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ABSTRACT

In this article we test the random walk hypothesis in the Spanish daily stock
market prices by means of using fractionally integrated techniques. We use a version of
the tests of Robinson (1994) that permit us to test I(d) statistical models. The results
show that though fractional degrees of integration are plausible in some cases, the
confidence intervals are generally narrow, including the unit root in all cases. Therefore,
there is very little evidence of fractional integration, despite the length of the series,
implying that the standard practice of taking first differences when modelling stock prices
is adequate. In addition, the tests cannot reject that the underlying I(0) disturbances are
white noise, supporting thus the (weakly) efficient market hypothesis in the Spanish stock
market.
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1. Introduction

An important issue in the empirical analysis of financial time series is whether holding

period returns on a risky asset are serially independent, which is required by the efficient

market hypothesis on its weak form, (i.e., the current stock prices fully reflect all the past

stock prices information). Although a precise formulation of an empirically refutable

efficient market hypothesis must obviously be model-specific, historically the majority of

such tests have focused on the forecastability of common stock returns. Within this

paradigm, which has been broadly categorized as the “random walk” theory of stock

prices, the evidence is mixed.

In short horizon returns, using variance-ratio tests, Lo and MacKinley (1988)

rejected that stock prices follow random walks for daily and weekly returns, but they found

no evidence against the random walk hypothesis for monthly returns. They also found that

portfolio returns of the NYSE and the AMEX stocks for the time period 1962-1985 exhibit

significant positive first-order autocorrelations while security returns present negative first-

order autocorrelations although statistically and economically insignificant, as previously

documented by French and Roll (1986). Lo and MacKinley (1990) showed that the

different autocorrelation sign between portfolios and stocks may be explained by lead-lag

positive autocorrelations across securities. Poterba and Summers (1988) found negative

autocorrelation in monthly returns for a NYSE value-weighted index during the period

1926-1985 while Lo and MacKinley (1988) obtained  positive autocorrelation in a value-

weighted index formed by NYSE and AMEX monthly stocks for the shorter period 1962-

1985.

Regarding long-horizon returns, Fama and French (1988), using regression

techniques, and Poterba and Summers (1988), using variance ratios, conclude that stock
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prices present mean reversion. In this case, the autocorrelations become negative for the

two-year returns, reach their minimum values for the three to five year horizons and then

decay to zero, though these results are mainly due to the first part of the sample, (i.e.,

1926-1941) of the NYSE stocks returns. The findings of Fama and French (1988) and

Poterba and Summers (1988) might be due to time varying on expected returns or, as De

Bondt and Thaler (1985, 1987), Jegadeesh (1991) and Jegadeesh and Titman (1993, 2001)

suggest, to investor overreaction or underreaction, which causes stock price swings away

their fundamental values. The above empirical evidence is also consistent with Summer’s

(1986) proposition that the stock prices have temporary components which decay slowly to

zero. By contrast, using a generalised form of rescaled range (R/S) statistic, Lo (1991)

found no evidence against the random walk hypothesis. Using annual data and allowing for

fractional alternatives, Caporale and Gil-Alana (2002) reported that US stock returns are

close to being an I(0) series, and pointed out that their degree of predictability depends on

the process followed by the error term.

In this article we revisit this issue by means of using fractionally integrated

techniques. In particular, we examine if the stock market prices in Spain are I(1), (with or

without an autocorrelated structure underlying the process). However, instead of using

techniques based on autoregressive (AR) processes, we consider the possibility of long

memory. Long-range dependent time series exhibit an unusually high degree of persistence

so that observations in the remote past are non-trivially correlated with observations in the

distant future, even as the time span between the two observations increases.

The outline of the article is as follows: Section 2 briefly describes the procedure

used in the paper for testing unit and fractional roots. In Section 3, this procedure is applied

to the Spanish stock market prices while Section 4 contains some concluding comments.
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2. The testing procedure

In the following, Pt denotes the stock price at time t, while the lower case indicates the

logarithmic values. Our maintained hypothesis is given by the recursive relation

,1 ttt pp εµ ++= − (1)

where µ is an arbitrary drift parameter and εt is a white noise process.

There exist many different ways of testing model (1). Perhaps, the most common

ones are the tests due to Fuller (1976), Dickey and Fuller (1979). They consider processes

of form:

,)1( ttpL εµρ +=− (2)

which, under the null hypothesis:

     ,1: =ρoH (3)

becomes the random walk model (1). The tests are based on the auxiliary regression of

form:

,)1( 1 ttt ppL εµπ ++=− − (4)

and the test statistic is the “t-value” corresponding to π in (4). Due to the non-standard

asymptotic distributional properties of the “t-values” under the null hypothesis: Ho: π = 0,

Dickey and Fuller (1979) provide the fractiles of simulated distributions which give us the

critical values to be applied when testing the null against the alternatives: Ha: π < 0. The

tests can be extended to allow for autocorrelated disturbances and then, the auxiliary

regression (4) may be augmented by lagged values of (1-L)pt, and also with other

deterministic paths, like a linear time trend, though this unfortunately changes the

distribution of the test statistic. Another limitation of these tests is that they lose validity if

the disturbances are not white noise or AR processes. This was observed by Schwert
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(1987) who found that Dickey-Fuller critical values can be misleading even for large

sample sizes in case of a mixed ARIMA process. He proposed the use of tests of Said and

Dickey (1984, 1985), which approximate the ARMA structure by an AR. Also, Phillips

(1987) and Phillips and Perron (1988) consider tests which employ a nonparametric

estimate of the spectral density of ut at the zero frequency, for example, a weighted

autocovariance estimate. More recently, Kwiatkowski et al. (1992) observed that taking the

null hypothesis to be I(1) rather than I(0) might itself lead to a bias in favour of the unit

root hypothesis; they proposed an I(0) test which formulates the null as a zero variance in a

random walk model, while Leybourne and McCabe (1994) extended the tests to the case

where the null was an AR(k) process and the alternative was an integrated ARMA

(ARIMA) model with AR order k and unit MA order. Their test differs from that of

Kwiatkowski et al. (1992) in its treatment of autocorrelation under the null hypothesis, its

critical values appearing more robust to certain forms of autocorrelation.

Conspicuous features of the above methods for testing unit roots are the non-

standard nature of the null asymptotic distributions which are involved, and the absence of

Pitman efficiency theory. However, these properties are not automatic, rather depending on

what might be called a degree of “smoothness” in the model across the parameters of

interest, in the sense that the limit distribution do not change in an abrupt way with small

changes in the parameters. Thus, they do not hold in case of unit root tests against AR

alternatives such as (2). This is associated with the radically variable long run properties of

AR processes around the unit root. Under (2), for |ρ| > 1, pt is explosive; for |ρ| < 1, pt is

covariance stationary; and for ρ = 1, it is nonstationary but non-explosive. In view of these

abrupt changes, the literature on fractional processes have become a rival class of

alternatives to the AR model in case of unit-root testing. Thus, Robinson (1994) proposes a

Lagrange Multiplier (LM) test of the null hypothesis:
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,: oo ddH = (5)

in a model given by

                     ,)1( tt
d uxL =− (6)

where d can be any real number and where ut is an I(0) process, defined for the purpose of

the present paper, as a covariance stationary process with spectral density function that is

positive and finite at the zero frequency. The xt in (6) can be the time series we observe, (in

our case, prices, pt), though it may also be the errors in a regression model of form:

,' ttt xzp += β (7)

where β = (β1, …, βk)’ is a (kx1) vector of unknown parameters, and zt is a (kx1) vector of

deterministic regressors that may include, for example, an intercept, (e.g., zt ≡ 1), or an

intercept and a linear time trend, (in case of zt = (1,t)’).  Specifically, the test statistic

proposed by Robinson (1994) is given by:
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and g above is a known function coming from the spectral density of ut:

=);( τλ jf  ).;(
2

2
τλ

π
σ

jg

Note that these tests are purely parametric and therefore, they require specific modelling

assumptions to be made regarding the short memory specification of ut. Thus, for example,

if ut is white noise, g ≡ 1, and if ut is AR(1) of form: ,1 ttt uu ετ += −

,1);(
2−

−= ji
j eg λττλ  with σ2 = V(εt), so that the AR coefficients are function of τ.

Robinson (1994) showed that under certain regularity conditions,

.)1,0(ˆ ∞→→ TasNr d (9)

Thus, we are in a classical large-sample testing situation and the conditions on ut in (9) are

far more general than Gaussianity, with a moment condition only of order 2 required. An

approximate one-sided 100α%- level test of Ho (5) against the alternative: Ha: d > do (d <

do) will reject Ho (5) if r̂  > zα ( r̂  < -zα), where the probability that a standard normal

variate exceeds zα is α. Furthermore, he shows that the above test is efficient in the Pitman

sense, i.e., that against local alternatives of form: Ha: d = do + δT-1/2, with δ ≠ 0, the limit

distribution is normal with variance 1 and mean which cannot (when ut is Gaussian) be

exceeded in absolute value by that of any rival regular statistic. Empirical applications

based on this version of Robinson’s (1994) tests can be found in Gil-Alana and Robinson

(1997) and Gil-Alana (2000), and other versions of his tests, based on seasonal, (quarterly

and monthly), and cyclical data, are presented in Gil-Alana and Robinson (2001) and Gil-

Alana (1999, 2001a) respectively.
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3. Empirical evidence in the Spanish stock market prices

The time series data analysed in this section correspond to the daily structure of the

Spanish stock market prices, (IBEX 35), obtained for the time period 4-January-1994 to

26-November-2001. The Spanish stock market index IBEX 35 is a value-weighted index

that includes the thirty five most traded stocks of the Spanish stock market. Every semester

the effective trading volumes of all stocks are studied in order to adjust the stocks and their

weights that will form the index in the next semester. This index was created on December

31st 1989. Until 2000, the IBEX 35 stock weights were based in their market values but

since 2000 they are based only in their free float capital.1

Figure 1 contains plots of the log-transformed series and its first differences along

with their corresponding correlograms and periodograms. We observe that the series

appears to be nonstationary and this can also be viewed across the correlogram, (with

values decaying very slowly), and throughout the periodogram, (with a large peak around

the smallest frequency). The first differenced series may have now a stationary appearance,

though we still observe in the correlogram significant values even at some lags relatively

far away from zero, which may be an indication that other types of differencing, greater

than or smaller than one, might be more appropriate than first differences.

Denoting the log-transformed series pt, we employ throughout model (6) and (7),

with zt = (1, t)′, t ≥ 1, 0 otherwise, i.e.,

...,2,1, =++= txtp tt βα          (10)

 ...,,2,1,)1( ==− tuxL tt
d          (11)

                                                          
1  The possibility of structural breaks was examined and we could not find any evidence in favour of this
hypothesis.
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testing Ho (5) for values do = 0, (0.25), 2, and different types of disturbances. In Table 1(i),

we assume that α = β = 0 a priori, (i.e., we do not include any regressors in the regression

model). Tables 1(ii) and (iii) assume respectively an intercept, (α unknown and β = 0 a

priori), and an intercept and a linear time trend, (α and β unknown). Thus, for example, if

ut is white noise and do = 1, the differences (1 – L)pt behave, for t > 1, like a random walk

when β = 0, and a random walk with a drift when β ≠ 0. However, we also consider the

possibility of the disturbances being weakly autocorrelated. In particular, we take AR(1),

AR(2), and also the Bloomfield’s (1973) exponential spectral model.2  This is a non-

parametric approach of modelling the I(0) disturbances in which ut is exclusively specified

in terms of its spectral density function, which is given by:
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2 Moving average (MA) and jointly ARMA components were also examined but the estimated coefficients
corresponding to the MA structure were insignificant in all cases.
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where ϕ corresponds to all the AR and MA coefficients and σ2 is the variance of εt.

Bloomfield (1973) showed that the logarithm of an estimated spectral density function is

often found to be a fairly well-behaved function and can thus be approximated by a

truncated Fourier series. He showed that (12) approximates (13) well where p and q are of

small values, which usually happens in economics. Like the stationary AR(p) model, the

Bloomfield (1973) model has exponentially decaying autocorrelations and thus we can use

a model like this for ut in (11). Formulae for Newton-type iteration for estimating the τl are

very simple (involving no matrix inversion), updating formulae when m is increased are

also simple, and we can replace Â  below (8) by the population quantity

� �
∞

+= =

−− −=
1 1

2
2

2 ,
6ml

m

l
ll π

which indeed is constant with respect to the τj (unlike what happens in the AR case). The

Bloomfield (1973) model, confounded with fractional integration has not been very much

used in previous econometric models, (though the Bloomfield model itself is a well-known

model in other disciplines, e.g., Beran, 1993), and one by-product of this work is its

emergence as a credible alternative to the fractional ARIMAs which have become

conventional in parametric modelling of long memory.3

The test statistic reported across Table 1 is the one-sided statistic given by r̂  in (8).

Thus, for a given do, significantly positive values of r̂  are consistent with orders of

integration higher than do, whereas significantly negative ones imply orders of integration

smaller than that hypothesized under the null. A noticeable feature observed across the

table is the fact that if the disturbances are white noise, the values of r̂  monotonically

decrease with do, as we should expect in view of the previous discussion since they are

                                                          
3 Amongst the few empirical applications found in the literature are Gil-Alana and Robinson (1997), Velasco
and Robinson (2000) and more recently Gil-Alana (2001b).
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one-sided statistics. Thus, for example, we would wish that if Ho (5) is rejected with d =

0.75 in favour of alternatives of form d > 0.75, an even more significant result in this

direction would be obtained when d = 0.50 or 0.25 are tested. However, we observe in the

table that, if we impose AR ut, there is a lack of this property for small values of d. This

lack of monotonicity could be explained in terms of model misspecification as is argued,

for example, in Gil-Alana and Robinson (1997). However, it may also be due to the fact

that the AR coefficients are Yule-Walker estimates and thus, though they are smaller than

one in absolute value, they can be arbitrarily close to 1. A problem then may occur in that

they may be capturing the order of integration by means, for example, of a coefficient of

0.99 in case of using AR(1) disturbances. Imposing Bloomfield (1973) ut, monotonicity is

again achieved for all type of regressors.

The most noticeable feature observed across Table 1 is the fact that the only value

of d where Ho (5) cannot be rejected corresponds to the unit root case, (i.e., d = 1), and this

is obtained independently of the inclusion or not of deterministic regressors and of the

different types of disturbances underlying the process. The last column of the table reports

the confidence intervals of those values of d where Ho (5) cannot be rejected at the 95%

significance level. We see that they are very narrow and they are all centred around the

unit root case. In view of this, it seems clear that the Spanish stock market prices possesses

a unit root.4

In view of the similarities observed in the results presented across Tables 1(ii) and

(iii), it might also be of interest a joint test of the null hypothesis:

0: == βandddH oo          (14)

                                                          
4 Moreover,  several other unit root tests based on autoregressive alternatives (such as the ones suggested by
Dickey and Fuller, 1979, and Phillips and Perron, 1988) were also performed, obtaining in all cases evidence
in favour of a unit root.
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in (10) and (11). This possibility is not addressed by Robinson (1994) but a LM test of (14)

against the alternative,

    0: ≠≠ βorddH oa            

(15)

is suggested in Gil-Alana and Robinson (1997). It was shown in that paper that the test

statistic takes the form:
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11 ,~1ˆ;)1(~ σβ   and  2r̂  calculated as in (8) but using

the tu~  just defined. We can compare (16) with the upper tail of the 2
2χ  distribution. Then,

rejections of (14) for a given do, which was non-rejected before, will give us some

evidence that the linear time trend is required when modelling this series. The results for

the same do values as in Table 1 are given in Table 2.

We see that there are non-rejection values for the three types of disturbances and,

similarly to Tables 1(ii) and (iii), they correspond to the unit root case, with an assymetry

in favour of small values of d. Notice that even for d = 2 the hypothesis is less strongly

rejected than for small d; this accords with the similarity in the corresponding statistics

between Tables 1 (ii) and (iii). On the whole, the results seem to indicate that when the

appropriate (first) differencing order is used, the time trend is unrequired and thus, a model
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like (1) with white noise or weakly (Bloomfield) autocorrelated disturbances seems to be

adequate to explain the Spanish stock market prices.5

Another issue is to determine if there is an underlying autocorrelated structure in

the  disturbances. In view of the preceeding results, it seems clear that the series follows an

integrated process of order 1, with an intercept, and with white noise or Bloomfield

disturbances. However, and though is not reported across the paper, in case of the

Bloomfield model, the estimated coefficients in the spectral density function in (12) were

in both cases (m = 1, 2),  relatively close to zero, implying that if an autocorrelated

structure is present in the data, its degree of dependence would be extremely weak, this

being probably the reason why the tests cannot reject the null with d = 1 and white noise ut.

In view of all this, we can conclude by saying that the random walk hypothesis cannot be

rejected in the Spanish stock market prices using fractionally integrated techniques.

4. Concluding comments

In this article we have examined the random walk hypothesis in the Spanish stock market

prices. However, instead of using classical tests based on AR alternatives, which usually

have non-standard limit distribution and lack of efficiency theory, we have employed a

version of Robinson’s (1994) tests in which the unit root in embedded in a fractional

model. The tests have standard asymptotic distribution and are the most efficient ones

when directed against the appropriate alternatives. The results based on the daily structure

of the IBEX 35 show that the I(1) hypothesis cannot be rejected in the Spanish stock

market and though the confidence intervals include fractional degrees of integration, these

intervals are generally narrow and centred around the unit root case. In addition, the

                                                          
5 In case of including an intercept in the regression model (10), the coefficients were significantly different
from 0 for all values of d. Note that these estimates are based on the null differenced model which is short
memory under the null and, in case of d = 1, it only affects to the first observation.
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underlying I(0) disturbances may incorporate an autocorrelated structure, though the

results based on the Bloomfield’s (1973) exponential spectral model seem to indicate that

the dependence between them is extremely weak, and thus, the random walk null

hypothesis cannot be rejected in the Spanish stock market.

It is also important to note that the tests of Robinson (1994) do not impose

Gaussianity on the series. This is only required to show its efficiency properties, and

several Monte Carlo experiments conducted by Robinson (1994) showed that the tests

perform well even in non-Gaussian environments. It would perhaps be worthwhile

proceeding to get point estimates of d. Note that the approach used in this paper generates

simply computed diagnostics for departures from any real d and thus, it is not surprising

that, when fractional hypotheses are entertained, some evidence supporting them appears,

because this might happen even when the unit-root model is highly suitable. In that respect,

the bulk of the hypotheses presented across the paper are rejected and the confidence

intervals corresponding to the non-rejection values are extremely narrow in all cases,

suggesting that the optimal local power properties of the tests may be supported by

reasonable performance against non-local departures. In addition, the use of other methods

for estimating and testing the fractional differencing parameter d, like the semiparametric

procedures of Geweke and Porter-Hudak (1982) or Robinson (1995a,b) may be too

sensitive to the choice of the bandwidth parameter number, while Robinson`s (1994)

parametric procedure proposed here produces simple and clear results, with strong

evidence in favour of the unit root models. In any case, the fact that the results we have

obtained are robust to the model chosen for the disturbances, though, suggests that these

semiparametric methods would produce very similar results to ours. Other issues such as

heteroscedasticity or the potential strong dependence in volatility will be addressed in

future papers.
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FIGURE 1
Log of the Spanish stock market prices (IBEX) with their corresponding correlograms and periodograms

IBEX First differences

Correlogram IBEX Correlogram first differences

Periodogram IBEX Periodogram first differences

The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.022
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TABLE 1

Testing Ho (5) in (10) and (11) with r̂  given by (8) in the log of the Spanish stock market index

i)  α  =  β  =  0
ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. interval

White noise 195.94 125.02 77.37 24.01 -0.17 -9.31 -13.58 -16.00 -17.55 [0.97 -  1.01]

AR (1) -3.17 -11.07 -19.76 -38.67 0.10 4.16 -3.13 -7.68 -10.76 ***

AR (2) -3.08 -18.18 -26.55 -47.55 -0.58 -13.59 5.74 2.07 -3.45 ***

Bloomfield (1) 125.95 66.60 39.44 13.70 -0.27 -5.99 -8.88 -10.69 -12.15 [0.95  -  1.04]

Bloomfield (2) 97.84 42.03 30.83 9.40 -0.36 -7.37 -10.51 -11.10 -12.83 [0.99  -  1.01]

ii)  α unknown and  β  =  0
ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 195.94 183.26 113.58 26.44 -0.64 -9.42 -13.49 -15.85 -17.41 [0.97 -  1.02]

AR (1) -3.17 -11.10 -21.35 10.55 -0.91 -7.13 -10.35 -12.43 -13.96 ***

AR (2) -3.23 -6.74 -10.09 9.67 -0.50 -5.81 -8.66 -10.51 -11.91 ***

Bloomfield (1) 125.71 110.07 63.07 15.39 -1.05 -6.92 -9.66 -11.11 -12.10 [0.94  -  1.01]

Bloomfield (2) 97.81 86.00 40.85 12.16 -1.36 -8.23 -10.75 -11.75 -12.09 [0.98  -  1.00]

iii)  α and β  unknown
ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Conf. Interval

White noise 164.46 150.20 95.86 25.81 -0.64 -9.42 -13.49 -15.85 -17.41 [0.97 -  1.02]

AR (1) -3.50 -12.87 -19.98 26.69 -0.91 -7.11 -10.35 -12.43 -13.96 ***

AR (2) 5.08 -14.87 -16.79 16.90 -0.49 -5.79 -8.66 -10.51 -11.91 ***

Bloomfield (1) 100.62 86.56 51.71 14.71 -1.05 -6.92 -9.66 -11.11 -12.10 [0.94  -  1.01]

Bloomfield (2) 71.24 68.84 37.75 11.43 -1.36 -8.23 -10.74 -11.75 -12.11 [0.98  -  1.00]
 In bold: The non-rejection values of the null hypothesis at the 95% significance level.

TABLE 2

Testing Ho (14) in (10) and (11) with R̂  given by (16)
ut  /  do 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

White noise 29053 24761 9876.4 666.97 1.93 94.17 194.34 271.44 305.11

Bloomfield (1) 14124 9981.0 3071.8 296.54 3.11 49.07 109.45 126.56 170.11

Bloomfield (2) 8750.8 5939.9 1627.5 139.66 3.87 69.77 119.53 148.33 164.76

The critical value corresponding to the 2
2χ  is 5.99 at the 95% significance level.


