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1 Introduction

Inflation and its variability entail large real costs to the economy. Several studies show

that a 10% inflation rate can produce losses of around 3% of the real GNP through

saving and investment misallocation or the loss of value of real balances.1 In light of

these figures, the current era of low inflation level and volatility constitutes a major

macroeconomic development. In this paper we attempt to identify the driving forces

which led to the current low inflation volatility in the United States.2

The top panel of Figure 1 graphs historical inflation series since 1957. They were

calculated with three measures of the price level frequently used by researchers and

policy makers: the Consumer Price Index (CPI), the Personal Consumption Expenditures

Deflator (PCE) and the GDP Deflator (GDPD). The figure shows the steady increase

of all the inflation series since the mid-60s up to the beginning of the 80s. Since then,

inflation has been drastically reduced. Current inflation hovers at low levels, comparable

to those of the early 60s. One difference among the series is that during our sample

period, GDPD inflation peaks at the end of 1974, after the first oil shock, whereas the

CPI and PCE inflation rates reach their maximum values in the beginning of the 80s. The

bottom panel of Figure 1 graphs a 20 quarter rolling standard deviation of each inflation

measure. It also shows an important increase since the mid 60s followed by a steady

decline starting in the early 80s. Table 1 lists the sample statistics of the inflation series

for different sample periods. All the series have experienced a large drop in averages and

volatilities since the end of 1980. While the three measures of inflation exhibit smaller

first order autocorrelations during the second period, this decline is less pronounced in the

case of the GDPD. Table 1 shows that these empirical facts are reinforced if we remove

the observations included in the high inflation volatility period which goes from 1978 to

1983. The overall picture of lower volatility which emerges from Table 1 and Figure 1

motivates the central question in this paper: What led to a lower inflation variability?

The approach followed in this paper to answer this question is based upon two build-

ing blocks. First, we formulate a monetary New Keynesian model of the macroeconomy

which comprises aggregate supply, aggregate demand and monetary policy rule equa-

1See, for instance, Fischer (1981), Feldstein (1997) or Lucas (2000).
2While the present paper focuses on the drop of inflation volatility, our results also apply to the

reduction in the level of inflation. A robust positive relation between the level and the variance of
inflation has been long documented in the literature: Okun (1971), Friedman (1977) or Taylor (1981).
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tions with endogenous persistence. In this model higher rates of inflation trigger the

response of the monetary authority which raises interest rates. Changes in the real rate,

in turn, reduce the welfare of the representative agent. The introduction of a model has

the advantage that it allows us to identify specific propagation mechanisms of structural

shocks. The New-Keynesian model seems adequate for our exercise, as it implies macroe-

conomic dynamics which represent a good approximation to those observed in the data,

as shown by Rotemberg and Woodford (1998) and others. In fact, our model estimates

yield standard deviations and autocorrelation patterns which are broadly consistent with

those found in the data.

Second, we develop a counterfactual analysis in order to determine the driving forces

behind the current low inflation environment. This methodology is particularly useful for

our task, as it makes the private agents and the monetary authority confront shocks of

different sample periods. Hence, it reveals the counterfactual inflation volatilities which

would have arisen under different combinations of macroeconomic conditions (shocks)

and private sector/monetary policy behavior. In this way, we can determine what factors

were instrumental in the reduction of inflation volatility.

Our counterfactual analysis also assumes that there is a sudden shift in the structural

model parameters and that both the private sector and the monetary authority recognize

it immediately. This is a limitation of our framework, since shifts which agents perceived

with probability zero just before the break are perfectly understood right after. However,

we think that our approach can be seen a first order approximation to what happened

in reality, where agents assign probabilities to parameter changes. Additionally, in order

to check for the robustness of our results, we perform a sensitivity analysis around the

estimated parameter values.

We impose the model’s implied cross-equation constraints in estimation and perform

alternative estimations with the three inflation measures: CPI and GDPD inflation. We

find that while CPI inflation volatility fell because the internal propagation mechanism

changed, the lower shocks had a large impact on the decline of GDPD inflation. We show

some evidence pointing to the prices of investment goods, specially those of equipment,

as responsible for this differences.

Our maximum likelihood estimates imply that the change towards the more forward-

looking price setting of the 80s and 90s was the most influential factor in the change of
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the propagation mechanism. We find that the shift towards a more aggressive monetary

policy rule of the last two decades also mattered, but to a lesser extent. One implication

of our study is the need to understand better the sources of changes in the price setting. It

could be that the “forward-lookingness” of the price-setting process is related to monetary

policy, but the New-Keynesian model is, in principle, silent about it.

The literature on the drop of inflation volatility is quite recent. Boivin and Giannoni

(2002) and Ahmed, Levin, and Wilson (2002) use a VAR approach to determine whether

the decrease of inflation volatility over the last 20 years was due to smaller shocks or

to changes in the overall transmission mechanism of these exogenous disturbances. The

structural approach followed in this paper allows us to determine the origin of the changes

in the transmission mechanism. Unlike a less structured approach, we can determine

whether variations in the propagation mechanism were due to a change in the conduct

of monetary policy or to parameters describing the structure of the economy. We also

perform a more comprehensive analysis of the drop of inflation volatility, as we look at

both CPI and GDPD.

Our paper is also related to the literature on parameter stability of structural macro

models. Clarida, Gaĺı, and Gertler (1999) and Boivin and Giannoni (2003) detected a

significant increase in the response of the Fed to inflation after Volcker’s arrival. Addi-

tionally, Bernanke and Mihov (1998) find parameter instability in their identified VARs,

whereas Ireland (2001) finds parameter instability in a structural New-Keynesian macro

model. In this paper we explore whether, and which, changes in structural parameters

triggered the decline of inflation volatility.

Two closely related papers are Stock and Watson (2002) and Cogley and Sargent

(2002). The first paper uses a structural approach similar to the one employed in this

paper, but its goal is to uncover the factors behind the decline of output volatility. In

contrast to their study, we let all of the structural parameters vary across periods and

not just those in the policy rule. This difference turns out to be critical in our case,

as we detect a significant change in the forward-looking parameter of the AS equation.

Finally, Cogley and Sargent (2002) estimate a time-varying parameter model and find

a clear inverse relation between the persistence of CPI inflation and the Fed’s degree of

responsiveness to inflation. While our model estimates also capture this contemporaneous

relation, we show that other factors, such as the forward-looking price setting of the 80s

and 90s, may have also been influential.
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This paper proceeds as follows. Section 2 lays out the model of the economy. Section

3 discusses the Rational Expectations solution associated with the model. Section 4

describes the data and the estimation procedure. In Section 5 we perform the break date

tests in order to identify two separate subsamples. In Section 6 we show our main results.

Section 7 concludes.

2 A Macro Model for the U.S. Economy

This section lays out a simple linear Rational Expectations model of the macroecon-

omy which is similar to the ones employed in recent studies of monetary policy such as

Rotemberg and Woodford (1998). The model comprises aggregate supply (AS), aggregate

demand (IS) and monetary policy equations. The derivations of each of the equations

are consigned to the Appendix.

The aggregate supply equation is a generalization of the supply specification originally

developed by Calvo (1983):

πt = δEtπt+1 + (1− δ)πt−1 + λyt + εASt (1)

πt is inflation between t−1 and t and yt stands for the output gap between t−1 and t. εASt

is the aggregate supply structural shock, assumed to be independently and identically

distributed with homoskedastic variance σ2
AS. It can be interpreted as a cost push shock

which makes real wages deviate from their equilibrium value or simply as a pricing error.

Et is the Rational Expectations operator conditional on the information set at time t,

which comprises πt, yt, rt (the nominal interest rate at time t) and all the lags of these

variables. Equation (1) shows that δ grows as the private sector puts more weight on

expected inflation. A virtue of this pricing specification is that it captures the empirical

properties of U.S. inflation dynamics quite accurately. As the Appendix makes clear,

the endogenous persistence arises due to the existence of price setters who do not adjust

optimally and index their prices with respect to past inflation.

The IS or demand equation is based on representative agent intertemporal utility
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maximization with external habit persistence, as proposed by Fuhrer (2000) :

yt = µEtyt+1 + (1− µ)yt−1 − φ(rt − Etπt+1) + εIS,t (2)

where εISt is the IS shock, assumed to be independently and identically distributed with

homoskedastic variance σ2
IS. In our specification, it is the habit formation specification

in the utility function which imparts endogenous persistence to the output gap. The

monetary policy channel in the IS equation is captured by the contemporaneous output

gap dependence on the ex ante real rate of interest. This relation arises in standard

Euler equations derived by lifetime utility maximization. The monetary transmission

mechanism depends negatively on the curvature parameter in the utility function, σ and,

for σ > 1, on the parameter that indexes habit persistence, h, since φ = 1
σ(1+h)−h . σ

represents the inverse of the elasticity of substitution in the absence of habit formation.

Appendix A.1 shows that εISt is proportional to the utility function disturbances.

We close the model with the monetary policy rule formulated by Clarida, Gaĺı, and

Gertler (2000):

rt = αMP + ρrt−1 + (1− ρ) [βEtπt+1 + γyt] + εMPt (3)

αMP is a constant and εMPt is the monetary policy shock, assumed to be independently

and identically distributed with homoskedastic variance σ2
MP . The policy rule has two

well differentiated parts. On the one hand, the monetary authority smooths interest

rates, placing a weight of ρ on the past interest rate. On the other hand, it reacts to high

expected inflation and to deviations of output from its trend. The parameter β measures

the long run response of the Central Bank to expected inflation, whereas γ describes

its reaction to output gap fluctuations. We assume that the Federal funds rate is the

monetary policy instrument, as much of the previous literature does.
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3 Rational Expectations Equilibrium

3.1 Model Equilibrium and Implications

In this section we follow the framework laid out in Cho and Moreno (2002) to derive the

Rational Expectations equilibrium of the model. Our macroeconomic system of equations

(1), (2) and (3) can be expressed in matrix form as follows:

 1 −λ 0

0 1 φ

0 − (1− ρ) γ 1


 πt

yt

rt

 =

 0

0

αMP

 +

 δ 0 0

φ µ 0

(1− ρ)β 0 0

Et
 πt+1

yt+1

rt+1

 +

 1− δ 0 0

0 1− µ 0

0 0 ρ


 πt−1

yt−1

rt−1

 +

 εASt

εISt

εMPt


In more compact notation:

B11Xt = α+ A11EtXt+1 +B12Xt−1 + εt, εt ∼ (0, D) (4)

where Xt = (πt yt rt)
′, B11, A11 and B12 are the coefficient matrices of structural pa-

rameters, and α is a vector of constants. εt is the vector of structural errors, D is the

diagonal structural error variance matrix and 0 denotes a 3×1 vector of zeros. Following

a standard Undetermined Coefficients approach, the Rational Expectations equilibrium

to the system in (4) can be written as the following reduced-form:

Xt+1 = c+ ΩXt + Γεt+1 (5)

where c is a 3×1 vector of constants and Ω and Γ are 3×3 matrices. To see this, substitute

equation (5) into equation (4) and rearrange by applying Rational Expectations. Then:

(B11 − A11Ω)Xt = α+ A11c+B12Xt−1 + εt (6)

Since the three structural equations are linearly independent, (B11−A11Ω) is nonsingular.

Then, pre-multiplying by (B11−A11Ω)−1 on both sides in equation (6) and matching the
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coefficient matrices of Xt−1 and εt, we obtain:

Ω = (B11 − A11Ω)−1B12 (7)

Γ = (B11 − A11Ω)−1 (8)

c = (B11 − A11Ω− A11)
−1α (9)

Therefore, equation (5) with Ω, Γ and c satisfying equations (7), (8) and (9) is a solution

to equation (4). Once we solve for Ω as a function of A11, B11 and B12, Γ and c can be

easily calculated. Notice that the implied reduced-form of our structural model is simply

a VAR of order 1 with highly nonlinear parameter restrictions. There is a linear relation

between the structural errors, εt and the reduced-form Rational Expectations errors (vt),

through Γ,

vt = Γεt (10)

The Rational Expectations equilibrium also yields a simple linear relation between Ω and

Γ through B12, which captures the dependence of the system on the lagged predetermined

variables:

Ω = ΓB12 (11)

3.2 Characterization of the Rational Expectations Equilibrium

We will utilize two methods in order to determine the Rational Expectations equilibrium

to our system. First, we will use the generalized Schur matrix decomposition method

(QZ) developed by Klein (2000) and outlined by McCallum (1999) in order to obtain

the Rational Expectations equilibrium. The QZ method yields a solution even when

the matrix A11 is singular, which is the case in our model. Appendix B.1 describes the

derivation of the Rational Expectations Solution through the QZ method.

For Ω satisfying (4) to be admissible as a solution, it must be real-valued and exhibit

stationary dynamics. Because Ω is a nonlinear function of the structural parameters

in B11, A11 and B12, there could potentially be multiple equilibria. In this case, the

QZ method does not give us additional information to select one solution. When in-

determinacy of equilibrium arises, we employ the recursive method developed by Cho

and Moreno (2002). They solve the model forward recursively and propose a selection

criterion which is stationary and real-valued by construction. The recursive method is de-
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scribed in Appendix B.2. In it, agents coordinate in an equilibrium which yields a unique

vector of self-fulfilling expectations. This equilibrium imposes a transversality condition

that distant future expectations converge to their long run mean. The remaining expec-

tations are discarded, since agents deem them incapable of being satisfied.3 Hence, we

will use the QZ and recursive methods jointly in order to determine the solution to our

macroeconomic system.

4 Data and Estimation

We use quarterly data which spans the period between the second quarter of 1957 and

the first quarter of 2001. We present estimates with two measures of inflation: CPI

and GDPD. The results obtained using PCE inflation were very similar to those under

CPI inflation. The Federal funds rate is the monetary policy instrument. Our results

are similar using the 3 month T-Bill rate. We use output detrended quadratically. The

results are robust to the use of a linear trend or the Hodrick-Prescott filter. The data

is annualized and in percentages. CPI and Federal funds rate data were obtained from

Datastream, and both the real GDP and GDPD inflation were obtained from the National

Income and Product Accounts (NIPA).

We estimate the structural parameters using Full Information Maximum Likelihood

(FIML) by assuming normality of the structural errors. Our FIML estimation procedure

allows us to obtain the structural parameters and the VAR reduced-form in one stage,

affording a higher efficiency than two-stage instrumental variables techniques. It seems

adequate to estimate the whole model jointly, given the simultaneity between the private

sector and the Central Bank behavior, as explained by Leeper and Zha (2000).

The log likelihood function can be written as:

lnL(θ|X̄T , X̄T−1, ..., X̄1) =
T∑
t=2

[−3

2
ln 2π − 1

2
ln |Σ| − 1

2
(X̄t − ΩX̄t−1)

′Σ−1(X̄t − ΩX̄t−1)]

(12)

3If the solution falls into the indeterminacy region, the recursive method ignores the possibility of the
sunspot shocks discussed in Farmer and Guo (1994). In the case of indeterminacy, our equilibrium can be
seen as a sunspot equilibrium without sunspots. As it will be shown below, we obtain multiple equilibria
in the first subsample. Lubik and Schorfheide (2002) allow for sunspot shocks in their estimation and
cannot reject the existence of a sunspot equilibrium without sunspots in the pre-Volcker period.
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where X̄t = Xt − EXt, θ = (δ, λ, µ, φ, ρ, β, γ, σ2
AS, σ

2
IS, σ

2
MP ) and Σ = ΓDΓ′. EXt is the

unconditional expectation of Xt.

The matrices Ω and Γ can be calculated by the QZ method or the recursive method.

We maximize the likelihood function with respect to the structural parameters in θ, not

the reduced-form ones in Ω or Γ. Given the structural parameters, the matrices Ω and Γ

must be calculated at each iteration. This requires checking whether there is a unique,

real-valued stationary solution at each iteration. Whenever there are multiple solutions

at the i-th iteration, we apply the recursive method to select one solution. We choose the

initial parameters from the values used in the literature. In order to check for robustness

of our estimates we set up different initial conditions, randomizing around the obtained

parameter estimates five times. In all of the cases convergence to the same parameter

estimates was attained. We also found that the estimates obtained through our recursive

method converge to the c, Ω and Γ matrices obtained through the QZ method.

5 Dating the Structural Break in the U.S. Economy

Since our strategy consists of accounting for the drop of inflation volatility by the changes

in shocks and in propagation, we need to identify two separate subsamples. To this end,

we perform a structural break date test, which detects the most likely break date of

all the coefficients of an unrestricted VAR over the whole sample period. The idea is

that variations in these coefficients reflect changes in the parameters of our underlying

structural model. Bernanke, Gertler, and Watson (1997) and Clarida, Gaĺı, and Gertler

(1999), among others, have shown evidence of parameter instability across different sam-

ple periods.

We use the Sup-Wald test derived by Bai, Lumsdaine, and Stock (1998), which detects

the most likely structural break date in the reduced-form coefficients of a vector autore-

gression. Our motivation for the use of this test is twofold. First, breaks in reduced-form

coefficients must come from shifts in structural parameters. In order to respond to the

Lucas critique, we need then to split the full sample at the time of the structural break

in vector autoregressive coefficients. Second, there is evidence of a change in the uncon-

strained VAR coefficients which is responsible for the decrease in the overall inflation

volatility over the last 20 years (see Ahmed, Levin, and Wilson (2002) and section 6.3
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below). In this respect it seems then adequate to focus on breaks in all the unconstrained

parameters.

Table 2 reports the Sup-Wald test associated with unconstrained VARs of orders

one to five using the CPI inflation rate. Except for the VAR(1), the beginning of the

4th quarter of 1980 is identified as the most likely break date for the parameters of the

reduced-form relation (in the case of the VAR(1), the break date selected is the third

quarter of 1980). Since the Schwarz criterion selects the VAR(3) as the order which

provides the best fit to the data, we set the beginning of the fourth quarter of 1980, one

year after Paul Volcker became Federal Reserve chairman, as our break date. Figure 2

graphs the time series of the Wald statistics for the VAR(3). This break date is robust

across inflation and output gap measures and significant at the 1% level. The 90%

confidence interval is very tight, including only three quarters. This date coincides with

the largest increase, between two quarters, in the average Federal funds rate during the

whole sample: From 9.83% in the 3rd quarter of 1980 to 15.85% on the 4th.

While there appears to be a clear break date in the relation among our three macroe-

conomic variables, it seems plausible that more than one structural break has occurred

in the joint fluctuations of inflation, the output gap and the Federal funds rate over the

complete sample period. Stock and Watson (2002), for instance, perform a battery of

univariate and multivariate tests and conclude that the most likely break date test for the

majority of the macroeconomic series is around 1984.4 In order to gauge the robustness of

our break date, we perform the following experiment: We estimate unconstrained VARs

for the two subsamples separated by the original break date. Then, with the residuals

of these vector autoregressions, we run the Sup-Wald test for both samples. If no other

clear structural break dates existed, no obvious break dates should arise in this exercise,

since the sample splitting would make the unconstrained parameters approximately sta-

ble across samples. Table 3 shows the break date statistics for unconstrained VARs for

the two subsamples and Figure 3 graphs the time series of Wald statistics.5 While the

years 1974 and 1986 appear as candidates for break dates across subsamples, these breaks

4One major difference, however, is that when testing for an unknown break date in a multivariate
framework, they restrict their attention to the break in the mean of the GDP growth. Accordingly, they
perform the Sup-Wald test on VARs with different components of the GDP, but do not include inflation
or the Federal funds rate. Additionally, in our case, we let all the VAR coefficients break whereas they
focus on breaks in the unconditional variances.

5Note that we trim the initial and final 15% of the sample when running the Sup-Wald test. As
Maddala and Kim (1998) point out, it is customary to do so in order to rule out breaks around the ends.
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are not as clear as in the original case, since the exact quarter differs for each VAR order.

Given this finding and the fact that two relatively large subsamples will be available for

estimation, we will proceed with our analysis assuming that there was a single structural

break on the 4th quarter of 1980.

6 Results

In this section we present our main findings. First, we report the U.S. FIML baseline pa-

rameter estimates for both inflation specifications and we perform a parameter stability

study. Second, we analyze the properties of the implied Rational Expectations equilib-

rium and the model’s goodness of fit. Then we proceed to explain the influence of the

different propagation mechanisms (monetary policy and remaining model’s parameters)

on the decline of inflation volatility.

6.1 Parameter Estimates

6.1.1 Baseline Estimates

Table 4 reports the U.S. FIML estimates with both inflation measures. In order to

accommodate the documented change in the deterministic trend growth of output (see,

for instance, Orphanides and Porter (1998)) we allow for separate quadratic trends across

subsamples, just as in Ireland (2001).

The estimates in Table 4 have all the right sign across specifications and most of

them are statistically significant. In the AS equation, agents put more weight on ex-

pected inflation than on past inflation in both periods, whereas in the IS equation they

put around the same weight on the expected and past output gap across periods. The

coefficient on the real rate in the IS equation, φ, and the Phillips curve parameter, λ are

however imprecisely estimated. Estrella and Fuhrer (1999), Smets (2000), Kim (2000)

and Ireland (2001) also obtained small and insignificant estimates for these two param-

eters. Nelson and Nikolov (2002) show that Bayesian and Minimum Distance methods

yield larger values estimates of φ than those obtained through Maximum Likelihood or

Instrumental Variables estimators.
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The estimates of the monetary policy reaction function reflect the smoothing behavior

of the Fed, as the persistence coefficient, ρ, is of large magnitude. They also show that

the Fed reacted more strongly to future inflation in the second period, although not

significantly so, and that it acted in a countercyclical fashion, as γ has positive signs in

all cases. It is interesting to note that γ is significant in the first period across inflation

specifications, but in the second period it only becomes significant under the GDPD

specification.

Three major stylized facts emerge from Table 4 across specifications. First, the three

standard deviations of the structural shocks are lower in the second period, especially

the one corresponding to the IS shock. Blanchard and Simon (2001) and Ahmed, Levin,

and Wilson (2002) report decreases in their output equation innovations of a very similar

magnitude. Cogley and Sargent (2002) also report a 40% decrease of the variance of the

shock in their unemployment equation. Stock and Watson (2002) also present evidence

that structural shocks have been milder since 1984. Second, the probability distribution

of the Fed’s reaction to expected inflation shifted to the right in the second period,

but the difference across estimates is not statistically significant. In this respect, the

evidence is mixed across studies. On the one hand, Clarida, Gaĺı, and Gertler (1999), with

single equation GMM estimation and both Lubik and Schorfheide (2002) and Cogley and

Sargent (2002), with a Bayesian MLE approach in a system framework, find significant

increases in the Fed reaction to inflation. On the other hand, Sims (1999) and Sims

and Zha (2002), with regime switching models and both Ireland (2001) and Cho and

Moreno (2002), through frequentist MLE in a system framework, do not find a significant

increase.6 Third, private agents put more weight on expected inflation in the AS equation

during the second period. This is more pronounced in the estimation with CPI inflation.

Less attention has been paid to this third fact, however. The exception is Boivin and

Giannoni (2003), who also report an increase in this parameter.

As a robustness check, we exclude the first 4 observations of the second sample and

estimate the model parameters. As Table 4 shows, the stylized facts mentioned above do

not change. In fact, none of the results reported below is altered if we exclude the initial

observations of the second sample.

6Cho and Moreno (2002) further show in their small sample analysis that β is upwardly biased.
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6.1.2 Structural Estimates in the AS and IS equations

So far we have presented the results for the baseline estimates. The appendix shows

however that the four baseline parameters of the AS and IS equations (δ, λ, µ and φ)

are a function of five deeper structural parameters (ϑ, ϕ, ψ, σ and h). As can be seen,

without further restrictions, we cannot uniquely identify the structural parameters. Our

strategy is then to restrict ψ = 1 so that the remaining parameters can be identified.

The associated standard errors can be computed through the delta-method.

Table 5 presents the structural parameter estimates. As the appendix shows, the

price-setters who do not adjust optimally, index their prices with respect to past inflation.

They implement the following indexation rule: log Pt =logPt−1 + ϑπt−1. As a result, ϑ

reflects the degree of indexation with respect to past inflation. Our CPI estimates imply

that ϑ was 0.82 in the first period, and 0.69 in the second, whereas the GDPD imply 0.86

in the first period, and 0.79 in the second. Our estimates are statistically significant and

consistent with the implied upper bound of 0.5 for the backward looking term.7 These

estimates are similar to those found by Gaĺı and Gertler (1999). They reflect less indexing

with respect to past inflation on the side of price-setters. ϕ reflects the probability of not

adjusting prices optimally on a given period. It is estimated to be around 0.95, but not

significantly in most of the cases.

The implied estimates of the curvature parameter in the utility function, σ, are be-

tween 35 and 112, but are not significantly different from zero across periods or inflation

measures. Finally, the habit persistence parameter, h, is around 1 and statistically sig-

nificant across inflation measures and sample periods. Fuhrer (2000) found it to be 0.80.

6.1.3 Parameter Stability Tests

Table 7 presents the Wald tests for parameter stability of the baseline parameters. It

shows that at the 5% level, in the case of the estimates with CPI inflation, two parameters

reject the null of stability: δ, the forward-looking parameter in the AS equation and σIS,

the structural IS or demand shock. Precisely these two parameters will be crucial in

lowering inflation and output gap volatility, respectively. Interestingly, in their time

7Notice however that this analysis understates the true standard errors, as we calibrate the subjective
discount factor.
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varying parameter model, Cogley and Sargent (2002) fail to reject the time invariance

hypothesis in the inflation equation, which is the only equation where they detect a

reasonably high power in their sup-Wald test. In the context of our model, the move

towards a more forward-looking price setting seems to be instrumental in producing

instability of reduced-form parameters.8

In the case of the GDPD estimation, δ is not significantly different across periods,

but σAS and, marginally, γ, are. We will show that the decline of the AS shocks in the

second period triggered the lower GDPD inflation volatility in the second period.

Table 8 shows that, out of the structural parameter estimates in the AS and IS

equation, only the ϑ in the CPI specification rejects the null of stability. Of course, this

has to do with the significative difference of δ across periods.

6.2 Model’s Implied Equilibrium and Goodness of Fit

Table 6 reports the generalized eigenvalues associated with the Rational Expectations

equilibrium in both subsamples for the three data specifications. Whereas the second

period equilibrium is unique in all cases, the first period estimates give rise to multiple

equilibria, as there are more than three eigenvalues less than unity. Under Ricardian

fiscal policy, multiple equilibria can arise due to the violation of the “Taylor principle”,

whereby the Fed does not stabilize inflation fluctuations (β < 1). Then, for the first

subsample, we select the solution implied by the recursive method, which selects the

equilibrium associated with the three smallest eigenvalues.

Table 9 compares, across sample periods, the volatilities of the variables found in the

data with their model’s counterparts. Since the structural model is nested in a VAR(1)

system, all the elements of the implied variance-covariance matrix of the model (V(Xt))

can be easily computed from the Rational Expectations model solution in (5) as:

vec(V(Xt)) = (I − Ω⊗ Ω)−1(Γ⊗ Γ)vec(D) (13)

where I is the identity matrix of dimension 9× 9, ⊗ is the Kronecker product operator

and vec represents an operator stacking the columns of a matrix. All the volatilities are

8Alternatively, Rudebusch (2003) presents a careful statistical exercise showing that shifts in policy
rules by themselves have a small impact on the unconstrained VAR coefficients.
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matched with precision except in the case of the second period interest rate volatility.

This seems to be due to the highly non-linear behavior of the Federal funds rate during

the beginning of the 80s under the Volcker disinflation. Cogley and Sargent (2002) show

however that the inclusion stochastic volatility in their time-varying parameter model

does not affect the model’s estimates appreciably.

Figure 4 compares the sample autocorrelation functions with those implied by our

structural model under the CPI inflation specification. Very similar results were ob-

tained using GDPD inflation. In both periods, the sample autocorrelation functions

of inflation fall within the model’s confidence bands except for distant autocorrelations

in the first period. The model’s output gap autocorrelation seems to overpredict its

sample counterpart in both periods. Finally, the model matches the interest rate auto-

correlation function across sample periods quite closely. The cross-correlations are not as

precisely matched as the autocorrelations. This seems to be due to the fact that two im-

portant parameters which capture cross-coefficients feedback (φ and λ) are not precisely

estimated.

We now compare the propagation mechanism implied by our model to that of an

unconstrained VAR(1). For ease of exposition, we write our model solution alongside the

VAR(1) in demeaned form:

Xt = ΩXt−1 + ςt (14)

Xt = ΩolsXt−1 + vt (15)

where ςt = Γεt. Under the null of the model, Ω = Ωols. Figure 5 compares the VAR(1)

and model’s impulse response functions of the macro variables to the three reduced-form

shocks (inflation, output gap and interest rate shocks). It shows that the model does

a good job matching the dynamics found in the data along most dimensions for the

two sample periods. The model does not reproduce, however, the increase in inflation

following an interest rate shock. This is due to the way monetary policy operates in

our New-Keynesian economy: an increase in the interest rate lowers the output gap and

inflation contemporaneously through the IS and Phillips curve relations. The model also

seems to understate the impact of monetary policy on the output gap, especially in the

first period. This appears to be related to the small estimate of the coefficient on the

real rate in the IS equation, φ.

15



The cross-equation restrictions implied by the model are rejected by a likelihood-ratio

test. This is mainly due to the strong restrictions embedded in the variance-covariance

matrix of the structural errors. Additionally, the model does not reproduce the “price

puzzle”, present in most empirical VARs. However, Cho and Moreno (2002) perform a

small sample study of the likelihood ratio test of this model and find that when exogenous

correlation is added to the model, this is only marginally rejected.

6.3 Explaining the Drop in Inflation Volatility

In this subsection we attempt to determine the sources of the increased stability in the

inflation rate in the context of our New-Keynesian macro model. To this end, we develop

a counterfactual analysis given the parameter estimates obtained across sample periods.

We also develop a sensitivity analysis to assess the robustness of our results. We compare

the contribution of both shocks and the model’s propagation mechanism to the decline in

inflation volatility. Then, we compare the role of shocks and propagation in the change of

each component of inflation volatility: anticipated and unanticipated. Finally we focus

our attention on the specific roles of monetary policy authority and the private sector.

6.3.1 Shocks or Propagation? What Propagation?

In this section we study the role of exogenous shocks and internal propagation in the doc-

umented inflation volatility drop. Table 10 compares the standard deviations of inflation

and the output gap for all the sample combinations of structural shocks and propaga-

tion. It performs the analysis for both the empirical VAR(1) and the structural model.

Let Di be the matrix of structural shocks in period i and Φj the matrix of propagation

coefficients of period j. Then, for instance, σk(Di,Φj), where k = π, y, r and i, j = 1, 2,

denotes the standard deviation of the variable k implied by the system including the

shocks of sample i and the propagation of sample j. There are 5 possible counterfactual

comparisons which can be carried out:

1. If σk(D1,Φ1) > σk(D1,Φ2), the changes in propagation contribute to a lower volatil-

ity of variable k.

2. If σk(D1,Φ1) > σk(D2,Φ1), the changes in shocks contribute to a lower volatility
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of variable k.

3. If σk(D2,Φ2) < σk(D1,Φ2), the changes in shocks contribute to a lower volatility

of variable k.

4. If σk(D2,Φ2) < σk(D2,Φ1), the changes in propagation contribute to a lower volatil-

ity of variable k.

5. If σk(D1,Φ2) < σk(D2,Φ1), changes in propagation are more important than changes

in shocks in explaining a lower volatility of variable k. To see this, suppose that the

four previous inequalities hold. In that case, both shocks and volatility contributed

to lower volatility. To determine which factor was more influential, we compare the

volatilities implied by the more stabilizing propagation and the larger shocks with

the destabilizing propagation and the smaller shocks.

Whereas the first and second inequalities describe how, given an initial subsample,

changes in propagation or shocks would affect the volatilities, the third and fourth in-

equalities reflect the changes in volatilities that would be brought about by returning

to past scenarios of shocks or propagation. The fifth comparison allows us to gauge

the overall importance of shocks relative to propagation in the (relevant) case that both

shocks and propagation contributed to a lower inflation variance in a given period.

Table 10 presents the results of the counterfactual exercise.9 It shows that the model

can explain the lower inflation volatility of the second period. In the case of the CPI,

the implied second period inflation volatilities are statistically smaller in the second

period. A comparison between σπ(D1,Φ1) and σπ(D1,Φ2) for both inflation specifications

reveals that the changes in propagation in the second period contributed to the decline

of inflation volatility. This result is confirmed by the fact that σπ(D2,Φ2) < σπ(D2,Φ1).

The lower shocks also contributed to lower inflation volatility as σπ(D2,Φ1) < σπ(D1,Φ1)

and σπ(D1,Φ2) > σπ(D2,Φ2).

In the case of the CPI, the change in propagation was more influential than the decline

of shocks to reduce overall inflation volatility, since σπ(D2,Φ1) < σπ(D1,Φ2). As for the

decrease in GDPD inflation volatility, the model’s counterfactuals give more importance

to the smaller shocks in the second period than to the changes of propagation. Table

9We developed an analogous counterfactual exercise with an unconstrained VAR(1). The results are
very similar to those yielded by the structural model.
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4 reveals two main differences in the estimates under GDPD inflation with respect to

CPI inflation: First, the increase in the forward-looking component in the AS equation is

more moderate in the case of the GDPD estimation. Second, the decline in the standard

deviation of the AS shock under GDPD inflation is, in percentage terms, larger than

under CPI inflation. In the next subsection we examine the sources of differences across

inflation measures.

Table 11 performs a sensitivity analysis to determine the robustness of our findings

based on the model. The sensitivity analysis is motivated by the fact that the estimates

of the transmission mechanism were imprecisely estimated at very low values. Indeed,

Gaĺı and Gertler (1999) have shown that estimates of the Phillips curve using marginal

costs instead of the output gaps are larger and significant. Accordingly, we fix the Phillips

curve parameter value, λ, and the coefficient on the real rate, φ across sample periods at

the average of the estimates and also at larger values. Then we estimate the rest of the

model’s parameters and compare σπ(D2,Φ1) with σπ(D1,Φ2). The results remain intact

for the three inflation specifications.

Our structural model has the advantage that it reveals along what dimensions prop-

agation changed. In order to gauge the influence of each parameter change in the overall

decrease of inflation volatility, Table 12 performs a counterfactual exercise: It calculates

the inflation variance which would obtain under the second period estimates of one of

the parameters and the first period values of the remaining parameters. Table 12 also

shows It shows that the more aggressive response of the Fed to expected inflation in the

second period also contributed to the lower inflation volatility. However, for the two

data specifications, the most influential individual parameter change was the increase

in the forward-looking component of the price setting. This more flexible price setting

may have been the result of an increased flexibility in indexation schemes of wage and

financial contracts. However, we are also open to the possibility that it is related to

monetary policy in some form not specified by current New-Keynesian models.

Panel B of Table 12 develops an analogous exercise to determine the decline of which

structural shock was more influential in the decrease of inflation volatility. In both cases,

the decline of the AS shock results in a larger decline of volatility. It also shows that in

the GDPD specification inflation volatility is more sensitive to the decrease in the size of

the AS shocks.
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Table 13 analyzes the influence of the private sector behavior and the monetary

policy authority on the decline of CPI inflation volatility. To this end, it compares the

counterfactual inflation volatility under the first period private sector parameters (IS

and AS parameters) and the second period monetary policy rule with that under second

period private sector of first period polity rule. We perform this analysis with different

parameter combinations. First, we use the baseline parameter estimates. Second, we

fixed λ and φ at the two period average and estimated the rest of the parameters. Third,

we fixed λ and φ at values one order of magnitude larger than those found in estimation.

In the three cases the changes in the private sector structural parameters were more

important in the decline of inflation volatility than those in the monetary policy rule.

As for the output gap volatility, the reduction that we are explaining in our sample

is fairly small. Nevertheless, the key factor underlying this small output gap volatility

drop is to be found in the smaller shocks, since σy(D2,Φ1) < σy(D1,Φ2) in our two data

specifications. The changes in propagation did not contribute to this lower volatility,

as σy(D1,Φ1) < σy(D1,Φ2) and σy(D2,Φ1) < σy(D2,Φ2). The decrease in output gap

volatility was mostly induced by the significant decrease in the IS shock, which falls sig-

nificantly in the three specifications. McConnell and Quirós (1992) attribute the smaller

output volatility since 1984 to the improvement of inventory management. Such event

would enter in our model in the form of smaller structural shocks, since it does not arise

endogenously in our New-Keynesian setup. This result is consistent with Simon (2000),

Blanchard and Simon (2001), Ahmed, Levin, and Wilson (2002) and Stock and Watson

(2002) who, with alternative methodologies, also find that the key factor behind the drop

of output volatility was the smaller shocks of the 80s and 90s.

6.3.2 Differences between CPI and GDPD inflation rates

In order to gain intuition about the different behavior of the GDPD, it can be useful

to summarize the three main differences among the GDPD and the CPI: First, the CPI

includes the price of imported goods, unlike the GDPD. Second, the GDPD includes the

price of goods purchased by investors, the government, and by foreign buyers of domestic

goods, unlike the CPI. Finally, the CPI is a fixed price index whereas GDPD accounts

for the changes in the domestic production and consumption, respectively. We do not

believe that our finding is related to differences in the weights of the indexes, since the
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CPI is a fixed price index but the PCE is not, and we obtained similar results for both.

It seems that divergences in coverage are driving the different results. In particular, the

GDPD is the broader index in scope since it includes the prices of goods purchased by

firms, government, investors and foreign buyers.

Figure 6 graphs all the GDPD inflation components, except consumption, against

GDPD inflation. It also shows the graph of imports inflation. Three features are worth-

while mentioning. First, all of the series move close to GDPD inflation except imports.

Second, except for government expenses inflation, the remaining series reach their peak

in the first quarter of 1974, around the first oil shock. This is also the case for GDPD

inflation, but not for CPI or PCE inflation. Third, there is a sharp decline in the private

domestic investment inflation around 1980.

We investigate the second moments of these inflation measures in Table 14. We

split the sample according to our estimated subsamples. All of the series experience an

important drop in volatility in the second period. Interestingly, only domestic private

investment has a larger first order correlation in the second period. This should explain

why the second period correlation of the GDPD is similar to the first one, unlike the CPI

or the PCE.

We further study two components of the fixed investment index (the largest by far

within the private domestic investment category): Structures (ST) and Equipment and

Software (ES). Figure 7 reveals two important details. First, the sharp drop of prices in

the early 80s is much more pronounced in the case of the ST series. On the other hand,

the oil crisis effect produced an unusually large spike in ES. Table 14 presents the second

moments of ST and ES. It shows that the ST series has a much larger correlation in the

first period. It also shows that the decline in correlation of ES is smaller than that of

other series such as government expenditures or consumption.10

7 Conclusion

In this paper we showed that the more stabilizing propagation mechanisms of the 80s and

90s played a key role in the decline of CPI inflation volatility. The decrease of GDPD

10We are currently estimating the model with the different series of inflation components. Preliminary
evidence suggests that investment and exports are causing the differences between CPI and GDPD.

20



volatility, however, was more influenced by the smaller shocks. We also showed that

the leading factor behind the “improved” propagation mechanism was the more forward-

looking price setting of the 80s and 90s. In the context of our New-Keynesian model, we

showed that the shift towards a more aggressive monetary policy also mattered, but to

a lesser extent.

This paper raises a number of questions for future research, but perhaps the most

pressing one is related to the contemporaneous increase in the Fed’s responsiveness to

inflation and the private sector’s forward-looking behavior in the AS equation. A more

forward-looking price setting can be rationalized by several factors, such as an increased

flexibility in wage indexation schemes or the development of information technologies

which increases both price competitiveness and flexibility. However, as Woodford (2002)

observes, variations in agents’ price setting behavior are exogenous in standard AS spec-

ifications with endogenous persistence, such as the one employed in this paper. It could

be that the price setting behavior of firms is directly related to the Fed’s stance against

inflation. Dotsey, King, and Wolman (1999), for example, derive a state-dependent pric-

ing specification. The present paper underscores the need to model and estimate the

links between the price setting behavior and the monetary authority’s degree of activism

more explicitly.

Another area of future research will be the introduction of monetary aggregates in

the structural model. It is well known (see, for instance, Bernanke and Mihov (1998))

that during some periods the Fed targeted money stocks. If this is the case, standard

Taylor-rule type estimates could be biased by not considering this fact. By introducing

money market clearing we could easily take into account shocks to money demand in the

monetary policy rule by adding the money demand as a new equation. Finally, Leeper

and Roush (2002) show that the monetary transmission mechanism is not confined to

changes in the real rate of interest. Expanding the current demand equation to account

for the influence of money supply on output seems a worthwhile exercise.
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Appendix

A A Macro Model for the US Economy

A.1 IS Equation

The representative agent seeks to maximize its lifetime expected utility given by:

E0

{
∞∑
t=0

ψt [u (Ct, Ct−1; ξt)]

}
(16)

ψ is the time discount factor and Ct is a consumption index of each of the differentiated

goods defined by:

Ct =

[∫ 1

0

C
θt−1

θt
t,i di

]
(17)

The utility function exhibits external habit persistence. ξt is an i.i.d. process which rep-

resents disturbances to the preferences. The optimal intertemporal consumption choice

is then given by the standard Euler equation:

1

1 + r̃t
= Et

{
ψuc (Ct+1, Ct; ξt+1)

uc (Ct, Ct−1; ξt)

Pt
Pt+1

}
(18)

In the steady state, ξt = 0. We perform a log-linear approximation to (18) and use

the market clearing condition, ỹt = Ct to substitute for consumption and obtain the IS

equation.11 Parameterizing the utility function in a standard way,

u (Ct, Ct−1; ξt) = ξt
1

1− σ

(
Ct
Ch
t−1

)1−σ

(19)

we obtain that:

yt = µ1Etyt+1 + µ2yt−1 − φ (rt − Etπt+1) + gt − Etgt+1 (20)

11Consumption and output expressed as deviations from their balanced growth paths.
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where

µ1 =
σ

σ(1 + h)− h
(21)

µ2 =
σ(1− h)

σ(1 + h)− h
(22)

φ =
1

σ(1 + h)− h
(23)

(24)

where h is the habit persistence parameter. Notice that µ1 + µ2 = 1. σ = −uccȳ
uc

denotes

the inverse of the intertemporal elasticity of substitution , ȳ is the steady state detrended

output and gt =
ucξ

uc(σ(1+h)−h)ξt. All the variables are expressed in percentage deviations

from their steady-state values so that yt = log
(
ỹt

ȳ

)
Since ξt is i.i.d. distributed, we finally

obtain:

yt = µ1Etyt+1 + µ2yt−1 − φ (rt − Etπt+1) + εISt (25)

A.2 AS Equation

For ease of exposition, we first present the AS equation derived in the absence of endoge-

nous persistence.

In order to set up an explicit price optimization problem, Calvo (1983) and the subse-

quent literature assume monopolistic competition in the intermediate product markets.

A retail distributor combines the differentiated output of a continuum of monopolisti-

cally competitive firms, Yi,t, into a detrended composite product, ỹt, with elasticity of

substitution between goods θt > 1:

ỹt =

[∫ 1

0

Y
θ−1

θ
i,t di

] θ
1−θ

(26)

The demand for each firm i is obtained by the usual expression (see Blanchard and
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Kiyotaki (1987)):12

Yi,t =

[
Pi,t
Pt

]−θ
yt (27)

where Pi,t is the price of firm i and Pt is the aggregate index defined as:

Pt =

[∫ 1

0

P 1−θ
i,t di

] 1
1−θ

(28)

In the Calvo (1983) pricing framework, firms maximize their profits according to an

arrival rate (1−ϕ). Thus, each firm resets prices every period with a probability (1−ϕ).

The firms which do not adjust leave the price unchanged.

Using the law of large numbers, the price index becomes:

Pt =
[
(1− ϕ)P ∗1−θi,t + ϕP 1−θ

t−1

] 1
1−θ (29)

where P ∗i,t is the optimal reset price. Log-linearizing this expression yields:

πt =
1− ϕ

ϕ
p̂t (30)

where p̂t = log
(
P ∗i,t
Pt

)
.

The optimal dynamic price-setting problem becomes:

max
Pi,t

Et

[
∞∑
T=t

ψT−tM c
t,TΠi,T

]
(31)

where M c
t,T is the stochastic discount factor for contingent claims, where

M c
t,T =

ψT−tuc(CT , CT−1; ξT )Pt
uc(Ct, Ct−1; ξt)PT

(32)

12In particular, the demand for an intermediate good i, Ci,t, maximizes the function
[∫ 1

0
C

θ−1
θ

i,t di
] θ

1−θ

subject to the budget constraint
∫ 1

0
Pi,tCi,tdi = I, where I is the agent’s income. Then the market

clearing condition yt = Ct (and Yi,t = Ci,t) is imposed.
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and Πi,T is the profit of firm i defined as:

Πi,T =

[
Pi,T
PT

− sT

] [
Pi,T
PT

]−θ
ỹT (33)

where sT is the real marginal cost defined as sT =
WT
PT

∂yi,T
∂hT

. The first order condition

associated with the maximization problem in (31) can be expressed as:

Et

{
∞∑
T=t

(ϕψ)T−t
[
(1− θ)P ∗−θi,t P θ−1

T

] [
P ∗i,t
Pt

− µsT
PT
Pt

]}
= 0 (34)

where µ = θ
θ−1

is the constant markup. Log-linearizing (34) around the steady state and

solving for p̂t = log(
P ∗i,t
Pt

), we obtain:

p̂t = (1− ϕψ)
∞∑
T=t

(ϕψ)T−tEt [ŝT ] +
∞∑

T=t+1

(ϕψ)T−tEt [πT ] (35)

where ŝt is the percentage deviation from steady state of the real marginal cost of pro-

ducing yi,t. Subtracting ϕψp̂t+1 from both sides of the last equation and using (30) yields

a relation describing the inflation dynamics:

πt = ψEtπt+1 + λŝt (36)

where λ = (1−ϕ)(1−ϕψ)
ϕ

. Notice the key role of the nominal rigidities linking the real sector

of the economy with inflation. Without a time-varying markup, it can be shown that

in equilibrium there is a proportionality relation between real marginal costs and the

output gap. We then rewrite our AS equation as:

πt = ψEtπt+1 + λyt (37)

To add endogenous persistence, we assume that the price-setters who do not adjust

optimally, index their prices taking into account previous inflation. Hence,

logPt = logPt−1 + ϑπt−1 (38)
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This implies the following price index:

Pt =

[
(1− ϕ)P ∗1−θi,t + ϕ

(
P 1+ϑ
t−1

Pt−2

)1−θt
] 1

1−θ

(39)

Solving the model in analogous way to the case without endogenous persistence, you

can obtain the following AS equation:

πt = δ1Etπt+1 + δ2πt−1 + λyt (40)

where:

δ1 =
ψ

1 + ψϑ
(41)

δ2 =
ϑ

1 + ψϑ
(42)

For a time discount factor arbitrarily close to unity, δ2 ≈ 1 − δ1. In this instance,

the supply specification is consistent with the natural rate hypothesis. We also add an

exogenous AS shock to the supply equation which accounts for deviations of real wages

from their equilibrium value or simply pricing errors. Therefore, the supply equation

becomes:

πt = δEtπt+1 + (1− δ)πt−1 + λyt + εASt (43)
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A.3 Monetary Policy Rule

The instrument of the monetary authority, the Federal funds rate, is set according to the

following reaction function:

rt = ρrt−1 + (1− ρ)r∗t + εMPt (44)

r∗t = r̄∗ + β(Etπt+1 − π̄) + γyt (45)

π̄ is the long run equilibrium level of inflation, r̄∗ is the desired nominal interest rate

and εMPt is the monetary policy shock. There are two parts to the equation: The lagged

interest rate captures the well known tendency of the Federal Reserve towards smoothing

interest rates, whereas r∗t represents the “Taylor rule” whereby the monetary authority

reacts to deviations of expected inflation from its target and to deviations of output from

its potential level. Hence, the monetary policy equation becomes:

rt = αMP + ρrt−1 + (1− ρ) [βEtπt+1 + γyt] + εMPt (46)

where αMP = (1− ρ)(r̄∗ − βπ̄)

B Rational Expectations Equilibrium

B.1 The QZ Method

In this appendix we derive the Rational Expectations solution of our New-Keynesian

model using the generalized (QZ) Decomposition. For ease of exposition we reproduce

equations (4) and (5) in mean deviation, so that X̄t = Xt − EXt:

B11X̄t = A11EtX̄t+1 +B12X̄t−1 + εt (47)

X̄t+1 = ΩX̄t + Γεt+1 (48)

We further assume that the error terms are serially correlated, i.e. εt = Fεt−1 +wt. Our

goal is to solve for Ω and Γ, since they completely determine the equilibrium dynamics
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of our system.

Substituting equation (48) into equation (47) we can obtain

A11[Ω(ΩX̄t−1 + Γεt) + ΓFεt] = B11[ΩX̄t−1 + Γεt]−B12X̄t−1 − εt (49)

Collecting the Xt−1 and εt terms yields, respectively:

A11Ω
2 = B11Ω−B12 (50)

A11ΩΓ + A11ΓF = B11Γ− I (51)

Expressing equation (50) in matrix companion form:

[
A11 0

0 I

] [
Ω2

Ω

]
=

[
B11 −B12

I 0

] [
Ω

I

]
(52)

Define the 2n × 2n matrices A =

[
A11 0

0 I

]
and B =

[
B11 −B12

I 0

]
where n is the

number of endogenous variables. Then the generalized Schur decomposition guarantees

the existence of invertible matrices Q and Z such that QAZ = S and QBZ = T , with

S and T triangular. The ratios tii
sii

are the generalized eigenvalues of the matrix pencil

B − λA, where λ ∈ C is a given generalized eigenvalue. Premultiply (52) by Q, define

H = Z−1 and apply the QZ decomposition to obtain:[
S11 S12

0 S22

] [
H11 H12

H21 H22

] [
Ω2

Ω

]
=

[
T11 T12

0 T22

] [
H11 H12

H21 H22

] [
Ω

I

]
(53)

where the submatrices Sij, Hij and Tij are of dimension n × n. The second row can be

written as:

S22(H21Ω +H22)Ω = T22(H21Ω +H22) (54)

Equation (54) is satisfied for an Ω such that:

Ω = −H−1
21 H22 (55)
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Finally Σ is obtained directly from equation (51):

vec(Σ) = [I + F ′ ⊗ (A11Ω−B11)
−1A11]

−1vec[(A11Ω−B11)
−1] (56)

B.2 The Recursive Method

We can characterize the stationarity, uniqueness and real-valuedness of the equilibrium

of our system as follows: If all the eigenvalues, tii
sii

, are less than unity in absolute value,

Ω is stationary. If the number of stable generalized eigenvalues is the same as that of the

predetermined variables (3 in our model, the lagged endogenous variables), then there

exists a unique solution. If there are more than 3 stable generalized eigenvalues, we have

multiple solutions. Conversely, if there are less than 3 stable eigenvalues, there is no

stable solution. Finally, Ω is real-valued if (a) each one of its eigenvalues is real-valued,

or (b) for every complex eigenvalue of Ω, the complex conjugate is also an eigenvalue

of Ω. Unfortunately, in the case of multiple stationary solutions, there seems to be no

agreement about the selection of a solution among the candidates.13 In this case, we use

the recursive method developed by Cho and Moreno (2002), who solve the model forward

recursively and propose an alternative simple selection criterion which is bubble-free and

real-valued by construction. The idea is to construct sequences of convergent matrices,

{Ck,Ωk,Γk, k = 1, 2, 3, ...} such that:

X̄t = CkEtX̄t+k+1 + ΩkX̄t−1 + Γkεt (57)

We characterize the solution that is fully recursive as follows. We check first whether

Ω∗ ≡ lim
k→∞

Ωk and Γ∗ ≡ lim
k→∞

Γk exist, and Ω∗ is the same as one of the solutions obtained

through the QZ method. For the limit to equation (57) to be a bubble-free solution,

lim
k→∞

CkEtX̄t+k+1 must be a zero vector. Then the solution must be of the form:

X̄t = Ω∗X̄t−1 + Γ∗εt (58)

Finally, we check whether lim
k→∞

CkEtX̄t+k+1 = lim
k→∞

CkΩ
∗k = 0 using equation (58).

13Blanchard and Kahn (1980) suggest the choice of the 3 smallest eigenvalues and McCallum (1999)
suggests the choice that would yield Ω = 0 if it were the case that B12 = 0. Uhlig (1997) observes
that McCallum’s criterion is difficult to implement but it often coincides with Blanchard and Kahn’s
criterion.
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Table 1: Descriptive statistics

1957:2Q-1980:3Q 1980:4Q-2001:1Q 1957:2Q-1977:4Q 1983:1Q-2001:1Q

CPI
π̄ 4.7383 3.5835 3.8939 3.2688

(0.7243) (0.3452) (0.6083) (0.2521)
σπ 3.7771 2.0340 3.0329 1.4445

(0.4687) (0.3754) (0.4248) (0.1817)
ρπ 0.8215 0.5868 0.7444 0.3804

(0.0654) (0.1134) (0.0856) (0.0918)

PCE
π̄ 4.3062 3.2049 3.6724 2.8020

(0.6025) (0.3073) (0.5458) (0.2477)
σπ 3.0452 1.6318 2.6096 1.2286

(0.3491) (0.2650) (0.4219) (0.1250)
ρπ 0.9113 0.7162 0.8672 0.6058

(0.0445) (0.0671) (0.0642) (0.0890)

GDPD
π̄ 4.3584 3.1967 3.8594 2.5841

(0.5601) (0.3812) (0.5481) (0.1972)
σπ 2.7266 1.8127 2.4958 0.8215

(0.5601) (0.3812) (0.3768) (0.0923)
ρπ 0.9983 0.9203 0.9874 0.9484

(0.0360) (0.0332) (0.0507) (0.0389)

This Table shows the descriptive statistics of CPI inflation (CPI), PCE inflation (PCE) and GDP
Deflator inflation (GDPD). π̄ stands for the average, σπ is the standard deviation and ρπ is the first order
autocorrelation. These statistics and their respective standard errors (in parentheses) were computed
using generalized method of moments (GMM) estimation. The weighting matrix is constructed using 3
Newey-West lags. The following system of equations was estimated for each inflation measure:

e1t = πt − π̄

e2t = (πt − π̄)2 − σ2
π

e3t = (πt − ¯̄π)(πt−1 − ¯̄π)− ρπ(πt−1 − ¯̄π)2

where ¯̄π is the sample mean of inflation. e1t, e2t and e3t are the disturbances so that et = {e1t, e2t, e3t}
and E[et] = 0. There are three parameters to be estimated and three orthogonality conditions, so that
the system is exactly identified.
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Table 2: Sup-Wald Break Date Statistics

Sample Period VAR Sup-Wald Break Date 90% Confidence Interval

1957:2Q-2001:1Q 1 68.35 1980:3Q 1980:2Q-1980:4Q

1957:2Q-2001:1Q 2 115.42 1980:4Q 1980:3Q-1981:1Q

1957:2Q-2001:1Q 3 115.02 1980:4Q 1980:3Q-1981:1Q

1957:2Q-2001:1Q 4 146.70 1980:4Q 1980:3Q-1981:1Q

1957:2Q-2001:1Q 5 163.56 1980:4Q 1980:3Q-1981:1Q

This Table lists the Sup-Wald values of the break date test derived by Bai, Lumsdaine, and Stock (1998).

The test detects the most likely break date of a break in all of the parameters of unconstrained VARs

of orders 1 to 5. The Table shows the results of the test using the CPI, quadratically detrended output

gap and the Federal funds rate.
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Table 3: Sup-Wald Break Date Statistics (Robustness Test)

Panel A: 1st subsample

Sample Period VAR Sup-Wald Break Date 90% Confidence Interval

1957:2Q-1980:3Q 1 23.01 1974:4Q 1974:2Q-1975:2Q

1957:2Q-1980:3Q 2 33.67 1974:2Q 1974:1Q-1974:3Q

1957:2Q-1980:3Q 3 46.30 1974:2Q 1974:1Q-1974:3Q

1957:2Q-1980:3Q 4 54.83 1974:4Q 1974:3Q-1975:1Q

1957:2Q-1980:3Q 5 81.36 1975:1Q 1974:4Q-1975:2Q

Panel B: 2nd subsample

Sample Period VAR Sup-Wald Break Date 90% Confidence Interval

1980:4Q-2001:1Q 1 33.62 1986:3Q 1986:2Q-1986:4Q

1980:4Q-2001:1Q 2 52.75 1985:4Q 1985:3Q-1986:1Q

1980:4Q-2001:1Q 3 90.64 1986:1Q 1985:4Q-1986:2Q

1980:4Q-2001:1Q 4 128.04 1986:2Q 1986:1Q-1986:3Q

1980:4Q-2001:1Q 5 174.00 1987:01Q 1986:4Q-1987:2Q

Panel A lists the Sup-Wald values of the break date test derived by Bai, Lumsdaine, and Stock (1998)

applied to a VAR(3) of the first subsample residuals implied by the vector autoregression of CPI inflation,

the output gap and the Federal funds rate. Panel B lists the values associated with the analogous exercise

for the second subsample.
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Table 4: FIML estimates

CPI GDP Defl.
1st P. 2nd P. 2nd P.-gap 2nd P. 1st P. 2nd P.-gap

δ 0.5482 0.6275 0.7266 0.5377 0.5595 0.5989
(0.0182) (0.0317) (0.0269) (0.0151) (0.0174) (0.515)

λ 0.0072 0.0009 0.0010 0.0013 0.0008 0.0005
(0.0052) (0.0017) (0.0013) (0.0032) (0.0009) (0.0006)

µ 0.5180 0.4899 0.4959 0.5007 0.4820 0.4907
(0.0213) (0.0256) (0.0253) (0.0220) (0.0344) (0.0313)

φ 0.0146 0.0044 0.0022 0.0098 0.0064 0.0031
(0.0126) (0.0042) (0.0034) (0.0052) (0.0058) (0.0049)

ρ 0.7740 0.8759 0.8921 0.8395 0.8480 0.8703
(0.0509) (0.0282) (0.0285) (0.0212) (0.0401) (0.0366)

β 0.9825 1.7716 1.6027 0.8279 1.6445 1.3792
(0.1400) (0.5265) (1.2237) (0.2080) (0.4497) (0.7661)

γ 0.6992 0.6117 0.5877 1.1827 0.5720 0.5877
(0.2448) (0.3358) (0.3305) (0.1389) (0.2791) (0.2693))

σAS 1.2034 0.9967 1.0307 0.7880 0.4603 0.4610
(0.0984) (0.0932) (0.1109) (0.0603) (0.0389) (0.0421)

σIS 0.7149 0.3831 0.3581 0.5878 0.3877 0.3608
(0.0566) (0.0320) (0.0315) (0.0457) (0.0356) (0.331)

σMP 0.7551 0.7159 0.6081 0.8239 0.7226 0.6079
(0.0559) (0.0557) (0.0483) (0.0585) (0.0549) (0.0488)

This Table shows the FIML parameter estimates of the structural New-Keynesian macro model with
CPI and GDPD inflation, respectively. Output is detrended quadratically and the Federal funds rate
is used as interest rate. The subsample associated with 1st P. spans the period 1957:2Q-1980:3Q, 2nd
P. spans the period 1980:4Q-2001:1Q and 2nd P.-gap spans 1981:4Q-2001:1Q. The model’s equations in
demeaned form are:

πt = δEtπt+1 + (1− δ)πt−1 + λyt + εASt

yt = µEtyt+1 + (1− µ)yt−1 − φ(rt − Etπt+1) + εIS,t

rt = ρrt−1 + (1− ρ) [βEtπt+1 + γyt] + εMPt
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Table 5: Structural Parameters in the AS and IS equations

CPI GDP Defl.
1st P. 2nd P. 1st P. 2nd P.

ϑ 0.8242 0.5934 0.8598 0.7873
(0.0332) (0.0505) (0.0281) (0.0310)

ϕ 0.9150 0.9699 0.9645 0.9717
(0.3900) (0.6668) (0.7566) (0.5155)

σ 35.4795 111.34 51.0918 75.3125
(30.6540) (106.4391) (27.2027) (71.4929)

h 0.9575 1.0507 1.0171 1.0892
(0.0862) (0.1085) (0.0910) (0.1482)

This Table shows the structural parameters of the AS and IS equations. Standard errors appear in

parentheses and are computed through the delta-method.
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Table 6: Generalized Eigenvalues: Baseline Specifications

Panel A: CPI
1st period 2nd period

ξ1 0.7484 0.5935
ξ2 0.8319-0.1245i 0.9129 - 0.0372i
ξ3 0.8319+0.1245i 0.9129 + 0.0372i
ξ4 0.9978 1.0081
ξ5 1.1234 1.0843
ξ6 ∞ ∞

Panel B: GDPD
1st period 2nd period

ξ1 0.8430 0.7822
ξ2 0.8644-0.0991i 0.8990-0.0429i
ξ3 0.8644+0.0991i 0.8990+0.0429i
ξ4 0.9955 1.0117
ξ5 1.1326 1.1194
ξ6 ∞ ∞

This Table reports, across sample periods, the generalized eigenvalues which determine the stability of

the structural macro model under the two data specifications.
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Table 7: Wald Tests of Parameter Stability. Baseline Parameters

CPI GDP Defl.
δ 4.6075 0.8954

(0.0318) (0.3440)
λ 1.3261 0.0226

(0.2495) (0.8805)
µ 0.7120 0.2097

(0.3988) (0.6470)
φ 0.5898 0.1905

(0.4425) (0.6625)
ρ 3.0666 0.0351

(0.0799) (0.8514)
β 2.0980 2.7163

(0.1475) (0.0993)
γ 0.0590 3.8374

(0.8081) (0.0501)
σAS 2.3259 20.8547

(0.1272) (0.0000)
σIS 26.0413 11.9314

(0.0000) (0.0006)
σMP 0.2468 1.5944

(0.6193) (0.2067)

This Table shows the Wald-test statistics of parameter instability for the baseline parameters. The

probability values of no structural change appear in parentheses. The Wald statistic used is: W =

(θ1
p − θ2

p)′(V 1
p + V 2

p )−1(θ1
p − θ2

p). Andrews and Fair (1988), show that it is distributed as a chi-square

with p degrees of freedom under the null of parameter stability.
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Table 8: Wald Tests of Parameter Stability. Structural Parameters

CPI GDP Defl.
ϑ 14.5842 3.0025

( 0.0001) (0.0831)
ϕ 0.0051 0.0001

(0.9431) (0.9920)
σ 0.4691 0.1003

(0.4934) (0.7515)
h 0.4523 0.1719

(0.5012) (0.6784)

This Table shows the Wald-test statistics of parameter instability for the structural estimates in the

AS and IS equations. The probability values of no structural change appear in parentheses. The Wald

statistic used is: W = (θ1
p−θ2

p)′(V 1
p +V 2

p )−1(θ1
p−θ2

p). Andrews and Fair (1988), show that it is distributed

as a chi-square with p degrees of freedom under the null of parameter stability.
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Table 9: Standard Deviations

Panel A: CPI
1st period 2nd period

Sample Model Sample Model
σπ 3.78 3.64 2.09 2.05

[2.86 4.70] [2.87 5.41] [1.37 2.81] [1.54 3.44]
σy 2.62 2.28 2.50 2.20

[2.25 2.98] [1.68 4.37] [2.06 2.93] [1.05 4.39]
σr 2.94 2.78 3.18 2.20

[2.12 3.76] [1.70 5.13] [1.94 4.42] [1.59 4.76]

Panel B: GDPD
1st period 2nd period

Sample Model Sample Model
σπ 2.73 2.83 1.81 1.32

[2.16 3.29] [2.06 5.25] [0.92 2.71] [1.01 3.01]
σy 2.62 2.07 2.50 2.16

[2.25 2.98] [1.68 4.37] [2.06 2.93] [1.05 4.39]
σr 2.94 2.78 3.18 2.20

[2.12 3.76] [1.70 5.13] [1.94 4.42] [1.59 4.76]

This Table reports both the sample and model standard deviation across sample periods and data

specifications. The volatilities’ standard errors appear in brackets. The sample standard errors were ob-

tained through the GMM estimation outlined in the note of Table 1. The empirical standard errors were

computed through the following Montecarlo procedure: We perform random draws from the asymptotic

distribution of the parameter set to construct Ω and Γ matrices of the model’s solution which yields

volatility values for π, y and r. We replicate this exercise 1,000 times discarding the non-stationary

solutions in the process.
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Table 10: Counterfactual Standard Deviations

Panel A: CPI
Model

D1,Φ1 D1,Φ2 D2,Φ1 D2,Φ2

σπ 3.64 2.48 2.98 2.05
[2.87 5.41] [1.88 3.80] [2.44 5.33] [1.54 3.44]

σy 2.28 4.05 1.28 2.20
[1.68 4.37] [1.89 4.96] [1.00 3.44] [1.05 4.39]

σr 2.78 3.14 2.12 2.20
[1.70 5.13] [2.10 5.31] [1.35 4.51] [1.59 4.76]

Panel B: GDPD
Model

D1,Φ1 D1,Φ2 D2,Φ1 D2,Φ2

σπ 2.83 2.25 1.66 1.32
[2.06 5.25] [1.76 4.09] [1.22 4.24] [1.01 3.01]

σy 2.07 3.25 1.39 2.16
[1.50 4.00] [1.47 4.67] [0.98 3.22] [0.94 4.36]

σr 2.66 3.01 1.86 2.09
[1.97 5.07] [1.78 5.10] [1.44 4.36] [1.39 4.95]

This Table reports the VAR(1) and model’s implied standard deviations implied by all the combinations

of volatilities and propagation. The volatilities in column Di,Φj , i = 1, 2, j = 1, 2, are those associated

with the i− th period structural error standard deviations and the j− th period propagation coefficients.

The corresponding empirical 95% confidence intervals appear in brackets. They were computed through

the Montecarlo procedure outlined in Table 9.
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Table 11: Counterfactuals Sensitivity Analysis

Panel A: CPI
AS,IS Mon. Pol. Std. Dev.

λ φ β1 γ1 β2 γ2 σπ(1,2) σπ(2,1)
0.004 0.010 0.96 0.75 2.01 0.54 2.51 3.02
0.010 0.025 1.02 0.66 2.77 0.59 2.81 3.13
0.010 0.050 1.01 0.83 3.50 1.21 2.75 3.20

Panel B: GDPD
AS,IS Mon. Pol. Std. Dev.

λ φ β1 γ1 β2 γ2 σπ(1,2) σπ(2,1)
0.001 0.008 0.90 1.94 1.67 0.57 2.19 1.80
0.005 0.010 0.90 1.06 1.86 0.47 2.62 1.90
0.010 0.025 0.93 1.06 1.99 0.53 2.68 1.77

This Table reports a robustness analysis of the Table 10 counterfactuals fixing λ and φ across periods

around their estimated values. βi and γi represent the estimates of β and γ in period i. Panel A lists the

analysis with CPI inflation and Panel B with the GDPD inflation. σπ(i, j) is the volatility of inflation

under the shocks of the i− th period and propagation of the j − th period.
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Table 12: Counterfactual Inflation Volatilities

Panel A: Contribution of Model’s Parameters
CPI GDPD

σπ(D1,Φ1) 3.64 2.83
σπ(θ1, δ2) 2.47 2.27
σπ(θ1, λ2) 3.82 2.85
σπ(θ1, µ2) 3.76 2.84
σπ(θ1, φ2) 4.38 2.84
σπ(θ1, ρ2) 3.54 2.83
σπ(θ1, β2) 3.26 2.72
σπ(θ1, γ2) 3.63 2.81

Panel B: Contribution of Model’s Volatilities
CPI GDPD

σπ(θ1, σ
AS
2 ) 3.06 1.66

σπ(θ1, σ
IS
2 ) 3.56 2.82

σπ(θ1, σ
MP
2 ) 3.64 2.83

This Table reports the counterfactual inflation volatilities which would have arisen under the parameter

estimates of the first period together with the second period estimate of an individual parameter or

volatility.
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Table 13: Monetary Policy Rule v/s Private Sector?

1st P. 2nd P. Standard Deviations
λ1 φ1 δ1 β1 γ1 λ2 φ2 δ2 β2 γ2 σπ(1− 1) σπ(1− 2) σπ(2− 1) σπ(2− 2)

0.007 0.015 0.55 0.98 0.70 0.001 0.004 0.63 1.77 0.60 3.2980 2.9647 2.1924 2.1761
0.004 0.010 0.51 1.07 0.80 0.004 0.010 0.58 1.50 0.69 3.3151 3.0090 2.3721 2.2847
0.010 0.025 0.54 0.83 1.18 0.010 0.025 0.56 1.65 0.57 4.1063 3.4422 3.3857 2.9632

This Table lists counterfactual standard deviations for different parameter combinations in the model
under CPI inflation. σπ(1 − 2) and σπ(2 − 1) are the counterfactual inflation volatilities. They were
constructed as follows: σπ(i − j) is the inflation standard deviation computed under the structural
parameters of the AS and IS equations of period i and the monetary policy parameters of period j. The
structural shocks were fixed at the two period average. The model’s equations in demeaned form are:

πt = δEtπt+1 + (1− δ)πt−1 + λyt + εASt

yt = µEtyt+1 + (1− µ)yt−1 − φ(rt − Etπt+1) + εIS,t

rt = ρrt−1 + (1− ρ) [βEtπt+1 + γyt] + εMPt
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Table 14: Descriptive Statistics: Inflation Components

πg πi πx πm πs πe

σπ−1 3.38 4.08 4.57 10.85 4.85 3.99
σπ−2 2.37 2.33 2.70 6.17 3.62 2.58
ρπ−1 0.72 0.73 0.58 0.79 0.67 0.87
ρπ−2 0.44 0.87 0.53 0.24 0.85 0.82

This Table reports the standard deviations and first-order correlations of the inflation components across

subsamples. σπ−1 is, for instance, the first period inflation volatility. πg is the government expenses

component, πi is the investment component, πx the exports, πm the imports, πs structures and πe

equipment and software.
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Figure 1: Inflation Series and their Rolling Standard Deviations

The top figure graphs the historical series of the CPI, PCE and GDPD inflation rates from 1957:2Q to
2001:2Q. The bottom panel graphs the corresponding rolling standard deviation of the inflation rates.
The rolling standard deviations are constructed using a forward looking 20 quarter window.
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Figure 2: Series of Wald Statistics: All parameters break for a VAR(3)

of the time series of the Wald statistics which detects a break in all the parameters of an unconstrained
VAR(3). The variables in the VAR are CPI inflation, quadratically detrended output and the Federal
funds rate. The sample period is 1957:2Q-2001:2Q. The initial and final 15% of the sample are trimmed.
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Figure 3: Sup-Wald robustness test

These two figures graph the time series of the Wald statistics which detects a break in all the parameters
of an unconstrained VAR(3) of the residuals associated with the vector autoregression of CPI inflation,
the output gap and the Federal funds rate. The first subsample spans the period 1957:2Q-1980:3Q and
the second subsample covers the period 1980:4Q-2001:2Q. The initial and final 15% of the samples are
trimmed.
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Panel A: 1st Period
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Panel B: 2nd Period
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Figure 4: Model and Sample Autocorrelation Functions

This figure graphs the implied model’s autocorrelations (solid thick lines) together with the sample
autocorrelations (dashed lines) using the CPI data specification. The 95% confidence intervals lie within
the solid thin lines.
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Panel B: 2nd Period
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Figure 5: Impulse Response Functions to the Reduced Form Shocks

This Figure compares the VAR(1) and model’s impulse response functions of the macro variables to a
one standard deviation of the three reduced-form shocks: inflation, output gap and interest rate shock.
We report the responses under the CPI specification.
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Figure 6: GDPD Inflation Series and Its Components

These table graphs the inflation components of the GDPD against the GDPD series from 1957:2Q to
2001:2Q. The solid line corresponds to a given component whereas the dotted line is the GDPD.
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Figure 7: GDPD Inflation Series and Components of Private Domestic Investment

These table graphs the inflation components of the private domestic investment inflation against the
GDPD series from 1957:2Q to 2001:2Q. The solid line corresponds to a given component whereas the
dotted line is the GDPD.
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