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ABSTRACT

We show in this article that fractionally integrated univariate models for GDP may lead to a
better replication of business cycle characteristics. We firstly show that the business cycle
features are clearly affected by the degree of integration as well as by the other short run
components of the series. Then, we model the real GDP in France, the UK and the US by
means of fractionally ARIMA (ARFIMA) models, and show that the three time series can be
specified in terms of this type of models with orders of integration higher than one but
smaller than two. Comparing the ARFIMA specifications with those based on ARIMA
models, we show via simulations that the former better describes the business cycles
features of the data at least for the cases of the UK and the US.
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1. Introduction

With the development of the National Bureau of Economic Research (NBER)‘s project of

“Measurement without Theory” and the first extensive study of Burns and Mitchell (1947)

on the American Economy, business cycles and their features have constituted a direct

object of empirical analysis. Numerous studies have tried to describe them and to consider

their stability over time. Romer (1986, 1994), Diebold and Rudebush (1992) and Watson

(1994) have, for example, explored data to know if fluctuations have been smoother (lower

amplitude and longer duration) after the second World War. Also, Neftci (1983), Hamilton

(1989), Beaudry and Koop (1993) have created new business cycles features1 to show that

business cycles exhibit an asymmetry in their phases: recessions being deeper and shorter

than expansions.

Recently, business cycles features have been used for another purposes. Candelon

and Hénin (1995) have built distributions of these features via bootstrapped simulation of

simple linear (ARIMA) models for GDP. They could then locate the observed features of the

last cycle and conclude that they are rather normal.  A step further, Isawa and Hess (1997)

used them as benchmarks to gauge the adequacy of macroeconomic stochastic time series

models. They replicate via Monte-Carlo simulations different models for GDP. Then, they

build for each model the distribution of the business cycles features and compare them to the

historical business cycles characteristics. The best model is selected as the one which

replicate the best historical feature. Three types of linear models, namely, integrating a

stochastic trend (ARIMA), a deterministic trend and a segmented trend (as in Perron, 1989)

as well as several non linear ones (SETAR, Markov-Switching and Beaudry and Koop’s,

1993, non linearity) are considered. They conclude that complex non-linear or linear models

do not better replicate business cycles features than a simple linear ARIMA(1,1,0) with a

                                                          
1 These features integrate the third moment of the cycle as the conditional asymmetry in mean.



drift. Such a conclusion appears to be rather destructive for  recent attempts, which have

tried to better model GDP.

Nevertheless, they do not consider a recent and growing literature, which tries to

model GDP and other macroeconomic time series in terms of fractionally integrated

processes. Examples are Diebold and Rudebusch (1989); Sowell (1992); Gil-Alana and

Robinson (1997); etc. A proper definition of fractional integration will be given in Section 2.

We can, however, mention here that the ARIMA model can be viewed as a particular case of

a much more general class of models, called fractionally ARIMA (ARFIMA), in which we

allow for a fractional degree of differencing in a given raw time series.

In this article, we show that the ARFIMA models can better describe the business

cycle characteristics of the GDP in France, the UK and the US, compared with the ARIMA

specifications as well as other approaches. The structure of the paper is as follows: Section 2

briefly describes the concepts of fractional integration and business cycles. Section 3 shows

with some simulations that the degree of fractional integration of an univariate model affects

to the characteristics of the fluctuations. Section 4 uses both ARIMA and ARFIMA models

to describe the behaviour of the GDP series. Section 5 compares both types of models in

terms of business cycle features while Section 6 concludes.

2. Fractional integration and business cycle characteristics

For the purpose of the present paper, we define an I(0) process {ut, t = 0, �1, …} as a

covariance stationary process with spectral density function that is positive and finite at the

zero frequency. In this context, we say that xt is I(d) if

,...2,1,)1( ��� tuxL tt
d , (1)

where L is the lag operator (Lxt = xt-1), and d can be any real number. The macroeconomic

literature stresses the cases of d = 0 and d = 1. In the latter case, we say that xt follows a unit



root process or that the model contains a stochastic trend. This model became popular after

the paper of Nelson and Plosser (1982), who following the work and ideas of Box and

Jenkins (1970), showed that many US macroeconomic series could be specified in terms of

unit roots. A huge amount of empirical work has followed this approach (eg. Stock and

Watson, 1986; Diebold and Nerlove, 1989; etc.) However, as it was shown by Adenstedt

(1974), Taqqu (1975) and subsequent work, d can also be a real number. When d = 0 in (1),

xt = ut, and a weakly autocorrelated xt is allowed for. However, if d > 0, xt is said to be long

memory, so-called because of the strong association between observations widely separated

in time. Note that the polynomial in (1) can be expanded in terms of its Binomial expansion,

such that for all real d,
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where �(x) means the gamma function. This type of processes was initially proposed by

Granger (1980, 1981), Granger and Joyeux (1980), Hosking (1981) and were theoretically

justified in terms of aggregation by Robinson (1978), Granger (1980) and more recently, in

terms of the duration of shocks by Parke (1999). 

There is an interest in the estimation and testing of the fractional differencing

parameter. If d � (0, 0.5), xt in (1) is covariance stationary while d � [0.5, 1) will imply that

the series is nonstationary but still mean reverting, with the effect of the shocks dying away

in the long run. On the contrary, if d � 1, the process will be nonstationary and non-mean

reverting, with the effects of the shocks persisting forever. Thus, for example, if d > 1 and

the data are in logs, that means that the growth rates have a long memory component and

therefore, the stochastic trend overcome other potential characteristics of the series, In other

words, the fractional differencing parameter can be used as an indicator of the degree of



persistence of the series and, higher d is, higher will be the degree of persistence, implying

that the cycles are less likely to occur.

We now describe a datation rule to date the business cycles and define their

characteristics. Numerous methods have been proposed in the literature. They can be based

on direct data analysis (Burns and Mitchell, 1946), on expert judgment (NBER) or rely on

the most recent econometric methods (Hamilton, 1994)2. In this paper, we have decided to

consider exclusively classical cycles (directly extracted from the data in levels) in order to

avoid statistical problems caused by the extraction of the cyclical component (See Canova,

1994). Besides, we apply the most common rule to date classical business cycles. It is at the

basis of the famous program developed by Bry and Boschan (1971) and defines the phases

of the business cycles as follows3:

a)   yt-1 > yt < yt+1 < yt+2 , then there is a trough in t.

b)   yt-1 < yt > yt+1 > yt+2 , then there is a peak in t.

c)  When several identical turning points are detected consecutively, we retain the

optimal one (i.e., the highest peak and the deepest trough). 

This rule is very intuitive because it simply considers that a turning point occurs when there

is a change in the slope: Conditions a) and b) can be rewritten as �j yt+-j > 0 and �j yt+-j < 0.

Such a definition insures that phases of the cycles have a minimum duration of 2 quarters

and the completed cycles a minimum length of one year. This definition also presents the

advantage to induce an asymmetry in the length of the cycle phase. This is even greater

when the generated process is I(d) with d � 1: As there is no more mean-reversion, activity

has a stochastic growth rate and the length of an expansion is longer than the duration of a

recession. This property is more difficult to exhibit from growth cycles (extracted from

filtered data) but is confirmed in historical data (Moore and Zarnowitz, 1982). On the

                                                          
2 See Pagan and Harding (1999) for an exhaustive survey of the procedures for determining turning points.
3 The same method can also be used on filtered data to exhibit growth cycles (see Canova, 1994).



contrary, we can not expect to detect an asymmetry in the amplitude of the phases, as the

conditions on the change in slope are symmetric for troughs and peaks. 

This method has suffered a stream of criticisms: For example, it could exhibit not only

major but also minor cycles. McNees (1991) and Webb (1991) propose to solve this problem

via an increase in the reference period (for example, a peak could be characterized by 3

consecutive periods of  growth over a year period). Candelon and Hénin (1995) have also

noticed that this method leads to slight differences with the algorithms based on the

detection of local optimum in the cases of growth cycles4. However, integrating these

extensions in our datation algorithm will not alter the links between the degree of fractional

integration and the business cycle characteristics. We thus make the choice of simplicity and

keep rules a) - c) as our datation algorithm.

(Insert Figure 1)

From this datation, we have built five indicators (see Figure 1): the number of peaks

(which corresponds to the number of cycles, as we consider that a cycle begins with a

trough),  the length of the cycles (period running between two successive troughs), the

length and the amplitude of an expansion (period running from a trough to a peak) and the

length and the amplitude of a recession (period running from a peak to a trough).

3. A simulation study

We explore in this section the link between the degree of fractional integration and business

cycle features via simulations. To this goal, we consider a process {yt}t=1…T,  with the

following DGP: (1-L)d yt = ut. According to the values taken by d, yt can be stationary (d <

0.5), or non stationary (d � 0.5). To analyse the effect of d on the business cycle features, we

simulate 2500 series of length 100, 300 and 500, for some values of d = {0, 0.25, 0.5, 0.75,

                                                          
4 A local optimum is not a turning point for our methodology if it is preceeded and followed by only one
quarter of increase or decrease in the activity.



1, 1.5, 2} and then compute the mean and the variance of the five pre-defined features of the

cycle (number of cycles, length and amplitude of the phase of the cycles)5. The results could

indeed be affected by the process followed by ut. Thus, as in Isawa and Hess (1997), three

different linear processes are considered :

1. ut is a white noise N(0,1).  Results are gathered in Table 1.

2. ut = �ut-1 + �t, (AR1).  Results for � = {0.25, 0.5, 0.75} are gathered in Table 2.

3. ut = �t + ��t-1, (MA1).  Results for � = {0.25, 0.5, 0.75} are gathered in Table 3.

(Insert Figure 2)

To have a more precise view, Figure 2 plots the results for white noise ut. As expected the

average length of expansion is in all the cases greater than the duration of the recession. This

asymmetry in the duration is due to the stochastic trend of the generated series. The tables

also confirm that the amplitude of the phase is symmetrical: Recession amplitudes seems to

be higher than expansion ones, but the variance is such that the symmetry can not be

rejected. It also turns out that the relationship between the degree of fractional integration

and the business cycle features has the same evolution in all cases. The average number of

cycles increases until a value of d around 0.5 and then goes down. The other features dealing

with the length and the amplitude of the phases exhibit an opposite evolution. The variance

of the features exhibits similar paths.  These results can be interpreted in the following way:

When the degree of integration increases, the mean reversion is less important. A large part

of the dynamic of yt is then impulsed by the stochastic trend. The variance and the mean of

the process are thus higher, leading a smaller number of longer and deeper business cycles.

For the extreme case where d tends to infinite, the process is exclusively driven by the trend

and no more cycles could be extracted. Figure 2 also shows that the level of inflection is

quicker for the amplitude characteristics (d ~ 0.25 for white noise and d ~ 0.5 for AR and

                                                          
5 The distribution of these features could be computed as in Isawa and Hess (2000). However, as all processes



MA ut) and a little bit longer for the duration ones (d ~ 0.75 for white noise). It also appears

that if d > 1, the path is explosive (for 300 observations, we only find a mean value of 4

cycles for a white noise ut and d = 2, whereas when d = 1,  24 peaks can be observed on

average)

(Insert Tables 1 – 3 about here)

When the AR or the MA coefficients become high (Tables 2 and 3), the evolution of

the features with respect to the degree of fractional integration becomes linear, with a

negative slope for the number of cycles and a positive one for the other criterion. When � is

closed to one, the process possesses a near-unit-root, removing the mean reversion and

increasing the variance. The average number of cycles is thus smaller, whereas their length

and amplitude become higher, � thus playing a similar role as the degree of integration.

4. The empirical application

The time series data analysed in this section correspond to the logarithmic transformation of

the real Gross Domestic Product (GDP) in France, United Kingdom and United States,

quarterly, (seasonally adjusted), for the time period 1961:1-2000:1 and are extracted from

the IMF-IFS database. We have performed our datation algorithm and compared its results

with reference studies. For the United States, it is referred to the National Bureau of

Economic Research (NBER) business cycle datation. It turns out in Table 4 that our

algorithm leads to a nearly identical6 datation except for the cycle (80:3-81:1), which is

considered as minor in the official datation. For the European countries, as it does not exist

official datation, we refer to the paper of Artis and al. (1997). Our results are similar but not

identical. Nevertheless, it is worth noticing that Artis and al. (1997) consider Industrial

Production for a different period, define cycles period running between two peaks, and use a

                                                                                                                                                                                  
are linear, the distribution will not give more information than the mean and the variance.



more complex datation algorithm. So, the small differences could be justified and do not

lead to a rejection of our datation algorithm.

(Insert Tables 4 and 5 about here)

Table 5 gathers the business cycle characteristics of the three time series. We notice that in

each country, 5 major cycles occurred during the last 40 years. It also turns out that the

expansions are longer and deeper than recessions. This stylised fact is generally

acknowledged for classical cycles.

We now start with the empirical application. Let’s assume that ut in (1) is a stationary

ARMA(p, q) process of form:

    ...,,2,1,)()( �� tLuL tqtp ��� (2)

with white noise �t. Substituting (2) in (1), the general time series model becomes

...,,2,1,)()1()( ��� tLxLL tqt
d

p ��� (3)

which is usually called an ARFIMA(p, d, q) model. Sowell (1992) estimated the parameters

in (3) using a procedure that allows quick evaluation of the likelihood function in the time

domain, which is given by:
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with XT = (x1, …, xT)� ~ N(0, 	). An Ox-programme of this procedure (see, Doornik and

Ooms, 1999) will be employed in the empirical application below.

We estimate for the three time series different ARFIMA models like (3), taking

values of p and q smaller than or equal to 3. Following standard practise, the models were

estimated in first differences and then converted back to level by adding 1 to the estimated

                                                                                                                                                                                  
6 As NBER datation is performed for monthly data and our for quartely observations, sometimes our datation
differs from a quarter. 



value of d. Across the sixteen potential models, we choose the best one according to the

Bayesian Information Criteria (BIC). The results are given in Table 6.7

(Insert Table 6 about here)

We see that the best model specifications are an ARFIMA(0, 1.47, 2) for France; an

ARFIMA(1, 1.38, 2) for the UK; and an ARFIMA(0, 1.36, 0) for the US. Thus, the orders of

integration are in all cases higher than one but smaller than two,  and  the  t-statistics based

on the nulls d = 1 and d = 2 reject both hypotheses for the three series. (Note that the

estimates are based on maximum likelihood and thus, standard tests based on the statistics

(d-1)/SE(d) and (d-2)/SE(d) are applicable in these cases). As a validation control for each

of the selected models, we use a very simple version of a testing procedure due to Robinson

(1994). He proposed a Lagrange Multiplier (LM) test of the null hypothesis:

,: oo ddH � (4)

in (1) for any real value do. Specifically, the test statistic is given by:
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7  The models were estimated with no intercept based on the assumption that the first differenced series have
zero mean. Note that the inclusion of an intercept in first differences would imply that a linear trend in the



)(minargˆ 2
��� � .  Based on Ho (4), Robinson (1994) showed that under certain regularity

conditions,

.)1,0(ˆ ��� TasNr d (6)

Thus, an approximate 100�% level test of (4) will reject Ho against the alternative: Ha: d >

do (d < do) if r̂ > z� ( r̂ < -z�), where the probability that a standard normal variate exceeds z�

is �. He also showed that the tests are efficient in the Pitman sense, i.e., that against local

alternatives of form: Ha: d = do + �T-1/2, with �  0, r̂  has a limit distrtibution which is

normal with variance 1 and mean that cannot (when ut is Gaussian) be exceeded in absolute

value by that of any other rival regular statistic. Empirical applications based on this version

of Robinson’s (1994) tests can be found in Gil-Alana and Robinson (1997) and Gil-Alana

(2000) and, other versions of his tests based on seasonal (quarterly and monthly) and

cyclical models are respectively Gil-Alana and Robinson (2001) and Gil-Alana (1999,

2001).

We report, in the last column of Table 6, the results of r̂  in (5) in a model given by

(1), testing Ho (4) for values do = 1, d* and 2, where d* is the chosen value according to the

previous estimation procedure.8  Note that the non-rejections of Ho (4) in these cases will

imply that the series follow respectively an I(1), an ARFIMA, and an I(2) process. We see

that when testing with do = 1, Ho (4) is rejected against alternatives with d > 1, and similarly,

if do = 2, the null is rejected this time against alternatives with d < 2, implying that the order

of integration of the series might fluctuate between these two extreme cases. Furthermore,

we also observe that Ho (4) cannot be rejected in any series when do is chosen as the

estimated value with the previous model selection criterion, indicating that the models can

be correctly specified.

                                                                                                                                                                                  
original series for t > 1 only for the unit root case but not for I(d) processes.
8  The null hypothesis Ho (4) in the tests of Robinson (1994) considers do as any given real value and thus, we
can test Ho: d = d*, taking d* as a given value rather than as an estimated one.



(Insert Table 7 about here)

Table 7 firstly reports the results of ARIMA models imposing d = 1 in the GDP

series. The best model specifications appear to be an ARIMA(1, 1, 2) for France and the

UK, and an ARIMA(1, 1, 1) for USA. However, we observe that in all these cases, the AR

parameter is very close to the unit root case (0.99 for France and 0.95 for UK and USA).

Thus we also report the results assuming that d = 2. In this context, the best model

specifications, according to the BIC, are an ARIMA(0, 2, 2) for France; an ARIMA(0, 2, 1)

for UK, and an ARIMA(1, 2, 1) for USA, and in the three cases, the roots of the MA part

seem to indicate now that there is a common unit root in the process. In view of these

results, it becomes apparent that the ARFIMA models presented in Table 6 may better

describe the long run behaviour of the three series since it does not restrict themselves to the

integer differencing of the series. To show this, we describe in the following section

simulated business cycle characteristics based on both, the ARFIMA models described in

Table 6 and the ARI(2)MA models of Table 7.

5. A simulated comparison between ARIMA and ARFIMA models

Once the coefficients of the ARI(2)MA and ARFIMA models have been estimated, our

objective now consists of selecting the best model, with respect to its ability to reproduce the

business cycles features. So, we simulate 2500 ARI(2)MA and ARFIMA models for each

country and compute their business cycles characteristics. Their empirical mean and

variance are indicated in Table 89. 

(Insert Table 8 about here)

The selection of the best model stems out from the comparison with the observed features in

Table 5. It is first noticeable that Table 8 confirms the results exhibited in Section 3: As the

                                                          

9 These two moments are sufficient to resume the complete distribution as we only consider linear models.



degree of fractional integration is always lower than 2, the number of peaks is lower in the

cases of  ARI(2)MA models, whereas the contrary results hold for the lengths and the

amplitudes.

In the case of the UK, the ARFIMA model leads to a better replication of the

features: the number of peaks corresponds to what is observed (5 cycles) and the amplitudes

(of both phase of the cycle) are closer to the historical observations. Both length features are

also bettered but not too significantly. For the US, the ARFIMA model overestimates the

number of cycles (9) whereas the ARI(2)MA underestimates it (3). Nevertheless, we notice

that the length features and the mean amplitude of the recession are more in line with the

observed features when the fractional model is entertained.. Only the mean amplitude of

expansion is underestimated by the ARFIMA model. This result is probably due to the

linearity of the models: ARI(2)MA models exhibit mean amplitude features corresponding

to the observed expansion amplitude (0.18) and so overestimate recession amplitude,

whereas ARFIMA models replicate amplitude of the recession (0.02) and so overestimate

the expansion amplitude. However, the ARFIMA model appears here slightly better than the

ARI(2)MA one. In the case of France, the results appear to be more in favour of the

ARI(2)MA model, which outperforms the ARFIMA for nearly all the features except the

length of the recession. In conclusion, it appears that the ARFIMA models perform better

than the ARIMAs , at least for the cases of the US and the UK.

6. Conclusions

We have tried in this article to analyse how fractionally integrated models can modify the

reproduction of business cycle features. From a theoretical point of view, several Monte

Carlo experiments conducted via simulations showed that the business cycle features can be

seriously affected by the degree of integration of the series as well as by the short run



(ARMA) components associated to it. We built up five indicators for the business cycle

characteristics, namely, the number of peaks, and the length and amplitude of the recessions

and the expansions. It turns out that the average number of cycles increases until d ~ 0.5, and

then sharply decreases. The other features share a symmetric paths. The importance of the

stochastic trend part of the process (when d > 0.5) justifies this result. Next, we modelled the

real GDP series in France, the UK and the US by means of fractionally ARIMA (ARFIMA)

models. We used the Sowell’s (1992) procedure of estimating by maximum likelihood in the

time domain. The results indicate that the three series can be specified in terms of ARFIMA

models, with orders of integration higher than one but smaller than two. This is also

corroborated by the tests of Robinson (1994). When imposing an integer order of

differencing, the series appear to be I(2), and comparing the ARFIMA models with the

ARIMA ones, the former models seem to better describe the business cycle characteristics of

the data, at least for the cases of the UK and the US. Isawa and Hess (2000) showed that the

ARIMA models better replicate the business cycle features of many historical data compared

with other approaches and, in that respect, we have shown in this article that the ARFIMA

specification can do it even better than the ARIMA model.
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FIGURE 1

Business cycle features

Note: This figure represents the first cycle in US data. T stands for Trough, P for Peak, le for length of expansion, lr
for length of recession, ae for amplitude of expansion and  ar for amplitude of recession. The length of the cycle is the
sum of the two lengths.



FIGURE 2
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Note: we perform 2500 replications of process 1 (ut is a white noise). The sample length is 300 observations.



TABLE 1
Business cycle characteristics for fractional processes with white noise disturbances

Sample size Values of d Aver. number
of cycles

Mean length
of recession

Mean length
of expansion

Mean
amplitude of

recession

Mean
amplitude of

expansion

0.00 7.37
(0.03)

6.29
(1.64)

11.01
(1.97)

2.24
(0.33)

2.24
(0.33)

0.25 7.76
(0.03)

5.94
(1.48)

10.46
(1.75)

2.16
(0.34)

2.16
(0.35)

0.50 8.07
(0.06)

5.73
(1.35)

9.83
(1.54)

2.15
(0.37)

2.15
(0.39)

0.75 8.17
(0.06)

5.68
(1.30)

9.48
(1.45)

2.27
(0.45)

2.36
(0.48)

1.00 7.69
(0.06)

6.15
(1.45)

9.63
(1.50)

2.79
(0.68)

3.00
(0.73)

1.50 4.43
(0.04)

10.41
(2.90)

15.11
(2.02)

10.37
(3.67)

12.02
(3.61)

T  =  100

2.00 2.66
(1.92)

13.00
(1.92)

19.39
(2.02)

29.12
(5.48)

36.84
(5.86)

0.00 23.30
(0.18)

6.22
(0.99)

11.09
(1.21)

2.24
(0.19)

2.24
(0.19)

0.25 24.64
(0.19)

5.92
(0.89)

10.37
(1.06)

2.16
(0.19)

2.16
(0.20)

0.50 25.55
(0.20)

5.72
(0.81)

9.91
(0.95)

2.16
(0.21)

2.17
(0.23)

0.75 25.79
(0.20)

5.70
(0.78)

9.52
(0.85)

2.29
(0.26)

2.35
(0.28)

1.00 24.30
(0.19)

6.10
(0.86)

9.64
(0.90)

2.77
(0.40)

2.95
(0.43)

1.50 12.35
(0.11)

12.21
(3.85)

18.86
(4.39)

13.73
(6.22)

19.13
(7.53)

T  =  300

2.00 3.82
(0.04)

26.04
(8.01)

44.10
(9.66)

114.77
(44.12)

177.19
(51.54)

0.00 39.33
(0.15)

6.24
(0.78)

11.08
(0.94)

2.25
(0.15)

2.25
(0.15)

0.25 41.38
(0.33)

5.97
(0.70)

10.22
(0.82)

2.17
(0.15)

2.17
(0.15)

0.50 43.11
(0.34)

5.73
(0.63)

9.76
(0.72)

2.16
(0.16)

2.18
(0.17)

0.75 43.68
(0.34)

5.64
(0.59)

9.51
(0.67)

2.28
(0.20)

2.35
(0.21)

1.00 41.07
(0.32)

6.07
(0.66)

9.67
(0.70)

2.76
(0.31)

2.95
(0.33)

1.50 19.92
(0.18)

13.07
(3.70)

19.47
(4.06)

15.81
(6.64)

20.77
(7.62)

T  =  500

2.00 4.63
(0.05)

33.54
(12.24)

61.70
(16.84)

196.67
(85.03)

336.16
(122.33)

Note : We perform 2500 replications.  Standard errors in parenthesis.



TABLE 2
Business cycle characteristics for fractional processes with AR(1) disturbances and T  =  300

Sample size Values of d Aver. number
of cycles

Mean length
of recession

Mean length
of expansion

Mean
amplitude of

recession

Mean
amplitude of

expansion

0.00 26.12 
(0.20)

5.66
(0.82)

9.62
(0.94)

2.28
(0.19)

2.29
(0.20)

0.25 27.28
(0.21)

5.34
(0.72)

9.48
(0.85)

2.26
(0.21)

2.27
(0.22)

0.50 27.92
(0.22)

5.25
(0.66)

9.02
(0.75)

2.33
(0.24)

2.37
(0.25)

0.75 27.10
(0.21)

5.38
(0.67)

9.20
(0.75)

2.60
(0.31)

2.72
(0.34)

1.00 24.51
(0.19)

5.95
(0.82)

9.91
(0.90)

3.35
(0.53)

3.73
(0.58)

1.50 11.53
(0.11)

12.91
(4.21)

21.61
(5.07)

19.35
(8.89)

28.93
(11.06)

�  =  0.25

2.00 3.75
(0.04)

27.38
(7.90)

44.55
(9.91)

157.92
(56.34)

223.80
(68.04)

0.00 27.88
(0.22)

5.25
(0.68)

9.17
(0.80)

2.34
(0.21)

2.34
(0.22)

0.25 28.36
(0.22)

5.18
(0.63)

8.91
(0.71)

2.42
(0.24)

2.45
(0.25)

0.50 27.78
(0.22)

5.22
(0.62)

9.15
(0.71)

2.64
(0.30)

2.73
(0.32)

0.75 25.87
0.20)

5.63
(0.71)

9.57
(0.79)

3.22
(0.45)

3.46
(0.49)

1.00 22.28
(0.17)

6.62
(1.00)

10.82
(1.08)

4.71
(0.90)

5.37
(0.98)

1.50 9.54
(0.09)

15.82
(5.42)

26.83
(6.52)

35.61
(16.41)

51.23
(19.83)

�  =  0.50

2.00 3.32
(9.03)

30.27
(7.93)

50.28
(9.22)

264.89
(83.44)

363.07
(93.09)

0.00 27.41
(0.21)

5.32
(0.66)

9.23
(0.76)

2.44
(0.25)

2.47
(0.27)

0.25 26.76
(0.21)

5.40
(0.66)

9.57
(0.77)

2.72
(0.33)

2.82
(0.35)

0.50 24.79
(0.19)

5.84
(0.75)

10.18
(0.86)

3.39
(0.50)

3.66
(0.54)

0.75 21.39
(0.17)

6.82
(1.03)

11.62
(1.17)

4.91
(0.96)

5.60
(1.03)

1.00 16.83
(0.13)

8.60
(1.67)

14.85
(1.96)

8.84
(2.38)

11.11
(2.67)

1.50 6.42
(0.06)

22.15
(8.06)

40.25
(1.96)

88.09
(41.56)

136.14
(51.08)

�  =  0.75

2.00 2.91
(0.03)

33.41
(6.43)

60.58
(8.20)

531.91
(124.68)

842.48
(153.26)

Note: We perform 2500 replications. Standard errors in parenthesis.



TABLE 3
Business cycle characteristics for fractional processes with MA(1) disturbances and T  =  300

Sample size Values of d Aver. number
of peaks

Mean length
of recession

Mean length
of expansion

Mean
amplitude of

recession

Mean
amplitude of

expansion

0.00 27.38
(0.21)

5.34
(0.74)

9.36
(0.88)

2.33
(0.19)

2.33
(0.19)

0.25 28.52
(0.22)

5.09
(0.66)

9.05
(0.78)

2.29
(0.20)

2.30
(0.21)

0.50 29.16
(0.23)

4.97
(0.60)

8.83
(0.71)

2.33
(0.22)

2.36
(0.24)

0.75 28.39
(0.22)

5.13
(0.62)

8.82
(0.70)

2.54
(0.29)

2.65
(0.31)

1.00 25.83
(0.20)

5.72
(0.76)

9.31
(0.81)

3.21
(0.48)

3.49
(0.52)

1.50 12.13
(0.11)

12.64
(4.24)

20.25
(4.80)

18.46
(8.73)

25.75
(10.15)

�  =  0.25

2.00 3.84
(0.04)

24.79
(7.32)

42.11
(9.01)

130.87
(47.07)

197.12
(57.26)

0.00 32.33
(0.25)

4.52
(0.53)

8.02
(0.61)

2.48
(0.19)

2.48
(0.19)

0.25 33.01
(0.26)

4.42
(0.48)

7.82
(0.55)

2.47
(0.20)

2.47
(0.22)

0.50 32.65
(0.25)

4.46
(0.48)

7.88
(0.54)

2.55
(0.24)

2.60
(0.26)

0.75 30.95
(0.24)

4.72
(0.52)

8.21
(0.58)

2.86
(0.32)

2.99
(0.35)

1.00 27.32
(0.21)

5.35
(0.69)

9.13
(0.77)

3.68
(0.56)

4.11
(0.62)

1.50 12.37
(0.11)

12.74
(4.31)

20.70
(4.96)

22.77
(10.65)

32.14
(12.71)

�  =  0.50

2.00 3.83
(0.04)

25.55
(7.55)

44.90
(10.15)

169.58
(60.35)

273.02
(81.86)

0.00 36.14
(0.28)

4.04
(0.41)

7.25
(0.47)

2.69
(0.20)

2.69
(0.20)

0.25 36.13
(0.28)

4.07
(0.40)

7.05
(0.44)

2.71
(0.22)

2.72
(0.23)

0.50 34.94
(0.27)

4.18
(0.41)

7.44
(0.46)

2.85
(0.26)

2.90
(0.26)

0.75 32.52
(0.25)

4.53
(0.48)

7.76
(0.53)

3.22
(0.36)

3.39
(0.39)

1.00 28.32
(0.22)

5.18
(0.66)

8.88
(0.73)

4.18
(0.64)

4.71
(0.70)

1.50 12.46
(0.11)

12.23
(4.15)

20.54
(4.92)

25.05
(11.84)

36.50
(14.54)

�  =  0.75

2.00 3.79
(0.04)

25.51
(7.23)

47.07
(10.31)

197.69
(69.00)

328.39
(97.74)

Note: We perform 2500 replications. Standard errors in parenthesis.



TABLE 4

Business cycle datation
Country Our datation Reference datation*

Peak Trough Peak Trough

FRANCE

80:1
84:1
90:3
92:1
95:3

75:1
80:4
85:1
91:1
93:1

79:4
82:1
84:1
92:1

75:1
81:1
82:4
85:1

UNITED
KINGDOM

64:4
73:1
78:4
84:1
90:2

65:1
74:1
81:1
84:3
91:3

79:2
83:4
90:1

74:1
81:1
84:2
92:1

UNITED
STATES

73:2
80:1
81:1
90:2
92:4

70:1
75:1
80:3
82:1
91:1

73:4
80:1

90:3

70:4
75:1

82:4
91:1

* Reference datation corresponds to the NBER datation for the United States and to the datation 
proposed by Artis and al. (1997) for France and the United Kingdom.

TABLE 5
Business cycle characteristics of the log of the

Country Number
of peaks

Mean length of
expansion

Mean length of
recession

Mean amplitude
of expansion

Mean amplitude
of recession

 FRANCE 5 14.75

        (3.52)

3.25

(0.41)

0.11

(0.03)

0.01

(0.002)

UNITED
KINGDOM

5 17.00

         (5.62)

4.00

(0.94)

0.18

(0.05)

0.02

(0.003)

UNITED
STATES

5 21.25

        (3.44)

5.00

(1.28)

0.16

(0.04)

0.02

(0.01)
    Standard errors in parenthesis.



TABLE 6
Best ARFIMA model specification for the log of the real GDP series

ARFIMA t-tests AR coefficients MA coefficients Robinson’s tests
Country (p,  d,  q) d=1 d=2 �1 �2 �3 �1 �2 �3 d = 1 d = d* d = 2

FRANCE (0, 1.47, 2) 9.40 -10.60 --- --- --- -0.86 0.20 --- 1.99 1.23’ -2.31
UNITED

KINGDOM
(1, 1.38, 2) 5.42 -8.85 -0.87 --- --- 0.58 -0.38 --- 1.73 0.07’ -1.69

UNITED
STATES

(0, 1.36, 0) 3.60 -6.40 --- --- --- --- --- --- 2.16 -0.79’ -2.34

The last column corresponds to the tests of Robinson (1994), testing Ho: d = do, where do is the maximum likelihood
estimated of d obtained in previous tables. ‘ means non-rejection values at the 95% significance level.

TABLE 7
Best ARI(1)MA model specifications for the log of the real GDP

ARIMA AR coefficients MA coefficients
Country (p,  d,  q) �1 �2 �3 �1 �2 �3

FRANCE (1,  1,  2) 0.99 --- --- -1.35 0.42 ---
UNITED KINGDOM (1,  1,  2) 0.95 --- --- -0.90 0.10 ---

UNITED STATES (1,  1,  1) 0.95 --- --- -0.63 --- ---
Best ARI(2)MA model specifications for the log of the real GDP

ARIMA AR coefficients MA coefficients
Country (p,  d,  q) �1 �2 �3 �1 �2 �3

FRANCE (0,  2,  2) --- --- --- -1.35 0.42 ---
UNITED KINGDOM (0,  2,  1) --- --- --- -0.99 --- ---

UNITED STATES (1,  2,  1) 0.30 --- --- -0.98 --- ---



TABLE 8

Simulated business cycle characteristics of the log
of the real GDP series with ARFIMA MODELS

Country
Aver.

Number
of Peaks

Mean length of
expansion

Mean length of
recession

Mean amplitude
of  expansion

Mean amplitude
of recession

FRANCE
10

(0.087)

11.7804

(2.063)

7.3447

(1.818)

0.0150

(0.0041)

0.013

(0.0035)

 UNITED
KINGDOM

5

(0.0446)

22.8476

(4.7520)

16.0179

(4.752)

0.0803

(0.0234)

0.0685

(0.023)

UNITED
STATES

9

(0.0761)

13.6392

(2.7195)

8.8280

(2.4950)

0.0294

(0.0101)

0.0237

(0.0089)

    Simulated business cycle characteristics of the
log of the real GDP series with ARI(2)MA MODELS

Country
Aver.

Number
of Peaks

Mean length of
expansion

Mean length of
recession

Mean amplitude
of expansion

Mean amplitude
of recession

FRANCE
6

(0.0664)

15.086

(2.827)

17.216

(2.909)

0.0311

(4.0073)

0.0283

(0.008)

 UNITED
KINGDOM

3

(0.033)

24.066

(3.800)

16.031

(3.760)

0.4389

(0.0971)

0.314

(0.090)

UNITED
STATES

3

(0.035)

27.423

(4.215)

16.9742

(3.875)

.2502

(0.056)

0.1707

(0.051)
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