-

dimensional random vectors (r.v�s) with the same distribution as Z = (Y;X 0)0 and with 0 < E jY j <

1: The main goal in this paper is to test the null hypothesis (2), i.e.,

H0 : E[Y j X] = f(X; �0) a.s.; for some �0 2 � � Rp;

against the alternative

HA : P (E[Y j X] 6= f(X; �)) > 0 ; for all � 2 � � Rp:
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As arguing above, one way to characterize H0 is by the in�nite number of parametric unconditional

moment restrictions

E[e(�0)w(X;x)] = 0; 8x 2 �; (4)

where the parametric family w(�; x) is such that the equivalence in (3) holds. Examples of such

families are w(X;x) = 1(X � x); w(X;x) = exp(ix0X), w(X;x) = sin(x0X) or w(X;x) = 1=(1 +

exp(c� x0X)) with c 6= 0, see Stinchcombe and White (1998) for many other families.

In view of a sample fZigni=1; let us de�ne the marked empirical process

Rn;w(x; �) = n�1=2
nX
i=1

ei(�)w(Xi; x): (5)

De�ne also Rn;w(�) � Rn;w(�; �0) and R1n;w(�) � Rn;w(�; �n); where �n is a
p
n-consistent estimator of

�0: The marks in R1n;w are given by the classical residuals, therefore, we call R
1
n;w a residual marked

empirical process.

Because of the equivalence (3), it is natural to base the tests on a distance from R1n;w to zero, i.e.,

on a norm �(R1n;w); say. The most used norms are the Cramér-von Mises (CvM) and Kolmogorov-

Smirnov (KS) functionals

CvMn;w =

Z
�

��R1n;w(x)��2	(dx); (6)

KSn;w = sup
x2�

��R1n;w(x)�� ;
respectively, where 	(x) is an integrating function satisfying some mild conditions, see A4 below.

Other functionals are possible. Then, tests in the integrated approach reject the null hypothesis (2)

for �large�values of �(R1n;w).

The �rst consistent integrated test proposed in the literature was that of Bierens (1982) based on

the exponential weighting family, i.e., using the residual marked process

R1n;exp(x) = n�1=2
nX
i=1

ei(�n) exp(ix
0�(Xi));

where �(�) is a bounded one-to-one Borel measurable mapping from Rd to Rd. Bierens (1982) con-

sidered a CvM norm with integrating measures 	(dx) = �(x)dx; with �(x) = 1(x 2 �dl=1[�"l; "l]);

where "l > 0; l = 1; :::; d, are arbitrarily chosen numbers, see Bierens (1982, p. 109), or �(x) equals

to a d-variate normal density function, see Bierens (1982, p. 111).

On the other hand, Stute (1997) used the indicator family w(X;x) = 1(X � x) in the residual

marked process. The main advantage of the indicator weighting function over the exponential

function is that it avoids the choice of an arbitrary integrating function 	, because in the indicator

case this is given by the natural empirical distribution function of fXigni=1. But on the other hand,

the indicator weight has the drawback of being more a¤ected than exponential weights by the curse

of dimensionality when d is moderate or high, see Section 4 below.
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In this paper we propose a new family fw;	g of weighting and integrating functions, respectively,

which preserves the good properties of the exponential and indicator based tests, and at the same

time avoids their de�ciencies, namely, the arbitrary choice of the integrating function or numerical

integration in high dimensional spaces and the problem of the curse of dimensionality, respectively.

The CvM test based on this new family presents an excellent performance in �nite samples and is

very simple to compute. In addition, the new family w formalizes some traditional model diagnostic

tools based on residual-�tted values plots for linear models.

Our �rst aim is to avoid the problem of the curse of dimensionality. The following result can be

viewed as a particularization of the Cramér-Wold principle to our main concern, the goodness-of-�t

of the regression function. Let jAj denote the Euclidean norm of A:

Lemma 1: A necessary and su¢ cient condition for (2) to hold is that for any vector � 2 Rd with

j�j = 1;

E[e(�0) j �0X] = 0 a.s., for some �0 2 � � Rp:

Lemma 1 yields that consistent tests for H0 can be based on one-dimensional projections. In par-

ticular, we have the characterization of the null hypothesis H0

H0 () E[e(�0)1(�
0X � u)] = 0 almost everywhere (a.e.) on (�; u) 2 �, for some �0 2 � � Rp;

(7)

where from now on � = Sd � [�1;1] is the nuisance parameter space with Sd the unit ball in Rd;

i.e., Sd = f� 2 Rd : j�j = 1g. Therefore, the test we consider here rejects the null hypothesis for

�large�values of the standardized sample analogue of E[e(�0)1(�
0X � u)].

A related approach to our is that of Stute and Zhu (2002), who considered the weighting family

f1(�00X � u)g for model checks of GLM in a iid framework. However, note that they �x the

direction to �0; the direction involved in the GLM, so their approach is clearly di¤erent from that

considered here, because we consider all the directions � in Sd simultaneously. As a consequence, our

test will be consistent against all alternatives, whereas Stute and Zhu�s (2002) test is only consistent

against alternatives satisfying that E[e(��)1(�
0
�X � u)] 6= 0 in a set with positive Lebesgue measure,

where �� and �� are the probabilistic limits under the alternative of the estimators of �0 and �0,

respectively.

For the family 1(�0X � u) the residual marked empirical process is given by

R1n(�; u) = n�1=2
nX
i=1

ei(�n)1(�
0Xi � u):

The marks of R1n are given by the classical residuals and the �jumps�by the projected regressors.

Note that for a �xed direction �; R1n is uniquely determined by the residuals and the projected
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variables f�0Xigni=1; and vice versa. Like the usual residual-regressors plot, we can plot the path of

R1n for di¤erent directions � as an exploratory diagnostic tool. In particular, in the linear model,

the plot of the path of R1n(�n; u); with �n the least squares estimator, resembles the usual residual-

�tted values plot. Therefore, tests based on R1n(�n; u) provide a formalization of such traditional

well-known exploratory tools.

To measure the distance from R1n to zero a norm has to be chosen. From computational considera-

tions a CvM norm is very convenient in our context. Two facts motivate our choice of the integrating

measure in the CvM norm. First, notice that once the direction � is �xed, u lives in the projected

regressor variable�s space, and secondly, in principle, all the directions are equally important, cf.

Lemma 1. To de�ne our CvM test we need some notation. Let Fn;�(u) be the empirical distribution

function of the projected regressors f�0Xigni=1 and d� the uniform density on the unit sphere. Let

also F�(u) be the true cumulative probability distribution function (cdf.) of �
0X. Then, we de�ne

the new CvM test as

PCvMn =

Z
�

(R1n(�; u))
2Fn;�(du)d�: (8)

Therefore, we reject the null hypothesis H0 for large values of PCvMn: See Appendix B for a simple

algorithm to compute PCvMn from a given data set fZigni=1. Next section justi�es inference for

PCvMn based on asymptotic theory1.

Our test statistic PCvMn avoids the de�ciencies of Bierens (1982) and Stute (1997) tests, namely,

the arbitrary choice of the integrating function or numerical integration in high dimensional spaces

and the problem of the curse of dimensionality, respectively. However, it is worth to mention that

our test is not necessarily better than Bierens� (1982) and Stute�s (1997) tests. In fact, using

the results of Bierens and Ploberger (1997) it can be shown that all these test are asymptotically

admissible, and therefore, none of them is strictly better than the others uniformly over the space

of alternatives. However, in our simulations below we show that for the alternatives considered our

test is the best or comparable to the best test. A simple intuition as to why our test performs so well

with the alternatives considered is as follows. Under the alternative it can be shown that, uniformly

in x 2 �;

n�1=2R1n;w(x)
P�
�! E[e(��)w(X;x)];

where �� is the probabilistic limit of �n under the alternative HA: On the other hand, under the

normalization E[m2(X; ��)] = 1; where m(�; ��) = E[e(��) j X = �], it holds that the optimization

problem

max
w; E[w2(It�1)]=1

jE [et(��)w(It�1)]j2

attains its optimum at w�(�) = m(�; ��): Therefore, as w(�; �) is nearer to m(�; �); the test based on

w is expected to have better power properties. It seems that for the models considered in Section 4
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m(�; ��) can be �well approximated�by our weight function 1(�0X � u) and this may explain the

good power properties of our test procedure.

3. ASYMPTOTIC THEORY

Now, we establish the limit distribution of R1n under the null hypothesis H0: For the asymptotic

theory, note that R1n can be viewed as a mapping from (
;A; P ); the probability space in which all

the r.v�s of this paper are de�ned, and with values in `1(�); the space of all real-valued functions

that are uniformly bounded on �: Let =) denote weak convergence on `1(�); and P�
�! denotes

convergence in outer probability, see De�nitions 1.3.3 and 1.9.1 in van der Vaart and Wellner (1996),

respectively. Also, d�! stands for convergence in distribution of real r.v�s. To derive asymptotic

results we consider the following assumptions. First, let denote by FY (�) and FX(�) the marginal

cdf. of Y and X, respectively. Let also 	p(�) be the product measure of F�(�) and the uniform

distribution on Sd; i.e., 	p(d�; du) = F�(du)d�. In the sequel C is a generic constant that may

change from one expression to another.

Assumption A1:

A1(a): fZi = (Yi; X 0
i)
0gni=1 is a sequence of iid random vectors with 0 < E jYij <1:

A1(b): E j"j2 < C:

Assumption A2: f(�; �) is twice continuously di¤erentiable in a neighborhood of �0 2 �: The

score g(X; �) = (@=@�0)f(X; �) veri�es that there exists a FX(�)-integrable function M(�) with

sup
�2�

jg(�; �)j �M(�):

Assumption A3:

A3(a): The parametric space � is compact in Rp: The true parameter �0 belongs to the interior

of �: There exists a �� such that j�n � ��j = oP (1); under both, the null and the alternative.

A3(b): The estimator �n satis�es the following asymptotic expansion under H0

p
n(�n � �0) =

1p
n

nX
i=1

l(Yi; Xi; �0) + oP (1);

where l(�) is such that E[l(Y;X; �0)] = 0 and L(�0) = E[l(Y;X; �0)l
0(Y;X; �0)] exists and is positive

de�nite:

Assumption A4: 	p(�) is absolutely continuous with respect to Lebesgue measure on �:

Assumptions A1-A2 are standard in the model checks literature, see, e.g., Bierens (1990) or Stute

(1997). Assumption A3 is satis�ed for instance, for the nonlinear least squares estimator (NLSE)

and (under further regularity assumptions) its robust modi�cations, see, e.g., Chapter 7 in Koul
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(2002). We shall show below that A3 is also satis�ed for a new minimum distance estimator based

on R1n. A4 is only necessary for the consistency of the test.

Under A1 and (2), using a classical Central Limit Theorem (CLT) for iid sequences, we have that

the �nite-dimensional distributions of Rn; where Rn is the process de�ned in (5) with � = �0 and

w(X;x) = 1(�0X � u); converge to those of a multivariate normal distribution with a zero mean

vector and variance-covariance matrix given by the covariance function

K(x1; x2) = E["21(�01X � u1)1(�
0
2X � u2)]; (9)

where x1 = (�01; u1)
0 and x2 = (�02; u2)

0: The next result is an extension of this convergence to

weak convergence in the space `1(�): Throughout the rest of the paper x = (�0; u)0 will denote the

nuisance parameter and we interchange the notation x and (�0; u)0 whenever this does not create

confusion.

Theorem 1: Under the null hypothesis H0 and A1

Rn =) R1;

where R1(�) is a continuous Gaussian process with zero mean and covariance function given by (9).

In practice, �0 is unknown and has to be estimated from a sample fZigni=1 by an estimator �n,

say. Next result shows the e¤ect of the parameter uncertainty on the asymptotic null distribution

of R1n. To this end, let de�ne the function G(x; �0) = G(x) = E[g(X; �0)1(�
0X � u)] and let V be

a normal random vector with zero mean and variance-covariance matrix given by L(�0):

Theorem 2: Under the null hypothesis H0 and Assumptions A1-A3

R1n(�) =) R1(�)�G0(�)V � R11(�);

where R1 is the same process as in Theorem 1 and

Cov(R1(x); V ) = E["l(Y;X; �0)1(�
0X � u)]:

Next, using the last theorem and the Continuous Mapping Theorem (CMT), see, e.g., Theorem 1.3.6

in Vaart and Wellner (1996), we obtain the asymptotic null distribution of the functional PCvMn:

Corollary 1: Under the assumptions of Theorem 2, for any continuous functional (with respect

to the supremum norm) �(�)

�(R1n)
d�! �(R11;w):

Furthermore,

PCvMn
d�! PCVM1 =

Z
�

(R11(�; u))
2	p(d�; du):
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Note that the integrating measure in PCvMn is a random measure, but previous result shows that

the asymptotic theory is not a¤ected by this fact. Also note that the asymptotic null distribution of

PCvMn depends in a complex way of the data generating process (DGP) and the speci�cation under

the null, so critical values have to be tabulated for each model and each DGP, making the application

of these asymptotic results di¢ cult in practice. To overcome this problem we approximate the

asymptotic null distribution of continuous functionals of R1n by a bootstrap procedure given below.

In Assumption A3 we require that the estimator of �0 admits an asymptotic linear representation.

For completeness of the presentation we give some mild su¢ cient conditions under which a minimum

distance estimator, see Chapter 5 in Koul (2002) and references therein, is asymptotically linear.

Motivated from Lemma 1, we have that under the null

�0 = argmin
�2�

Z
�

��E[e(�)1(�0X � u)]
��2	p(d�; du); (10)

and �0 is the unique value that satis�es (10). Then, we propose estimating �0 by the sample analogue

of (10), that is,

�n = argmin
�2�

Z
�

n�1
��R1n(�; u; �)��2 Fn;�(du)d�: (11)

This estimator is a minimum distance estimator and extends in some sense the Generalized Method

of Moments (GMM) estimator, frequently used in econometric and statistical applications. This kind

of generalizations of GMM have been considered �rst in Carrasco and Florens (2000). Recently, and

for w(X;x) = 1(X � x); Dominguez and Lobato (2004) have considered a similar estimator to

(11) for a conditional moment restriction under time series. Also recently, Koul and Ni (2004) have

proposed a minimum distance estimation for �0 using a L2-distance similar to that used in Härdle

and Mammen (1993) in the �local approach�. Our estimator �n has the advantage of being free

of any user-chosen parameter (bandwidth, kernel or integrating measure) and is expected to be

more robust to the problem of the curse of dimensionality than the estimating procedures based on

1(X � x) or local approaches. Now, we shall show that �n in (11) satis�es assumption A3. The

following matrices are involved in the asymptotic variance-covariance matrix of the estimator,

C =

Z
�

G(�; u)G0(�; u)	p(d�; du);

D =

Z
�

G(x)G0(x)K(x; y)	p(dx)	p(dy):

For the consistency and asymptotic normality of the estimator we need an additional assumption.

Assumption A1�: The regression function f(�; �) satis�es that there exists a FX(�)-integrable function

Kf (�) with sup
�2�

jf(�; �)j � Kf (�).

Theorem 3: Under H0; Assumptions A1-A2 and A1�

10



(i) The estimator given in (11) is consistent, i.e., �n �! �0 a.s.

(ii) If in addition, the matrix C is nonsingular, then

p
n(�n � �0)

d�! N(0; C�1DC�1):

From the proof of Theorem 3 in Appendix A we have immediately the asymptotic linear expansion

required in A3(b)
p
n(�n � �0) =

1p
n

nX
i=1

l(Yi; Xi; �0) + oP (1);

where now

l(Yi; Xi; �0) = �C�1fYi � f(Xi; �0)g
Z
�

G(�; u)1(�0X � u)	p(d�; du):

Note that in general the estimator given in (11) is not asymptotically e¢ cient. An asymptotically

e¢ cient estimator based on the same minimum distance principle can be constructed following

the ideas of Carrasco and Florens (2000). This optimal estimator will require the choice of a

regularization parameter needed to invert a covariance operator, see Carrasco and Florens (2000)

for more details.

Now we study the asymptotic distribution of R1n under a sequence of local alternatives converging

to null at a parametric rate n�1=2: We consider the local alternatives

HA;n : Yi;n = f(Xi; �0) +
a(Xi)

n1=2
+ "i; a.s.; 1 � i � n; (12)

where the random variable a(X) is FX -integrable, zero mean and satis�es P (a(X) = 0) < 1: To

derive the next result we need the following assumption.

Assumption A3�: The estimator �n satis�es the following asymptotic expansion under HA;n

p
n(�n � �0) = �a +

1p
n

nX
i=1

l(Yi; Xi; �0) + oP (1);

where the function l(�) is as in A3 and �a is a vector in Rp:

Remark 1: It is not di¢ cult to show that �n in (11) satis�es A3�under A1-A2 and A1�with

�a = C�1
Z
�

E[a(X)1(�0X � u)]G(�; u)	p(d�; du):

Theorem 4: Under the local alternatives (12), Assumptions A1, A2 and A3�

R1n =) R11 +Da;

11



where R11 is the process de�ned in Theorem 2 and the function Da(�) is the determinist function

Da(�; u) = E[a(X)1(�0X � u)]�G0(�; u)�a:

For some estimators, Da has an intuitive geometric interpretation. For instance, for the new mini-

mum distance estimator (11) the shift function is given by

Da(�; u) = E[a(X)1(�0X � u)]�G0(�; u)C�1
Z
�

E[a(X)1(�0X � u)]G(�; u)	p(d�; du);

and represents the orthogonal projection in L2(�;	p); the Hilbert space of all real-valued and 	p-

square integrable functions on �; of E[a(X)1(�0X � u)] parallel to G(�; u): The next corollary is

consequence of the CMT and the last theorem.

Corollary 2: Under the local alternatives (12), and Assumptions A1, A2 and A3�, for any con-

tinuous functional �(�)

�(R1n)
d�! �(R11 +Da):

Furthermore, Z
�

��R1n(�; u)��2 Fn;�(du)d� d�!
Z
�

��R11(�; u) +Da(�; u)
��2	p(d�; du):

Note that because of Lemma 1, we have that

Da = 0 a.e.() a(X) = �0ag(X; �0) a.s.

Therefore, from this result it is not di¢ cult to show that the test based on PCvMn is able to detect

asymptotically any local alternative a(�) not parallel to g(�; �0). This result is not attainable for

tests based on the local approach, for instance, Härdle and Mammen�s (1993) test.

We have seen before that the asymptotic null distribution of continuous functionals of R1n depends

in a complicated way of the DGP and the speci�cation under the null. Therefore, critical values for

the test statistics can not be tabulated for general cases. Here we propose to implement the test

with the assistance of a bootstrap procedure. Resampling methods have been extensively used in

the model checks literature of regression models, see, e.g., Stute, Gonzalez-Manteiga and Presedo-

Quindimil (1998) or more recently Li, Hsiao and Zinn (2003). It is shown in these papers that the

most relevant bootstrap method for regression problems is the wild bootstrap (WB) introduced in

Wu (1986). We approximate the asymptotic null distribution of R1n by that of

R1�n (x) = n�1=2
nX
i=1

e�i (�
�
n)1(�

0Xi � u) x = (�0; u)0 2 �;

12



where the sequence fe�i (�
�
n)gni=1 are the �xed design wild bootstrap (FDWB) residuals computed

from e�t (�
�
n) = Y �i � f(Xi; �

�
n) where Y

�
i = f(Xi; �n) + ei(�n)Vi, �

�
n is the bootstrap estimator

calculated from the data f(Y �i ; X 0
i)
0gni=1 and fVigni=1 is a sequence of iid random variables with zero

mean, unit variance, bounded support and also independent of the sequence fZigni=1: Examples of

fVigni=1 sequences are iid. Bernoulli variates with

P (Vi = a1) = p1 P (Vi = a2) = 1� p1; (13)

where a1 = 0:5(1�
p
5), a2 = 0:5(1 +

p
5) and p1 = (1+

p
5)=2

p
5; used in, e.g., Li, Hsiao and Zinn

(2003). For other sequences see Mammen (1993). The reader is referred to Stute, Gonzalez-Manteiga

and Presedo-Quindimil (1998) for the theoretical justi�cation of this bootstrap approximation and

the assumptions needed. The results of these authors jointly with those proved here ensure that the

proposed bootstrap test has a correct asymptotic level, is consistent and is able to detect alternatives

tending to the null at the parametric rate n�1=2: Next section shows that this bootstrap procedure

provides good approximations in �nite samples.

4. MONTE CARLO EVIDENCE

In this section we compare the new CvM test with some competing integrated based tests proposed

in the literature. This study complements others considered in the literature, see, e.g., Miles and

Mora (2003). We brie�y describe our simulation setup. We denote by PCvMn the new Cramér-von

Mises test de�ned in (8). For the explicit computation of PCvMn see Appendix B.

Bierens (1982, p. 111) proposed the CvM test statistic based on the exponential weight function

w(X;x) = exp(ix0X) and the d-variate normal density function as the integration function, i.e.,

CvMn;exp = n�1
nX
i=1

nX
s=1

ei(�n)es(�n) exp(�
1

2
jXi �Xsj2):

We also consider here the CvM and KS statistics de�ned in Stute (1997) and that are given by

CvMn =
1

n2

nX
j=1

"
nX
i=1

ei(�n)1(Xi � Xj)

#2
and

KSn = max
1�j�n

����� 1pn
nX
i=1

ei(�n)1(Xi � Xj)

����� ;
respectively. Note that, CvMn and PCvMn are the same test statistics when d = 1; by de�nition.

Recently, Stute and Zhu (2002) have considered an innovation process transformation of R1n(�n; u)

for testing the correct speci�cation of GLM models, where �n a suitable estimator of the GLM

parameter, say �0. More concretely, their test statistic is the CvM test

SZn =
1

 2n;�n(x0)

x0Z
�1

��TnR1n(�n; u)��2 �2n;�n(u)Fn;�n(du);
13



where

Tnf(u) = f(u)�
uZ
�1

a0n;�n(v)A
�1
n (v)

1Z
v

an;�n(y)�
�2
n;�n

(y)f(dy)Fn;�n(dv);

An(u) =

1Z
u

an;�n(v)a
0
n;�n

(v)��2n;�n(v)Fn;�n(dv);

an;�n(u) and �2n;�n(u) are Nadaraya-Watson estimators of a�0(u) = E[g(X; �0)=�
0
0X = u] and

�2�0(u) = E
�
"2 j �00X = u

�
, respectively,  n;�n(u) = n�1

Pn
i=1 e

2
i (�n)1(�

0
nXi � u) and x0 is the

99% quantile of Fn;�n : Under the correct speci�cation of the GLM and some additional assumptions

SZn
d�!

1Z
0

B2(u)du;

where B(�) a standard Brownian motion on [0; 1]; see Stute and Zhu (2002) for further details. For

the nonparametric estimators we have chosen a Gaussian kernel with bandwidth h = 0:5n�1=2; see

Stute and Zhu (2002).

We consider the same FDWB for the version of the exponential Bieren�s test and for the Stute�s

(1997) tests as for our Cramér-von Mises test PCvMn: For SZn we consider empirical critical values

based on 10000 simulations on the �rst null model in each block of models. In the sequel, "i �iid

N(0; 1) and �i �iid exp(1) are standard Gaussian and centered exponential noises, respectively. We

consider in the simulations two blocks of models. In the �rst block, the null model is:

Yi = a+ bX1i + cX2i + "i;

where X1i = (Wi+W1i)=2 and X2i = (Wi+W2i)=2; Wi, W1i and W2i are iid U [0; 2�]; independent

of "i; 1 � i � n: We examine the adequacy of this model under the following DGP:

1. DGP1: Yi = 1 +X1i +X2i + "i � X 0
i�0 + "i:

2. DGP1-EXP: Yi = 1 +X1i +X2i + �i = X 0
i�0 + �i:

3. DGP2: Yi = X 0
i�0 + 0:1(W1i � �)(W2i � �) + "i:

4. DGP3: Yi = X 0
i�0 +X

0
i�0 exp

�
�0:01(X 0

i�0)
2
	
+ "i:

5. DGP4: Yi = X 0
i�0 + cos(0:6�X

0
i�0) + "i:

DGP1 and DGP2 are considered in Hong and White (1995). DGP3 is similar to their DGP3, see also

Koul and Stute (1999). DGP4 is similar to that considered in Eubank and Hart (1992). DGP1-EXP

is considered here to show the robustness of the tests against fatter-tailed error distributions. For

the �rst block of models we consider a sample size of n = 50; 100 and 300. The number of Monte

Carlo experiments is 1000 and the number of bootstrap replications is B = 500. For the bootstrap

14



approximation we employ the sequence fVigni=1 of iid Bernouilli variates given in (13). We estimate

the null model by the usual least squares estimator (LSE). The nominal levels are 10%, 5% and 1%.

In Table 1 we show the empirical rejection probabilities (RP) associated to models DGP1 and

DGP1-EXP. The empirical levels of the test statistics are close to the nominal level, even for as

small sample sizes as 50. The empirical levels for DGP1-EXP are less accurate than for DGP1 but

are reasonable, showing that the tests are robust to fat-tailed error distributions.

Please, insert Table 1 about here.

In Table 2 we report the empirical power against the DGP2. It increases with the sample size

n for all test statistics, as expected. It is shown that the new Cramér-von Mises test PCvMn has

the best empirical power in all cases: The empirical power for CvMn;exp is reasonable and less than

CvMn and KSn for n = 50; but better for n = 100 and 300. Stute and Shu�s (2002) test, SZn; is

the worst against this alternative. The rejection probabilities of PCvMn are comparable to the best

test in Hong and White (1995) against this alternative. In Table 3 we show the RP for DGP3. For

this alternative SZn and our test statistic, PCvMn; have the best empirical powers, SZn performing

slightly better than PCvMn: Bierens�test CVMn;exp has good power properties for this alternative.

Stute�s test CvMn performs similar to CVMn;exp; whereas KSn presents the worst results, with a

moderate power. For DGP4, PCvMn and CVMn;exp have excellent empirical powers. Stute�s tests,

CvMn andKSn; and Stute and Zhu�s (2002) test, SZn; have low power against this �high-frequency�

alternative.

Please, insert Tables 2, 3 and 4 about here.

The second block of models are taken from Zhu (2003). The null model is

Yi = X 0
i
0 + "i;

whereas the DGP�s considered are

Yi = X 0
i
0 + b(X

0
i�0)

2 + "i

where X 0
i is a random d-dimensional covariate with iid U [0; 2�] marginal components, d = 3 and

6. When d = 3, 
0 = (1; 1; 2)0 and �0 = (2; 1; 1)0 and when d = 6; 
0 = (1; 2; 3; 4; 5; 6)0 and

�0 = (6; 5; 4; 3; 2; 1)
0. Furthermore, let b = 0:01; 0:02; :::; 0:1 when d = 3 and b = 0:001; 0:002; :::; 0:01

when d = 6: This experiment provides us evidence of the power performance of the tests under local

alternatives (b = 0 corresponds to the null hypothesis). The sample size is n = 25, the rest of Monte

Carlo parameters are as before.

We show the RP for these models in Figure 1. We see that in both cases, d = 3 and 6, our new

test statistic PCvMn and SZn have the best empirical power for all values of b: None of them is
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superior to the other for all values of b and for both models. For d = 3; SZn performs slightly better

than PCvMn: They are followed by CvMn;exp: For d = 6, PCvMn has the best power for d � 0:006,

whereas SZn is the best for d > 0:006: CvMn;exp, CvMn and KSn have very low empirical power

against this alternative.

Please, insert Figure 1 about here.

Summarizing, these two Monte Carlo experiments show that our test possesses an excellent power

performance in �nite samples for the alternatives considered. In all cases, our test has the best

empirical power or it is comparable to the best test among the tests proposed by Bierens (1982),

Stute (1997) or Stute and Zhu (2002). In our Monte Carlo experiments we have focused on the

integrated based tests. Miles and Mora (2003) have compared through simulations some local and

integrated based tests. These authors conclude that for one-dimensional regressors, the integrated

based tests perform slightly better than the smoothing based ones, specially Bierens�statistic. When

the number of regressors is greater than one, some of the smoothing tests considered by these authors

perform better. Therefore, should be important to compare our new test with the smooth-based

tests considered by these authors, specially for the case of multivariate regressors. This study is

beyond the scope of this paper and is deferred for future research. Our test has the advantage that no

bandwidth selection is required, though its implementation requires the use of a bootstrap procedure.

Our Monte Carlo experiments show that our test should be considered as a reasonable competent

test to the best local-based test and a valuable diagnostic procedure for regression modeling.

NOTES

1. During the revision process one of the referees has suggested a modi�cation of our test that

might have better �nite sample performance. Based on the inequality

1Z
�1

(E["1(�0X � u)])2F�(du) �
�
E["
q
1� F�(�0X)

�2
;

which follows from simple algebra, the modi�ed test statistic isZ
Sd

 
1p
n

nX
i=1

ei(�n)
q
1� Fn;�(�0Xi)

!2
d�:

However, contrary to PCvMn the latter test statistic involves numerical integration and is

much more di¢ cult to compute.
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APPENDIX A: PROOFS

Proof of Lemma 1 : Follows easily from Part I of Theorem 1 in Bierens (1982). �

Proof of Theorem 1: By a classical CLT we can show that the �nite dimensional distributions
of Rn converge to those of the Gaussian process R1: The asymptotic equicontinuity of Rn follows
by a direct application of Theorem 2.5.2 in Vaart and Wellner (1996), see also their problem 14 on
p.152. �

Proof of Theorem 2: Applying the classical mean value theorem argument we have

R1n(x) = Rn(x)� n�1=2
nX
i=1

ff(Xi; �n)� f(Xi; �0)g1(�0Xi � u)

= Rn(x)� I � II � III

where

I = n1=2(�n � �0)
1

n

nX
i=1

fg(Xi;e�n)� g(Xi; �0)g1(�0Xi � u);

II = n1=2(�n � �0)
1

n

nX
i=1

[g(Xi; �0)1(�
0Xi � u)�G(x; �0)]

and
III = n1=2(�n � �0)G(x; �0);

and where e�n satis�es ���e�n � �0��� � j�n � �0j a.s. By A1-A3, the generalization by Wolfowitz (1954) of
the Glivenko-Cantelli�s Theorem, and the uniform law of large numbers (ULLN) of Jennrich (1969),
it is easy to show that I = oP (1) and II = oP (1) uniformly in x 2 �. So, the theorem follows from
Theorem 1 and A3. �

Proof of Corollary 1: For a non-random continuous functional, the result follows from the Contin-
uous Mapping Theorem and Theorem 2. For PCvMn the result follows because under the conditions
of the Theorem 2 we have that R1n is asymptotically tight, and hence, Lemma 3.1 in Chang (1990)
applies. �

Proof of Theorem 3: The proof follows exactly the same steps as the proof of Theorems 1 and 2
in Dominguez and Lobato (2004) and then, it is omitted. �

Proof of Theorem 4: Under the local alternatives (12) write

R1n(x) = n�1=2
nX
i=1

ff(Xi; �0) +
a(Xi)

n1=2
+ "i � f(Xi; �n)g1(�0Xi � u)

= Rn(x) +A1 +A2; (14)

with

A1 = n�1=2
nX
i=1

ff(Xi; �0)� f(Xi; �n)g1(�0Xi � u)

and

A2 = n�1
nX
i=1

a(Xi)1(�
0Xi � u):
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Using A3�as in Theorem 2, we obtain���A1 + n1=2(�n � �0)G(x; �0)��� = oP (1)

uniformly in x 2 �: On the other hand, using the results of Wolfowitz (1954), we have uniformly in
x 2 �; ��A2 � E[a(X)1(�0X � u)]

�� = oP (1)

Using the preceding equations and (14), the theorem holds from Theorem 1 and A3�. �

APPENDIX B: COMPUTATION OF THE TEST STATISTIC:

By simple algebra

PCvMn =

Z
�

��R1n(�; u)��2 Fn;�(du)d�
= n�1

nX
i=1

nX
j=1

ei(�n)ej(�n)

Z
�

1(�0Xi � u)1(�0Xj � u)Fn;�(du)d�:

= n�2
nX
i=1

nX
j=1

nX
r=1

ei(�n)ej(�n)

Z
Sd

1(�0Xi � �0Xr)1(�
0Xj � �0Xr)d�

= n�2
nX
i=1

nX
j=1

nX
r=1

ei(�n)ej(�n)Aijr:

For d > 1, note that the integral Aijr is proportional to the volume of a spherical wedge, and hence
we can compute them from the formula

Aijr = A
(0)
ijr

�
d
2�1

�(d2 + 1)

where A(0)ijr is the complementary angle between the vectors (Xi �Xr) and (Xj �Xr) measured in

radians and �(�) is the gamma function. Thus, A(0)ijr is given by

A
(0)
ijr =

����� � ar cos� (Xi �Xr)
0(Xj �Xr)

j(Xi �Xr)j j(Xj �Xr)j

����� :
Hence, the computation of these integrals is simple. In addition, there are some restrictions on the
integrals Aijr which make simpler the computation, for instance if Xi = Xj and Xi 6= Xr then
A
(0)
ijr = �; whereas if Xi = Xj and Xi = Xr then A

(0)
ijr = 2�: If Xi 6= Xj and Xi = Xr or Xj = Xr;

we have that A(0)ijr = �: Also, the symmetric property Aijr = Ajir holds.
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TABLES
Table 1. Empirical size of tests.

DGP1

n=50 n=100 n=300

10% 5% 1% 10% 5% 1% 10% 5% 1%

PCvMn 9.3 5.2 0.8 10.8 5.7 1.1 10.1 5.7 1.0

CvMn;exp 9.5 4.8 0.8 9.8 5.5 1.0 10.5 5.3 1.2

CvMn 11.0 5.3 0.8 10.8 5.1 1.3 9.8 5.0 1.1

KSn 11.5 6.0 1.3 12.1 6.3 1.5 10.8 5.9 1.0

SZn 10.3 6.2 0.9 9.5 4.5 0.7 11.2 5.0 0.8

DGP1-EXP

PCvMn 10.1 5.1 0.7 8.6 3.7 0.5 9.0 4.3 0.9

CvMn;exp 11.5 5.8 0.8 9.4 4.2 0.7 8.3 4.4 0.6

CvMn 9.4 4.7 0.7 9.0 3.7 0.4 8.9 4.2 0.9

KSn 11.5 5.4 0.8 9.0 3.7 0.5 9.2 4.4 1.2

SZn 9.1 4.7 1.4 10.1 4.3 2.0 10.3 5.4 1.4

Table 2. Empirical power of tests.

DGP2

n=50 n=100 n=300

10% 5% 1% 10% 5% 1% 10% 5% 1%

PCvMn 23.3 13.0 3.0 43.2 28.7 7.0 91.3 83.6 53.7

CvMn;exp 21.1 11.5 2.9 39.2 26.1 5.9 89.2 79.4 47.8

CvMn 20.7 11.1 2.6 33.3 21.7 7.0 79.3 65.2 32.2

KSn 18.4 11.5 2.5 29.3 18.4 5.3 62.5 47.7 23.0

SZn 13.5 5.2 1.7 18.8 12.4 3.5 34.2 24.5 10.7

Table 3. Empirical power of tests.

DGP3

n=50 n=100 n=300

10% 5% 1% 10% 5% 1% 10% 5% 1%

PCvMn 72.7 61.8 32.6 94.8 92.0 77.5 100.0 100.0 100.0

CvMn;exp 68.4 56.6 27.3 93.8 89.8 71.5 100.0 100.0 100.0

CvMn 66.7 52.0 26.9 93.5 90.6 72.3 100.0 100.0 100.0

KSn 43.0 27.1 8.2 80.1 68.9 37.3 100.0 99.9 98.5

SZn 72.4 56.4 35.1 97.1 93.9 82.9 100.0 100.0 100.0
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Table 4. Empirical power of tests.

DGP4

n=50 n=100 n=300

10% 5% 1% 10% 5% 1% 10% 5% 1%

PCvMn 24.1 13.6 2.5 48.3 29.7 6.9 99.9 98.9 71.1

CvMn;exp 24.6 13.3 2.7 51.2 29.3 8.1 99.8 97.9 76.5

CvMn 11.1 5.5 1.0 14.8 8.1 2.0 41.7 25.3 5.1

KSn 9.6 4.8 0.4 15.7 8.5 2.0 39.5 25.4 9.2

SZn 12.5 5.4 1.1 16.6 9.4 1.8 33.6 16.5 3.8
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Figure 1. Rejection probabilities plots for d = 3 and 6. The solid, solid-star, dot, dash and dash-dot
lines are, respectively, for the empirical power of PCvMn; SZn; CvMn;exp; CvMn and KSn:
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