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ABSTRACT

Cointegration of nonstationary time series is considered in a fractional context. Both
the observable series and the cointegrating error can be fractional processes. The
familiar situation in which the respective integration orders are 1 and 0 is nested, but
these values have typically been assumed known. We allow one or more of them to be
unknown real values, in which case Robinson and Marinucci (1997,2001) have justified
least squares estimates of the cointegrating vector, as well as narrow-band frequency-
domain estimates, which may be less biased. While consistent, these estimates do not
always have optimal convergence rates, and they have non-standard limit distributional
behaviour. We consider estimates formulated in the frequency domain, that
consequently allow for a wide variety of (parametric) autocorrelation in the short
memory input series, as well as time-domain estimates based on autoregressive
transformation. Both can be interpreted as approximating generalized least squares
and Gaussian maximum likelihood estimates. The estimates share the same limiting

distribution, having mixed normal asymptotics (yielding Wald test statistics with y*
null limit distributions), irrespective of whether the integration orders are known or
unknown, subject in the latter case to their estimation with adequate rates of
convergence. The parameters describing the short memory stationary input series are
Jn -consistently estimable, but the assumptions imposed on these series are much

more general than ones of autoregressive moving average type. A Monte Carlo study
of finite-sample performance and an empirical application to testing the PPP hypothesis
are included.
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1. INTRODUCTION

Cointegration analysis has developed almost exclusively in the context of processes
with non-fractional integration orders. Most popularly, observed series are assumed
to have a single unit root, such that first differencing produces a weakly dependent,
invertible stationary process, while cointegrating errors also satisfy the latter descrip-
tion. This basic setting has been greatly extended, to observed series in which twice
differencing is required to produce stationary weak dependence, and to polynomial
cointegration; polynomial time trends have also been introduced, and cointegration
with respect to cyclic and seasonal frequencies has been examined. Methods of es-
timating cointegrating vectors have been developed which have optimal asymptotic
properties, with a limiting mixed normal distribution, thereby generating Wald test
statistics with a standard, x?, null limit distribution (see e.g. Phillips and Hansen,
1990, Phillips, 1991a,b, Johansen, 1991). The latter methods have been justified un-
der the assumption that integration orders of observed series and cointegrating errors
are correctly specified integers, though it is standard practice to test these integra-
tion orders, particularly by unit root tests against stationary autoregressive (AR)
alternatives.

Cointegration can exist between much more general nonstationary (and indeed
stationary) observations, with stationary or nonstationary cointegrating errors. The
“optimal” methods referred to above lose their most desirable properties (such as the
x? hypothesis tests, for example) when integration orders on which they are based
are misspecified, while methodology developed by Engle and Granger (1987) and
subsequent authors is not designed to detect such cointegrating relationships. It is
thus desirable to develop the topic in a broader context, nesting integer-order cases in
a more general class and allowing integration orders to be unknown, and real-valued.

Recently, considerable interest in fractional processes has developed, and knowl-
edge of their properties and statistical analysis has advanced to the extent that their
role in cointegration analysis can be explored. We consider the following model for
the bivariate observed series (y:, xt):

Yy = V;thrAﬁ"Suﬁ, (1.1)
Ty = A_éui, (12)

for t = 0,41, .... Throughout, the # superscript attached to a scalar or vector se-
quence v; has the meaning

v = v l(t > 0), (1.3)

where 1(+) is the indicator function. In (1.1), (1.2) we employ the difference operator
A =1— L, where L is the lag operator, and formally, for any real a;, o £ —1, -2, ..,

T'(j+«)

(1—-2)"%= jgoaj(a)zj, aj(a) = TG+ 1)’ (1.4)



with I' denoting the gamma function; with the prime denoting transposition, u; =
(u1¢,ugt)’ is a bivariate covariance stationary unobservable process with zero mean
and spectral density matrix, f()\), satisfying

E(uouj) = / eI F(N)d, (1.5)

that is at least nonsingular and continuous at all frequencies; and finally
v # 0, (1.6)
6 = B> % (1.7)

The truncation in (1.2) ensures that a; has finite variance (albeit evolving at
rate t?~1), and implies that z; = 0, ¢ < 0. The truncation in (1.1) is unnecessary
if 66— < 1/2 (y; — vy is covariance stationary without it and “asymptotically
covariance stationary” with it) but is imposed there also for the sake of a uniform
treatment, implying that 3 = 0, ¢ < 0. In common parlance, u; is an I(0) vector
process, x; is an I(6) process, as is (due to (1.1), (1.2), (1.6), (1.7)) vy, while the
cointegrating error y; — v, is an I(7y) process, where

and we say that (z,y:) is cointegrated of order (6,3) (CI(8,0)). If 8 = 0, there is
no cointegration and v is not identified.

In (1.1), (1.2) the possibility that § and/or § are known, but not necessarily
integers, does not lack interest (in particular when 6 = 1 is fixed after pre-testing) but
allowing both § and é to be unknown, thereby avoiding complications and ambiguities
due to pre-testing, may be attractive. Fractional values may be difficult to interpret
economically, though aggregation explanations have been developed, mean-reversion
is nicely described, in the present paper’s context 5 and ¢ are just nuisance parameters,
while fractional, like non-fractional, cointegration is a kind of dimensionality-reducing
structure.

Simple estimates of v not requiring knowledge of § and/or ( are readily available.
For example ordinary least squares (OLS), with or without intercept, is pmin(20-1,6)_
consistent (except in the case where § > ( and 26 — 8 = 1, in which case it is
(n®/logn)—consistent), as shown under mild conditions by Robinson and Marinucci
(2001). In case 26 — 1 < (3, the rate of convergence can be improved upon by using a
version of OLS in the frequency domain that focuses on a slowly degenerating band
of low frequencies and thereby reduces the bias that is due to contemporaneous corre-
lation between w14, ug; (Robinson and Marinucci, 1997); these estimates were applied
empirically by Marinucci and Robinson (2001). Both least squares and its narrow-
band counterpart have nonstandard limit distributions, which are unsuitable for use
in statistical inference, while their rate of convergence seems capable of still further
improvement over some regions of (8, 3)-space. In the present paper we develop and
justify estimates of v which have analogously optimal properties, in the presence of
possibly unknown 6, 3, to those previously established by, for example, Phillips and



Hansen (1990), Phillips (1991a,b), Johansen (1991) in case § = 8 = 1 is known. The
estimates of v are of generalized least squares (GLS) type, based on a constrained
transformed bivariate regression model derived from (1.1), (1.2) and having the prop-
erty that regressors are orthogonal to disturbances. We allow for very general forms
of parametric autocorrelation in u, in which circumstances a frequency-domain form
of estimate of v is convenient and flexible, though we also consider a time-domain
form based on autoregressive (AR) transformation.

The model (1.1), (1.2) is perhaps the simplest interesting one possible. Extensions
are described in Section 6, but our treatment of (1.1), (1.2), with parametric auto-
correlation, itself requires lengthy proofs, whose ideas are relevant to more general
models but best conveyed in a relatively simple setting. Our model presumes the exis-
tence of cointegration. The question of establishing such existence, or non-existence,
is itself especially difficult in our fractional context, with unknown integration orders.
Recently, Robinson and Yajima (2001) have developed methods for determining frac-
tional cointegrating rank in a multivariate extension of (1.1), (1.2) based on sequential
testing, principal components analysis, and a model choice procedure, while Marin-
ucci and Robinson (2001) proposed and empirically applied a Hausman-type test for
determining the existence of cointegration in (1.1), (1.2).

Aside from work already mentioned pertaining to (1,1), (1.2), Dolado and Marmol
(1996) considered fractional extension of the fully-modified OLS (FM-OLS) estimate
of v proposed by Phillips and Hansen (1990) in the CI(1,1) case, but with non-
parametric autocorrelation in u;, and assuming knowledge of v and 6. Some other
work on fractional cointegration has employed an alternative definition of fractional
nonstationarity, replacing (1.1), (1.2) by

g o= vEto),  t>1 (1.9)

o= o) >, (1.10)

where {7 and v{?

!
with [7] < 1/2,1/2 < 6§ < 3. When y =0, § = 1, v(7,6) = (vﬂ),vg)) = (us, uz)’
implies (Z¢,9t) = (x+,y:), but more generally, with v:(y,8) having spectral density
matrix  A(X;7,8) f(ANA(=X;7,6), for A(X;7,8) = diag {(1 — €)™, (1 — )72},
this is not the case. In particular, (1.10) provides an alternative definition of non-
stationary I(8) processes to (1.2). Marinucci and Robinson (1999) termed Z; and z;
respectively Type I and Type II I(§) processes; they converge weakly as t — oo to
different forms of fractional Brownian motion. Model (1.9), (1.10) covers a different
range of v, § values from (1.1), (1.2), but higher 6 can be involved by extending (1.10)
to include two or more unit roots, while v € (=1/2,0) could be allowed in (1.1). Chan
and Terrin (1995) developed asymptotic theory for OLS estimates in a general AR
process with fractional innovations, including (1.10). Jeganathan (1999, 2001) consid-
ered ML estimation in (1.9), (1.10), stressing pure fractional v¢(y,8) (corresponding
to white noise u; in (1.1), (1.2)), having innovations with completely known, but not
necessarily Gaussian, distribution. He obtained mixed normal asymptotics for his
estimate of v, in case v and § are known, though including some discussion of their
estimation. Again in relation to (1.9), (1.10), with v a matrix and both equations

are jointly stationary I(v) and I(6 — 1) processes, respectively,



vectors but depending still on only two integration orders v and ¢, Kim and Phillips
(2000) consider an alternative extension of FM-OLS to that of Dolado and Marmol
(1996), and its relation to Gaussian maximum likelihood (ML) estimation. They as-
sume parametric autocorrelation in v(7, §), obtaining limit distribution theory that
differs from that of Jeganathan (1999, 2001), and from ours, even after replacing
their version of fractional Brownian motion by ours. They also consider estimation
of nuisance parameters, and nonstationary vy;(y). In a multivariate semiparametric
version of (1.9), (1.10), and allowing also for the possibility of nonstationary vy+(7),
Velasco (2000) considered a tapered version of local Whittle estimation of v, v and
6, more particularly taking one Newton step from preliminary estimates with suit-
able convergence rates. This produces an estimate of v which does not have optimal
convergence rate but, unlike ours and those in the other references, is asymptotically
normal. In a similar setting, Hassler, Marmol and Velasco(2002) focus on log peri-
odogram estimation of v and 6 given preliminary estimation of v, developing rules of
asymptotic inference.

Our estimates of v are described in the following section. Section 3 presents
regularity conditions and the main results, also introducing simpler estimates that are
asymptotically competitive when 3 > 1. In Appendix A we outline the proofs, which
rest heavily on a series of propositions which are proved in Appendix B. Appendices C
and D collect respectively some results used in the proofs of several propositions, and
technical lemmas pertaining to properties of the a;(«). Section 4 consists of a Monte
Carlo study of finite-sample behaviour, Section 5 reports an empirical investigation of
the purchasing power parity (PPP) hypothesis, and Section 6 discusses related topics.

2. ESTIMATES OF COINTEGRATING PARAMETERS

For any sequence {w;}, and any ¢ > 0, introduce the notation
wy(c) = Awi, (2.1)
noting (1.3), (1.4). Also define, for ¢ >0, d > 0,
ze(c,d) = (ye(c), zi(d))". (2.2)
Thus (1.1), (1.2) can be written
2(7,8) = Cm(y ) + (2.3)
where
¢ =(1,0)". (2.4)

In case u; is white noise, with known, nonsingular covariance matrix (2, and «y and 6 are
also known, GLS based on (2.3) and observations (¢, y;), t = 1, ..., n, is motivated by
the orthogonality property E (u;Q~'¢xz(7)) = E (ugeu}) Q7'¢ = 0. More generally,
GLS estimates can also be constructed in the presence of serial correlation in u;, given



. . / . .
known 2n x 2n covariance matrix ¥ of u = (uf,...,u})". If ¥ is a known function of

ey U,
an unknown finite-dimensional parameter vector 8, we might hope that insertion of
sufficiently good estimates of v, 6 and 6, producing a feasible GLS estimate of v,
will not affect limiting distributional properties. However, 3 and its estimate can be
difficult to handle, both numerically and theoretically, so more convenient alternatives
to such GLS or feasible GLS might be considered.

One such is based on AR transformation. Suppose u; has an AR representation
B(L)Ut = &¢, (25)

where ¢; is a bivariate sequence that is at least (see Section 3 below) uncorrelated
across t with nonsingular covariance matrix 2, and

o0

B(s)=1,— Y B;s, (2.6)

Jj=1

where I is the 2x 2 identity matrix and the B; are 2 x 2 matrices satisfying conditions
prescribed below. Suppose further that we know functions Q(h), Bj(h), where h € RP,
p > 1, such that for some § € RP, we have Q = Q(6), B; = B;j(#). Define

B(s;h) =I5 — jil Bj(h)s?, (2.7)

and then
ale,d,h) = 2 AB(L; h)¢ae(e)} Q)™ H{B(L; h)z(e, d)} (2.8)
ble,h) = 2 AB(L; h)Cae(e)} Q)™ {B(L; h)Cxe(e)} (2.9)

where, throughout the paper, Y, denotes > ;_,. Note that each of the AR transfor-
mations automatically entails a truncation since x;(c) = 0, z:(c,d) = 0, t < 0. Now
write

Pe,d, by = Aedh) (2.10)
b(c, h)
and consider as estimates of v
U(7,6,0), 9(+,6,0), ¥(3,8,0), ¥(v,6,0), ¥(3,6,0), (2.11)

given estimates 7, 3, 0. The estimates (2.11) respectively consider the cases in which
v, 6 and 0 are all known, the integration orders 7 and é are known but € is not,
followed by the cases in which one or other and then both of v, é are unknown and 6
is also unknown: v(vy, ¢, 0) covers situations familiar from the integer integration order
cointegration literature, where for example v = 0, 6 = 1 is known; (7, 67/0\) extends
this by assuming knowledge of the integration order of the observable x; (say § = 1),
but the order of the cointegrating error is not known to be 0; 5(@,3, 5) expresses the
situation of least knowledge.



The estimates (2.11) are computationally convenient when wu; is a finite-degree
AR process, but less so otherwise, for example when wu; is a finite-degree moving
average (MA) or autoregressive moving average (ARMA) sequence, when the Bj(h),
though recursively calculable, do not have a very neat closed form. On the other
hand, the spectral density matrix f(A), defined in (1.5) has a neat form in such
cases, so a frequency-domain approach might be preferred, as was considered by
Phillips (1991a) in the case ¥ = 0, § = 1 is known, and one can construct parametric
models for which the gap between tractability of the spectral density on the one
hand, and AR coeflicients (or indeed autocovariances) on the other, is even greater
(see e.g. Bloomfield, 1972, Robinson, 1978). A frequency-domain approach also has
the advantage of approaching a well-established form of semiparametric estimate in
which f()) is a nonparametric function (see, e.g. Hannan, 1963, in case of regression
models, and Phillips, 1991b, in case of CI(1,1) cointegration).

To define the frequency-domain estimates, first introduce f(\; h), a known function
of A € (—m,n] and h € RP, such that f(A;8) = f(\), see (1.5). In terms of the AR
representation (2.5), we have

F\h) = 27) ' B(e™; h) T Q(h)B(e~™ b)Y (2.12)

so f(A\;h) is of simple form in the finite ARMA models, replacing B(e**; h)~! by
B(e™; h) "L A(e**; h), A and this B both being finite-degree matrix polynomials. (Our
assumptions below guarantee the existence where necessary of matrix inverses.) De-
fine the discrete Fourier transforms

w0 ) = oy R0, wiiea () = (%ln)% Sade™.  (213)
Denoting
p(Ah) = FR)TY q(Ash) = f(AR)TC (2.14)
put
a(c,d,h) = ;p(/\j;h)wx(c)(f/\j)wz(c,d)(Aj)’ (2.15)
be.h) = Talih) [0y (N)[ (2.16)
Define
D(cyd,h) % (2.17)

Corresponding to the five estimates (2.11) we may consider also
7(7,6,0), P(7,8,0), 9(3,8.0), 9(+,6,0), 7(3,8,0). (2.18)

From the orthogonality properties of the complex exponential function (see (B.3)
below), it readily follows that when u; is a priori white noise, so that B;(h) =0, j > 1,



fO;h) = (27)71Q(h), we have v(c,d,h) = D(c,d, h), so corresponding members of
(2.11) and (2.18) are identical. Otherwise, when u; is believed to be autocorrelated,
they differ, but under regularity conditions all members of (2.11) and (2.18) have
the same first-order asymptotic properties, as shown in Theorem 1 of the following
section..

The CI(1,1) literature has stressed error-correction model (ECM) formulations,
on which parameter estimation can be based. We can rewrite (2.3) as

APz = —C(1 - AP {AF(1, —v) 2} +off, (2.19)

with z; = 2,(0,0) = (y¢, x¢)" and v] = (uﬁ +1/u§i,u§i)/. When 6 = g =1, (2.19)
reduces to the triangular ECM representation of Phillips (1991a) for the CI(1, 1) case,
on which he based a frequency-domain approximate Gaussian pseudo-ML estimate of
v. It is readily shown that this is equivalent to a corresponding Gaussian pseudo-ML
estimate based on (2.3). In case u; is known to be white noise, this is equivalent to
the OLS estimate of v in the extended regression y () = vay () +72:(8) +wi’, where
T = E(uyug)/E(u2,) and w} = o, — ru,, namely 7(v, §), where

e, d) PEAC) Zt;“'t(c)yt(c; — 2 zi(Q)z(d) Y, xg(d)yt (0)7 (2.20)

2w (e) o wi(d) — {32, mic)zi(d)}
to extend Phillips’ (1991a) observation in the C'I(1,1) case (though he derived from his
ECM representation the OLS estimate of v in 3 (7) = v {(y) — 2¢(8) Y+ x4 (8) +w],
with x = v 4+ 7, which is identical to 7(7,$)). Further, 7(v, §) can be shown to be

equivalent to the GLS estimate v(7, §, 0r) =0(v,6,05), with 0 consisting of the three
distinct elements of Q(~, §), where

Qe,d)=n"" Zt: [ye(c) = v(e. d)zi(e) xe(d)] [ye(e) — e, d)zi(e), ze(d)] . (2:21)

Thus, our GLS approach can be seen to include Gaussian pseudo-ML estimation as a
special case, where particular estimates of 2 are used, this interpretation continuing
to apply when autocorrelation in u; is incorporated. (Based on (2.19) in the CI(1,1)
case, Phillips, 1991b, employed a semiparametric version of GLS, involving smoothed
nonparametric estimation of f(\) across a coarser grid than the Fourier frequencies,
following Hannan, 1963.)

3. CONDITIONS AND MAIN RESULTS

We present first a series of regularity conditions.

Assumption 1. The process us, t = 0, %1, ..., has representation

uy = A(L)e, (3.1)
where
A(s) =TI+ Y _A;s, (3.2)
j=1



and the A; are 2 x 2 matrices such that :
(i)
det {A(s)} £0, |s| = 1; (3.3)

.. 2)\ . . . . . . . . . .
(it) A(e™) is differentiable in X with derivative in Lip(n), n > &;

and in addition, with ||-|| denoting the Euclidean norm:

(iii) the e; are independent and identically distributed vectors with mean zero,
positive definite covariance matriz Q, and E ||| < 00, ¢ >4, ¢ > 2/(28 —1).

Notice that (i) implies " j||4;] < oo, because the derivative of A(e*) has
j=1
Fourier coefficients jA;, whence Zygmund (1977, p.240) can be applied. Further, this
(o]
also implies 3 j||A4;]|*> < oo, which, along with the condition in (iii), enables us
j=1

to apply the functional limit theorem of Marinucci and Robinson (2000) (developing
earlier work of Akonom and Gourieroux, 1987, Silveira, 1991) to the nonstationary
process x; (7y) , as is required to characterize the limit distribution of our estimates of
v. Further, due to (i), B(e?*) (see (2.6)) satisfies the same smoothness condition as
A(e™) in (ii), and thus

> lIB;l < oo, (3.4)
j=1

which implies the required conditions on the B; in our other proofs, in particular of
Propositions 1 and 2. It is Proposition 1 that requires the strongest conditions on the
Bj, and this is possible by a lengthier proof under the milder requirement that A(e®*),
and thus B(e™), is boundedly differentiable, which itself implies (see Zygmund, 1977,
p.251) Z‘;’;lj% |4;] < oo, and, from (i), Z;’;lj% | Bj|| < oo. However our present
conditions seem satisfactorily mild, easily covering stationary and invertible ARMA
systems. The moment assumption on &; is satisfied, for any 5 > 1/2, by Gaussianity.

The above assumption, with (1.1), (1.2), (1.6), (1.7), suffices in order to establish
Theorem 1 below for the infeasible estimates v (v, 6, 6) and v (v, 8, 8) , but in order to
insert estimated parameters further conditions are required. It is convenient to denote
by © the set of all admissible values of 8; often we may take © to be a bounded set, in
part to satisfy stationarity conditions, while compactness of © would help to ensure
existence of 6.

Assumption 2.

(i) f (A 0) = f(N).

(i1) f (A h) has determinant bounded away from zero on ([—m,m] x ©).

(i11) f (A h) is boundedly differentiable in h on ([—m, 7] x ©), with derivative that
is continuous i h at h =0 for all .

() f(\;0) is differentiable in A, with derivative satisfying a Lipschitz condition
of order greater than 1/2 in .



(v) (0/Oh) f(A;h) is differentiable in A at h = 0, with derivative satisfying a
Lipschitz condition of order greater than 1/2 in .

Given correct specification (i), these assumptions seem innocuous, again being
easily satisfied by standard stationary and invertible ARMA parameterizations, for
example, and could be slightly relaxed at cost of greater proof detail.

Assumption 3.
(i) There exists K < oo such that

Al + (3‘ <K, (3.5)
and p > max (0,1 — 3) such that
F=7+0,(n*), 6=6+0,(n"). (3.6)
(i)
=0+ Op(n_%), where 0 € O. (3.7)

Condition (3.5) is innocuous if 4 and ] optimize over compact sets, as is standard
for implicitly defined estimates. The convergence rates required in Assumption 3 are
all less than those achieved of estimates (2.11) and (2.18) of v in Theorem 1 below. In
fact (ii) could be relaxed to the rate on 4 and 5 of (i) if f (A; k) is smoother in h than
required in Assumption 2, in particular if it is analytic in & (as in the ARMA case).
We prefer our milder Assumption 2, and the relatively brief proof that (ii) affords,
because n'/2—consistency of parameter estimates in short memory time series models
is familiar, for example in case of Whittle estimates, see eg. Hannan (1973). On the
other hand, we might be content to assume p = 1/2 in (3.6). The n'/?—consistency
and asymptotic normality of estimates of nonstationary integration orders (and in-
deed of parameters corresponding to 6 in nonstationary fractional models), based on
scalar series was established by Velasco and Robinson (2000), for Type I processes (see
(1.10)). By bounding a measure of distance between Type I and Type II processes,
Robinson (2002) showed that the same results hold for Type II processes, thereby
checking (3.6) and (3.7) for estimates of § and elements of € identified by the ug;
process. Robinson (2002) likewise checked (3.6) and (3.7) for estimates (computed
from residuals) of v and elements of # identified by {u1:}, employing a preliminary
estimate of v, which satisfies a rate of convergence condition. This is satisfied by
OLS when v+ 6 > 1, but not when v+ § < 1, where it is, however, satisfied by the
narrow-band OLS estimate of Robinson and Marinucci (1997, 2001), using a band-
width that increases sufficiently slowly; the strength of this rate condition is due in
part to allowing the compact set of admissible values of v to be arbitrarily large -
if this is suitably reduced the condition can be relaxed so as to be satisfied by OLS
even when v+ 6 < 1, so long as § < 1/2. The only gap left in demonstrating that
Assumption 3 can be fully checked is that in general methods based on the bivariate

10



series z; are appropriate in order to estimate part of . However the extension of
Velasco and Robinson’s (2000) theory to cover bivariate series, and the subsequent
adaptation to our setting, seems straightforward, while if B(s;#) is a priori diagonal
the only parameter not estimated by two univariate procedures is the off-diagonal
element of Q, which is estimated by an obvious side calculation, to satisfy (ii). Unless
B is close to 1/2, (3.6) is capable of being satisfied also by ‘semiparametric’ estimates
of v and 8, which might in any case be employed at an initial stage in determining the
parametric model for f. On the other hand, from the viewpoint of a full cointegration
analysis, efficient estimates of v, 6 and 0 are desirable, suggesting construction of a
Gaussian pseudo-ML approach, estimating all parameters jointly, which is computa-
tionally more onerous than the kind of step-by-step approach we have envisaged, but
undoubtedly possible; asymptotic properties have yet to be explicitly derived, but the
problem of differing convergence rates encountered by Saikkonen (1995) in a different
setting can be avoided by concentrating out v first.

We introduce notation to describe the limit distribution of our estimates. Denote
by W (r) the 2 x 1 vector Brownian motion with covariance matrix €2, and define
(Type II-see Marinucci and Robinson, 1999) fractional Brownian motion

r

r—s)? !
W (r: 8) = / %dw (), (3.9)
0
and then define
W (r; 8) =B (1) W (r;8), (3.9)
where
¢=1(0,1)". (3.10)

By “=" we will mean convergence in the Skorohod J; topology of D [0,1].

Theorem 1. Let (1.1), (1.2), (1.6), (1.7) and Assumptions 1-3 hold. Then,
denoting by v* any of the estimates in (2.11) or (2.18), we have as n — oo,

-1

n (v — 1) = q(O)/W(r;ﬁ)er zwg’B(n’Q*l/W(T;ﬁ)dW(r). (3.11)

The proof is outlined in Appendix A, by a series of propositions whose proofs
appear in Appendix B. The rate of convergence in (3.11) is optimal for any regular
parametric estimate in this model. Theorem 1 desirably implies that we can estimate v/
as well, asymptotically, not knowing v and/or § and/or 6 as knowing them, subject to
the rate conditions of Assumption 3, with the implication that efficiency of estimation
of v, 6 and 0 does not matter. .

The variates ¢'B (1)’ Q='W (r) and W (r; 8) are uncorrelated and thus, by Gaus-
sianity, independent, so (3.11) indicates mixed normal asymptotics. As a consequence
of this, and of the Propositions in Appendix A, we have
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Corollary 1. Denoting by b* any of the quantities 5('7, 0), Z(ﬁ, ), g(v,@), fl;(ﬁ, 5),

-~ -~

b(~,0), b(7,0), b(v,0), b(7,0), as n — oo, the Wald statistics

b (v — ) =4 X3 (3.12)

The form of the limit distribution in (3.11), where spectral properties of u; at only
zero frequency are involved, and the nonstationarity of x4(7y), suggests simpler forms
of estimate than (2.11), (2.18). We replace p(Aj;h), ¢(A;; k) by p(0;h), ¢(0; k), and
thence consider

7(7,8,0), 7(v,6,0), 7(3,6,0), 7(v,6,0), 7(7,6.,0), (3.13)
where
(e, d, h) = Ledh) (3.14)
b(c, h)
in which
E(C, d7 h’) - p(ov h)zzt(c7 d)xt (C)7 5(67 h) = Q(Ov h)zzf (C)v (315)
t t

after applying (B.3) below. If we act on the belief that u; is white noise, (3.13) is
identical to (2.11), (2.18), but to cover other circumstances we have:

Theorem 2. Let (1.1), (1.2), (1.6), (1.7) and Assumptions 1-3 hold. Then,
denoting by v° any of the estimates in (3.18), we have as n — oo :

(i) for 1/2 < B8 < 1,

™

1 -1
W —v) = {Q(O) /W(T;ﬂ)2 d’f'} p(0) [ FOVEQL —e ™) 7Pdx; (3.16)
0

—T

(ii) for B =1,

1 -1
n(r°—-v) = {q(O)/W(r;ﬁ)er}
0

X {p(()) iw,s +2r¢'B (1) Q7! /W(r; 1) dw (7')}, (3.17)
0
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where
Y, = B(uou})§; (3.18)
(iii) for B > 1,

—1

1 1
8 (° = v) = q(O)/W(r;ﬁ)zdr QWC’B(l)'Q_l/W(r;ﬁ) AW (). (3.19)
0 0

If w; is white noise, so f(A) = f(0), we have p(0)f(A\)& = 0 and (3.16) becomes
v° = v+ 0,(n'27), but Theorem 1 applies here, with the sharp result (3.11); also,
p(0) > oty = p(0)y = 2mp(0) f(0)§ = 0, so (3.17) reduces to (3.11). For auto-
correlated ug, when 8 > 1, (3.19) indicates that (3.13) still does as well as (2.11),
(2.18), but when 8 = 1 the convergence rate in (3.17) is as good but the desir-
able mixed-normal asymptotics are lacking, due to “second-order bias” (cf Phillips,
1991a,b) appearing as the first term in the second factor on the right of (3.17), and
when § < 1, in (3.16), not only are mixed-normal asymptotics lacking but conver-
gence is slower. Indeed, for 1/2 < § < 1 (3.13) never converges faster, and nearly
always converges slower, than OLS of y; on ;. From Propositions 6.1, 6.2 and 6.5 of
Robinson and Marinucci (2001), OLS is n?*~!-consistent when v+ 6 = 26 — 8 < 1,
n2%~1/log n-consistent when v+ 6 = 2§ — 3 = 1 and v > 0, n-consistent when § = 1,
v = 0, and n®-consistent when v+ 6 = 26 — 8 > 1, so over the intersection of these re-
gions with 1/2 < § = § —y < 1 the rate in (3.13) is equalled when v = 0 and exceeded
when v > 0, indicating that proper fractional differencing without proper accounting
for I(0) autocorrelation can do worse than simple methods based on unfiltered data.

Focusing more closely on 7 = 0, where the central case (ii) is that of I(1) xy,
while the widespread evidence of unit root behaviour based on tests against AR alter-
natives cannot be taken very seriously from a fractional viewpoint (see Diebold and
Rudebusch (1991), Robinson (1994)), it might be reasonable to interpret this as sug-
gesting that integration orders may often be close to 1, but either greater or less than
1, when the discontinuity in Theorem 2 at § = 1 makes use of (3.13) questionable.
Even when 3 > 1, the detailed corrections for autocorrelation in (2.11) and (2.18)
might be expected to produce better finite-sample properties than (3.13), which is
based on an appeal to asymptotic theory due to a high degree of nonstationarity in
x+(7y), while the extra computational burden of (2.11) and (2.18) does not seem pro-
hibitive. Because this discussion indicates that it is less important than Theorem 1,
and because its proof is in part embodied in that of Theorem 1 and in part straight-
forwardly uses Theorems 4.1, 4.3 and 4.4 of Robinson and Marinucci (2001), we have
omitted the proof of Theorem 2. Theorem 4.3 of Robinson and Marinucci (2001) can
also be applied to justify narrow-band frequency-domain versions of (3.13) which, at
cost of introducing a user-chosen bandwidth, eliminate the second-order bias term in
(3.17) and thereby achieve the asymptotics in (3.11), corresponding to an idea due to
Phillips (1991b) in a semiparametric setting for the CI(1,1) case 8 =6 = 1.
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4. MONTE CARLO EVIDENCE

With the main aim of studying the effect of estimating integration orders 7, 6 on
our estimates of v and their distributional properties, a small Monte Carlo study
was carried out in the simplest case where in (1.1), (1.2) we know that the wu; are
serially uncorrelated, so A; = 0 a priori in (3.2). The treatment of autocorrelation
in u; looms large in the rest of the paper, and corresponding Monte Carlo analysis
is warranted, but a reasonably representative analysis, perhaps looking at more than
one time series model, with varying degrees of autocorrelation and comparing the
performance of (2.11), (2.18) and (3.13), as well as varying scale and contempora-
neous correlation parameters, would add considerable space to this already lengthy
paper. There are two parts to our Monte Carlo investigation, the first comparing per-
formance in fractional circumstances of estimates assuming both v and § are known
with ones where both are estimated, and the second focusing on the standard case
(v,6) = (0,1), and considering also estimates in which one of v or ¢ is estimated.
We generated Gaussian u; with covariance matrix €2 having ijth element w;;, varying
the correlation p = wig /(w11 waz )1/2 (taking values 0, 0.5, -0.5, 0.75) and variance
ratio 7 = wog/wi; (taking values 0.5, 1, 2). The parameter p heavily influences the
“simultaneous equation bias” in (1.1), regressors and disturbances being orthogonal
only when p = 0, while 7 affects the signal-to-noise ratio in (1.1), with increase in
7 generally being associated with an increase in precision in estimation of v. Our
estimates are invariant to ¥ # 0 and also to a scale factor of {2, and so we fixed
v =wy; = 1 with no loss of generality.

In the first part of the study we employed all six (v, §) combinations of v = 0,0.4
with § = 0.6, 1.2, 2:

(v,6) = (0,0.6),(0,1.2),(0,2), (0.4,0.6), (0.4,1.2), (0.4,2) . (4.1)

The fourth case, (0.4, 0.6), does not satisfy (1.7), but is included to illustrate the case
B < 1/2 discussed briefly in point 1 of Section 6 below. In the first case, (0,0.6),
the bias of OLS is so strong as to determine the rate of convergence when p # 0 (see
Robinson and Marinucci, 1997), while in the remaining four cases OLS achieves the
optimal rate. Table I records the convergence rates of OLS when p # 0, OLS when
p =0, and the optimal rates (achieved in Theorem 1).

TABLE 1
CONVERGENCE RATES:
OLS WITH p # 0, p = 0 AND OPTIMAL RATES

(7,9) (0,0.6) (0,1.2) (0,2) (0.4,0.6) (0.4,1.2) (0.4,2)

OLS, p#0 n? nl? n? n?/logn n® nt6
OLS, p=0 n6 nl2 n2 n2 nd nl6
Optimal no nl-2 n? n® n® nl-0

We generated 1000 series of lengths n = 64, 128, 256, and computed the Infeasible

14



estimate 7; and Feasible estimate T, given by

vr = 0(7,6,0r) =v(y,6,01), (4.2)
vVp = /V\(a7 67§F) = D('/Y\, 67§F)7

for ﬁ,g to be described subsequently, and 0, 8 representing 3 x 1 vectors of estimates

of § = (w11 ,w12 ,wse ) given by Qr = Q(v,6), Qp = ﬁ(/v\,g), with the definition
(2.21). Then we have Ty = (7, 8),7r = U(7,0) (see (2.20)). Thus, we compare an
optimal estimate (V) in case 7,6 are known (one that is familiar from the unit root
cointegration literature in case (v, 8) = (0,1)) with one (7r) where ~, § are unknown,
and replaced by estimates.

We computed § by variants of the univariate Whittle procedure of Velasco and
Robinson (2000), using untapered x; for § < 1, and for § > 1 using untapered Ax;
and adding back 1. The estimation of memory parameters of nonstationary series by
means of integer-differenced stationary and invertible observations incurs no loss of
efficiency (cf Robinson, 1994), but our use of the actual § may favour Zp. On the
other hand, Velasco and Robinson’s (2000) estimates based on untapered data are
proved to be n'/?-consistent only when the memory parameter is less than 3/4, so
our application of their procedure to first-differenced untapered data when 6 = 2 is
not supported by their results, and may lead to inferior 7r compared to ones using
memory parameter estimates which incorporate suitable tapering. We computed 7
from the same type of procedure based on the y; — Vox:, where Vo is the Ordinary
least squares estimate

To = Ty
Et.’L‘tQ '

(4.4)

Robinson and Marinucci (1997) have demonstrated how 7o can be improved upon
by a narrow-band frequency domain OLS procedure. This would presumably lead
to an improvement in 7, and thence in g, but it involves choice of a bandwidth
number, and in the purely “parametric” context of the current paper we prefer the
more familiar and simpler 7o, whose performance as an estimate of v we also compare
with f[ and ?F.

Tables IT and IIT respectively show the Monte Carlo bias (defined as the estimate
minus v averaged across replications) and standard deviation (SD) of 7y, Tp and 7o,
across all cases (4.1), and for all three values of 7, but for p = 0.5 only. The tables
for p = 0,—0.5,0.75 have been omitted to conserve space, but our discussion reflects
them equally. For all p, 7, bias tends to decrease in absolute value as 3 increases,
as rates of convergence predict. Bias tends to vary inversely with 7, but this is very
noticeable only in the cases (0, 0.6), (0.4, 0.6). Of the three estimates, in general 7y not
surprisingly performs best, followed by 7r and then T: it is reassuring that while vp
is damaged by nuisance parameter estimation, it nevertheless emerges as worthwhile
relative to OLS, whose bias is unacceptably large in the cases (0,0.6), (0.4, 0.6), even
for n = 256, except, of course, when p = 0, when it tends to do better than vp for
(0.4,0.6). While the bias of 7y is virtually unaffected by varying p, there is evidence
that the bias of Up somewhat increases in absolute value with |p|, with sign opposite
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to that of p. Biases tend to decrease with n, though some noticeable increases are
observed for Zr when (v,6) = (0.4,0.6). As anticipated, SD tends to decrease as
7 and n increase. The SD of both 7; and 7p shows some tendency to decrease as
|p| increases, though it frequently increases in case of Uy when (v,8) = (0,0.6) or
(0.4,0.6), its much greater imprecision relative to 7; supporting in the latter case a
conjecture offered in point 1 of Section 6 below. Otherwise, the close similarity in
variability of 7; and Ty for n = 256 is encouraging. For n = 64, the change in sign
of p is associated with some small improvement. Often 7o is more precise than 7p,
and even 7y, when either n is small or (v, ) = (0,0.6) or (0.4,0.6) .

We next examine the accuracy of the large sample x? approximation of Corollary
1, looking at the size of Wald tests. Define the Wald statistics W; = by (7; — 1)* and
Wg = EF (fF — 1)2 , where

br = b(3,0F) =b(5,0r8) = (7, ) (4.6)
with

n {Etx?(c)Et:E?(d) — {Etzt(c)zt(d)}Q}
a2 (d)SeE? (¢, d)

7 (c,d) = , (4.7)

where €; (¢, d) are residuals from the OLS regression of y;(c) on x;(c) and z¢(d); v (¢, d)
is the usual OLS estimate of variance of the estimated coefficient of z;(c) in the
OLS regression of y;(c) on z4(c) and z;(d). Tables TV-VII contain empirical sizes
corresponding to nominal sizes a = 0.05, 0.10, for the four values of p but for 7 =1
only, the results for 7 = 0.5 and 2 being very similar. The results for W; are on
average too large, but only slightly, and performance here seems very satisfactory
over all (v, 6) and p. The empirical sizes of W do decrease significantly in n but are
overall too large, worst when (v, ) = (0,0.6) ,and tend to decrease in 3 for |p| > 0.5.
Some results, for v = 0, 6 = 0.6, 1.2 only, were also obtained for larger n; in particular
when n = 1024 decreases of about 30% were typically achieved.

For the second part of the Monte Carlo study, we focus on the familiar case
(7,6) = (0,1), but include now also the “intermediate” estimates discussed in Section
2, employing prior knowledge of either « or 6,

~

7, = 7(0,8)=7(0,6,
s = B(A,1) =91,

Q:l CD'

L) = (0,8,8,), (4.8)
5) = D(7,1,0), (4.9)

where 0., s consist of the appropriate elements of 5(0,3), Q(7, 1), respectively. In
this case 7o has the same rate of convergence as Uy, Ur, U, Us, being n-consistent,
but lacks the mixed normal asymptotics. We employed the same values of p and 7 as
before. Table VIII reports Monte Carlo bias and SD. The best and worst estimates,
when p # 0, are again 7y and 7o respectively, but though 7s (which correctly assumes
6 = 1) is second-best, 7., (which correctly assumes v = 0) is inferior to Tp; this is
all the more surprising because 7y is more problematic to estimate than 6 as it uses

le Q>|
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residuals. In Ty the contributions to bias from estimation of v and § may partly
cancel, while even when n = 64 the bias of 7, is never so large as to cause serious
concern. As before, SD is much less variable. For |p| > 0.5, T clearly performs worst,
but there is little difference between the optimal estimates, though for small n, 7y
seems best, followed closely by s, with almost identical values for 7, and Up.

Table IX reports empirical sizes, including now results for W, = l_)ﬂY (7, — 1)2,
Ws = 55 (s — 1)2, where

b, = b(0,8,)=5(0,0,) :6(0,5) : (4.10)
55 = b (&7 95) :fi)/(aaaé) = 5(% 1) ) (411)
and

To — 1)2 8,22
o= Lo U Bty (4.12)
i (ye — Vowy)

though Wy does not have a limiting null x? distribution. The empirical size of Wy
is the most accurate, followed by W, the discrepancy increasing with |p|. Even for
p # 0, Wo often does better than Ws and Wy, which perform quite similarly; the
effect of estimating v is dominant , and use of an improved preliminary estimate of
v, such as that proposed by Robinson and Marinucci (1997, 2001), or iteration, may
be warranted.

5. EMPIRICAL INVESTIGATION OF THE PURCHASING POWER
PARITY HYPOTHESES

Numerous empirical studies have cast significant doubt on the purchasing power
parity (PPP) hypothesis with respect to the short run, but have yielded mixed evi-
dence with respect to the long run (see e.g. Corbae and Ouliaris, 1988, Enders, 1988,
Kim, 1990, Taylor, 1988). Cheung and Lai (1993) proposed a fractional version of
the PPP specification, essentially (1.1), (1.2) with z; representing the domestic price
index and y; the foreign price index, converted to domestic currency units. The coef-
ficient v in (1.1) is unity according to the absolute or homogeneous version of PPP, so
this is testable by our Wald statistic of Corollary 1. Using unit root tests, Cheung and
Lai (1993) failed to reject the hypothesis 6 = 1 and then, using differenced OLS resid-
uals, they computed semiparametric log periodogram estimates of 6 — 3 — 1 and then
tested the non-cointegration null hypothesis of 3 = 0 against the alternative § > 0,
using critical values computed by simulation in view of the inapplicability of standard
asymptotic theory in this case. They found evidence of cointegration in a number
of bivariate series, but did not test ¥ = 1. We employ a step-by-step approach, first
testing whether the integration orders 6, and 6, of z; and y; are the same, then for
the presence of cointegration, then for § > 1/2 and finally, given all these hurdles
have been crossed, v = 1. In the first three steps we used semiparametric procedures
(as did Cheung and Lai, 1993, Marinucci and Robinson, 2001), while in the final step,
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which is most relevant to the material of the current paper, we identified parametric
models for the autocorrelation in u; and thence computed estimates of v and Wald
statistics.

The semiparametric estimates of integration orders were all Robinson’s (1995) ver-
sions of log periodogram estimates, but without trimming, using first differences and
then adding back 1. We estimated ¢, and §, separately, and then tested 6, = 6,(= 6)
by an adaptation of Robinson and Yajima’s (2001) statistic fab to log periodogram
estimation, with their trimming sequence h(n) chosen as m=>~2 for i = 1, ..., 4, with
m the bandwidth used in the estimation. Given ¢, = ¢, is not rejected, we performed
the Hausman test for no-cointegration of Marinucci and Robinson (2001), comparing
the estimate 6, of ¢, with the more efficient bivariate one of Robinson (1995), that
uses the information 6, = 8,. Given cointegration is not rejected, the null 5 = 1/2
was rejected in favour of 8 > 1/2 if and only if a studentized 6, — 75 — 1/2, was sig-
nificantly large relative to the standard normal distribution, where 7 is the estimate
of v using OLS residuals.

Using annual data of Obstfeld and Taylor (2002) (with n = 123), as is relevant
to the long-run version of PPP, we applied the above methodology to four bivariate
series, the US (‘domestic’) versus the ‘foreign’ countries Australia, Canada, Italy, UK.
Strong evidence against equality of integration orders was found in case of Australia
and Italy, and against cointegration in case of Canada. However, the UK ‘passed’
all three initial tests. Across the range m = 10,...,29, (6,,6,) varied between the
extremes (1.341, 1.095) and (1.572, 1.376), and across m = 16,...,25 and the four
h(n) choices, 6, = 6, was rejected in only 9 out of 40 cases, and these all at the 10%
level. For the same m, no-cointegration was rejected at 10% in all cases, at 5% in 4
cases, and at 1% in 3 cases, while § = 1/2 was rejected against 5 > 1/2 at the 1%
level in all cases.

For the US-UK data, we identified parametric models for f(\) as follows. Through-
out, A(L) in (3.1) was diagonal, and w1, us; treated separately. They were proxied
by AY(y; — poxt), A%xy, for each of the extreme 3,64, namely 7 = .374,.698 and
51; = 1.572, 1.341, and then Box-Jenkins-type procedures identified models within
the ARMA class. This resulted in AR(1) and ARMA(1,1) uy; and white noise and
ARMA(1,1) ugt, and we fitted all four combinations. We also fitted bivariate versions
of Bloomfield’s (1972) model, where A(z) =diag {exp (Z§:1 91jzj) , eXp (Z§:1 92jzj) },
for p = 1,2,3. For each model we applied the univariate Whittle procedure in Ve-
lasco and Robinson (2000), using untapered, differenced data and adding back 1. We
summarize the seven models and the resulting (8,7) as follows:

Model 1: wuy; is AR(1) and ug; is white noise. (3, ~) = (1.612,.669).
Model 2: wy; is AR(1) and wug is ARMA(1,1). (3, 7) = (1.408, .669).
Model 3: wuy; is ARM A(1,1) and ug; is white noise. (5, ~) = (1.612, .660).
Model 4: wy; is ARMA(1,1) and ug; is ARMA(L,1). (3, 7) = (1.408, .660).
Model 5: wu; is bivariate Bloomfield with p = 1. (57 7) = (1.214,.710).
Model 6: wu; is bivariate Bloomfield with p = 2. (g, ) = (1.434,.701)
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Model 7: wu; is bivariate Bloomfield with p = 3. (g, 7) = (1.323,.547).

The 7 seem very robust to the short memory specification, the 5 rather less so.
Table X contains our estimates U (ﬁ, 6, 9) = p; and Wald statistics

PR 2

b(7, 9) {ﬁ (ﬁ, 6, 9) — 1} = W, for models i = 1, ..., 7, but also for ten different subsets
of the observations, namely ¢ = j,...,n for j = 1,...,10 (so that the numbers of
observations were n’ =n — j, j = 1,...,10) in order to explore sensitivity to starting
value: if we drop the first observation the degree of filtering applied to all subsequent
observations changes. Substantial variation is evident across the larger n’, with all ;
exceeding 1 and the homogeneity hypothesis being strongly rejected when n’ = 123,
across all seven models, but as n’ decreases, things stabilize. For n’ < 119 some
sensitivity to the ug; specification was found, the white noise cases (Models 1 and 3)
providing estimates of v less than .9, whereas for the other models they all exceed .9,
with the largest values for Model 7. For n’ < 122 the homogeneity hypothesis v = 1
is never rejected even at the 10% level.

6. FINAL COMMENTS

Our treatment of a bivariate system in a parametric setting is quite general, in
that a very wide range of models for the I(0) input series w; is covered, while our
regularity conditions seem to afford little scope for relaxation. Nevertheless, there are
significant aspects not explored in the paper.

1. Our case § > 1/2 includes the familiar CI(1,1) setting, but 0 < 8 < 1/2 is
also of interest. As discussed by Hualde and Robinson (2001), x; (y) is then
“asymptotically stationary” and our estimates are n'/2-consistent and asymp-
totically normal, with limiting variance that is affected by the estimation (and
the efficiency of estimation) of one or more of v, § and 6, because the require-
ment p > 1 — ( on p in (3.6) still appears to be relevant when 3 < 1/2, but
(3.6) is unachieveable then because 7, & are at most n'/2-consistent, no matter
the values of v and 6, see eg. Velasco and Robinson (2000).

2. In view of the literature on non-fractional cointegration, there would be em-
pirical interest in incorporating also in (1.1) and/or (1.2) deterministic compo-
nents. Modification of the theory to cover polynomial time trends seems rela-
tively straightforward, though our fractional focus suggests allowing for possibly
non-integral powers of ¢ in studying the relative importance of stochastic and
deterministic trends, as Robinson and Marinucci (2000) did in connection with
OLS and its narrow-band modification, while if such powers are unknown the
extension is decidedly non-trivial.

3. Extension of our methods and theory to vector y; and x;, and matrix v, seems
straightforward when there is no variation in integration orders across elements
of x; and y; — vay. However, multivariate data invite consideration not only of
multiple cointegrating relationships but also of observables and /or cointegrating
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errors with differing integration orders, which would raise particular questions
of identifiability and complicate estimation.

Our parametric treatment of autocorrelation in u; follows a classical economic
time series tradition and allows parsimony, but the unit root cointegration lit-
erature has stressed a nonparametric approach. Nonparametric estimation of
f(A\) should lead to the same outcomes as in Theorems 1 and 2, and corre-
sponds in (2.11) to taking B; = 0, j > p, but letting p go slowly to infinity in
the asymptotic theory, while in (2.18) or (3.13) weighted autocovariance or peri-
odogram estimation might be used. The forms (3.13) would be easiest to handle
technically, while in (2.18), the variation in f ();) across the n Fourier frequen-
cies might be dealt with by techniques like those wused by Robinson (1991,
pp-1354, 1355), or alternatively one can employ estimates which are constant
over slowly degenerating bands, as proposed in Hannan (1963) and employed
by Phillips (1991b) in the CI(1,1) case. In any event, the slow convergence
of nonparametric estimates of f is of concern because even the refinement of
Assumption 3 (ii) mentioned in the discussion of that assumption requires a
convergence rate that approaches arbitrarily close to n='/? as 3 — 1/2. In
principle n*~1/2—consistent nonparametric spectral estimates can be found, for
any £ > 0 (where, for example, x depends on kernel order, see eg Cogburn
and Davis, 1974), though, as ( is unknown, one can never be sure that the x
achieved is sufficient.

APPENDIX A: OUTLINE OF PROOF OF THEOREM 1

Though the proof of (3.11) for the time-domain estimates (2.11) is not contained
in that for the frequency-domain estimates (2.18), nevertheless the proof for the latter
does involve approximation in the time domain so that many of the steps are similar.

Thus,

because it entails the greater technical challenge, computational elegance and

generality, we give the proof only for (2.18).
Consider first the infeasible estimate 7 (7, 8, 0) . We have

zt (¢,d) = Cxy () v + vy (¢,d) , (A.1)

where
v (e,d) = (uys (c =),z (d))". (A.2)

Thus

v(e,d,h) —v = %, (A.3)

where
e(e,d,h) = Zp (Ajs h) Waey (—Af) Wy(e,a) (Ag) - (A.4)

J
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From (1.2), (A.2), v; (7,68) = u*, so that
- _e()
V(7’679) —Vv= b(’y)7
where
b(1) =b(1.0) = > a () fwniy W) (A.6)
J
e(v) =e(1,6,0) = p(\j) wary) (—4)) wa (Ny), (A7)
J
with
W () = —— Y e, (A%)
(271'71)5 t
p(AN)=pX;0), ¢(N\) =q(A0). (A.9)
Also define
m—1 !
e’ (7) = Z {gxm (’7) - Z Bsgxm—s (7)} Qilgma (AIO)
m s=1
e (’Y) = C/B (1)/ Q! me—l ('7) Em, (A.ll)
m—1 ! m—1
()= {C:vm (1) = > Blwm—s (v)} Q- {cxm (M) = > Blwm—s (v)} :
m s=1 s=1 (A12)
0
b 0) = GRSt ). (A13)
Now (3.11) for 7 (v, 6,0) follows on establishing the following six propositions.
Proposition 1. As n — oo,
e(y) — ¢ (7) = 0, (n) (A.14)
(A.15)

Proposition 2. As n — oo,
e* (,y) _ e** (,y) —



Proposition 3. As n — oo,

1
nBe™ (y) = ¢ B(1) Q! / W (r: B)dW (r). (A.16)
0
Proposition 4. As n — oo,
b(y)—=b"(v) =0p (nw) . (A.17)
Proposition 5. As n — oo,
b (7) — b (7) = 0, (n*). (A.18)

Proposition 6. As n — oo,

™

1
=284 () = 10 / W (r (A.19)
0

where the right side is almost surely positive.

To prove (3.11) for the remaining four estimates in (2.18), it suffices to consider
only U(7,6,0) and (7, 6, 0) as the proof for the other, intermediate cases, will essen-
tially be implied. It thus remains to show that

/l;(’)/a 575) - /1)(77 5a 0) = 0Op (nﬁ) ) (AQO)
(3,8,0) — 0(7,6,8) = 0, (n”) . (A.21)
We have first
5(7,6,8) —v = 200 (A.22)
b(v,0)

so that, from (A.3), the left side of (A.20) is

0n80) = 008 4 o 6,000 L - LT (A.23)
b(v,0) b(~,0)  b(7,9)

In view of Propositions 1-6, the proof of (A.20) follows on establishing the following
two propositions.

Proposition 7. As n — oo,
e(v, 6,5) —e(v,6,0) =0, (nﬁ) . (A.24)
Proposition 8. As n — oo,

b(7,8) — b(y,0) = o, (n?°) . (A.25)
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To prove (A.21), note that

, (A.26)

e(ﬁ,g,ﬁ)ff(’y,é,@)i e(z,é,@)A b(5.0) — b0
TG0 b, () L) PO

T2, 90(1.9) {b(ﬁﬁ) —b(3,6) = b(~,0) + b(%é))} , (A.27)

and (A.21) follows from Propositions 1-8 on establishing the following four proposi-
tions.

Proposition 9. As n — oo,
e(¥, 3, 0) —e(v,6,0) = o, (nﬁ) ) (A.28)
Proposition 10. As n — oo,
e(3,6,0) — (7,8,0) — e(7,6,0) + e(7,8,0) = o, (n°). (A.29)
Proposition 11. As n — oo,
b(7,0) — b(v,0) = o, (n*7). (A.30)
Proposition 12. As n — oo,

-~

b(3,8) — b(3,0) — b(7,0) + b(y,0) = 0, (n**) . (A.31)

APPENDIX B: PROOFS OF PROPOSITIONS

Proof of Proposition 1

Write e () as

%Z i E;e—mj 01! i Emei’"LAj sz (7) e~ i85 Zuteit)\j7 (B.l)
t

j l=—o0 m=—o0 s
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taking B; = 0,1 <0, By = I, B = —B;, | > 0. We can rewrite this as

ZZZ Z eii(lfs))‘jﬁfl i B, g (7) e~ 5N g et

j l=—o0 m=-—00

[o o BENe o]

= Z Z {ZBm s+rnC$s } lzBm tUt, (B2)

m=1r=—oo
because
Zeit)\j =n, t =0,mod (n);= 0, otherwise. (B.3)
J

The expectation of the absolute value of the difference between (B.2) and

Z Z {ZBT” s+rnCTs (7 } lzBm tUt (B.4)

m=1r=—oo
is bounded by

K i . (B5)

m=n+1

Z ZBm s+rnzas U2y

rT=—00 S8

m—tUt

with a; = a; (8), where throughout K denotes a generic positive constant. The second
expectation is bounded by

ZZ/BHL—#,]C( B:n s 1(s—t))\d)\
t s 20

2
A

—it
m—t€

<KZIIBm <K Z 1B I* (B.6)

t=m-—n
for m > n. The first expectation in (B.5) is bounded by

e} t

/ Z ZzBm s+rnls— v€ U/\f22 ) Z ZZ — t+qnat7weiw/\d)\

r=—oco s wv=l1 g=—oc0 t w=1
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< K/ Z ZiBm s+rnls— ve_wA d\
r=—oco s wv=1
o min(s,t)
s K Z 2 2 D Brnsirnll Brntian] Z As—0li—o,

r=—o0o0 s g=-—oo t

(B.7)

where f;;()\) is the (i,i)th element of f()), and thus is bounded. From Lemma D.2,
(B.7) is bounded by

Kn?~1 <Z |Bz|> =0 (n*71), (B.8)

=0

using (3.4). It follows that (B.5) is bounded by

N oo oo % N o0 o0 %
Dl DORTY) MERES o1 poilly
t n

<
m=n+1 =m-— m=1 \t=m
0o
< En12R ) IBi
m=1t=m
1 > 1
< Kn72% 7 j|Bj| = 0(n”"2), (B.9)
Jj=1

again using (3.4).
Next, the expectation of the absolute value of the difference between (B.4) and

Z Z {Zﬁm—s—&-rncxs ('7)} Q715m (BlO)

m=1r=—oco
is bounded by
1
27 2
(B.11)

0
§ Bm—tut

t=—o0

m=1

Z ZBm a+rn2aa v U2y

r=—00 S§

Proceeding as in (B.6), the second expectation is bounded by K'Y _,° | Be||?, so since
the first expectation is bounded by (B.8), it follows that (B.11) is bounded by

Knﬁ‘%Z<Z |Bt||2> = 0@ %), (B.12)

m=1 \t=m+1
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as in (B.9). The expectation of the absolute value of the difference between (B.10)
and e* () is bounded by

Ky

NI

s 2 n %
E Zzﬁmferrn Zasfvum) ] S Knﬁ_% Z lzz’|§ms+rn’|2]
m=1 r>0 s v=1 m=1 Lr>0 s
1
< Kn?E 3 NP 2, (B.13)
m=1 Lt=m

which is O(nﬁ_%), to complete the proof.
Proof of Proposition 2
Consider first the difference

S B i1 (1) Q e, (B.14)

m s=1

where dpm—1,5 (7) = Tm—1 (7) — s (7). Because there is a contribution to the mean
only when s = m, (B.14) has expectation

- Z (QE [emer,] € = —n¢’é = 0. (B.15)

(B.14) has variance ¢; + c2 + ¢3, where

m q

C1 = Z Z ZZ CIE;n—sﬂilE [E'rngil] Q71?{]—:‘,CE [dm—l,s (7) dg—1, (7)] ) (B‘16)

m q s=1t=1

m q

€2 = Z Z Z Z CE(W_SQ?IE [gmdq—l?t (7)] E [5:1d'rrL—1,s ('7)] Qilgq_fﬁ, (B.l?)

m q s=1t=1

and c3 is a fourth cumulant term to be described subsequently. We have

dm—Ls (’7) = U2m-1 (_ﬁ) — U2 (_ﬁ)

s m—1
= Z(amflfv - asfv)u%) + Z amflfvu%)l (5 <m-— 2) 5
v=1 v=s+1

(B.18)

with a; = a¢(8), a_1 = 0.
Considering first ¢;, there is a contribution only when ¢ = m, and then | E [dy,—1,5 (7) dg—1,¢ (7)]]
is

™ - ” 1/2
/f22 A) Tom (=N Tem(N)dA| < K{/fzg (\) \Tsm()\)\zd)\/fm (\) Ttm()\)zd)\}
< K(TsmTtm)l/za (Blg)
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writing

s m—1
Tsm()\) = Z(am—l—v - as_v)ew)\ + Z am—l—veW)\l (S <m-— 2) s
v=1 v=s5+1
(B.20)
s m—1
Tem = Y (am-1-v—as0)’+ Y ap,_; 1(s<m—2). (B.21)
v=1 v=s5+1

Then (B.19) is bounded by K {|m —s — 1| |m —t — 1|}% m™ax(0,28-2) "on taking t =
m — 2 in Lemma D.3 for s < m — 2, then noting that 7,,—1,» = 0, and that rp,,, =
m—1
S (@ — Am_1-0)* + 1 = O(m™*0:28-2)) " on applying Lemma D.3 with s =
v=1

m— 1,t = m. It follows that

2

Ky mmex 02072 0873 | By
j=0

IN

|c1]

m

O(n)1(1/2< B <1)+0 n*1)1(6 > 1). (B.22)

Next, note that ¢ is zero unless m = ¢ = s = t, so ¢z = O (n) = o(n?”). Finally,
the fourth cumulant term, cg, involves the fourth cumulant of €,,, €4, Tm—1 (7)—2s (7) ,
xqg—1(7) — x¢ (7), which is easily seen to be zero unless m = ¢ = s = ¢, so that
cs = O (n) also.

It remains to show that

¢ Z {B (1) - i?ms} Tme1 () Qe = 0, (nﬁ) . (B.23)
m s=1

Clearly the left side has mean zero. Its variance is, from arguments similar to those
above, bounded by

m—1 2 0 2
KY IB(1)= > By|| Expi (M Eeml* <K (Z |le> m*' 71 (B.24)
m s=0 m s=m

because Ez2, (v) = O(m?#~1) from Robinson and Marinucci (2001). Then, (B.24) is
0 (nzﬁ ) from the Toeplitz lemma, to complete the proof.

Proof of Proposition 3. Note that ¢'B (1)’ Q2 '¢,, has mean zero and variance
q(0) /27; in view of Theorem 1 of Marinucci and Robinson (2000) and Assumption
1, the proof follows by Theorem 2.2 of Kurtz and Protter (1991).

Proof of Proposition 4. Omitted, as it is similar to the proof of Proposition 1
but significantly easier, especially in view of the norming n~2? rather than n=5.

Proof of Proposition 5. This is likewise omitted due to its similarity to, and
simplicity relative to, the proof of Proposition 2.
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Proof of Proposition 6. Follows straightforwardly from Marinucci and Robin-
son (2000), the continuous mapping theorem and Assumption 1, and the fact that

W(r;ﬁ) is almost surely nonzero, from (3.8), (3.9).
_Proof of Proposition 7. By the mean-value theorem, p()\;/é) —p(N0) = (/é -
0)'P(X), where P(}) is the matrix P(A; h) = Op(A; h)/0h, with columns evaluated re-

spectively at 5(1), 5(2), where Hé(z) — 9” < ‘A — 0|, i=1,2. Writing P(\) = P()\; ),

sup [POY) —PWN)|| < 2 Sél]}\?z sup [[P(\; h) — P(\)||

+sup sup [|[P(A; 2)| 1 ((9 - 9( >e),  (B25)
he® A

where € > 0 and N, = {h: ||h — 0] < €} . Noting Assumption 2 parts (ii) and (iii),
since continuity in h for all A implies uniform continuity on the compact set [—7, ],
the first term on the right of (B.25) tends to 0 as € — 0. The second term is o0,(1) as
n — oo for € > 0 from Assumption 2 (ii) and (iii) and Assumption 3 (ii). It follows
that

Z {P(N) = P(Nj) } wa(y) (=A)wu(Xy) Z [[wz () (=Aj)wa (A)) ]

{fo(v)z ||ut||2} ,
(B.26)

which is o, (nﬁ*%), where we use the Cauchy inequality, (B.3), >, uwe]|? = O, (n)
and

th(7)2 =0, (nw) , (B.27)

from Robinson and Marinucci (2001). Thus, noting Assumption 3 (ii), it remains to
show that

ZP VWa(y) (—Aj)wu(Nj) = 0p (nﬁJr%) . (B.28)

Denote by Pr()) the partial sum, to L terms, of the Fourier series of P(\), so

s

L
. 1 )
=Y PRe™ P= > P(\)ed. (B.29)
l=—L “r

From Assumption 2 (ii) and (v), and Zygmund (1977, p.64),

sup [PV~ (| = 0 (ZE5) (B.30)
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as L — oco. Thus

Z{P M)} sy (=M wa(A)]| < IOgL{Z QZnutP},

(B.31)

proceeding as in (B.26). With L = [nz], (B.31) is Oy ((logn)n?) = o, (nﬁ+%) .
On the other hand, for L < n,

L
ZPL Wa(y) (A )wu (X)) = % Z P, {Z X (Y) Ut

n
+Z T (V) Ut 14n +Z x4 (y ut+ln}7 (B.32)

t(1) (1)

where

"

)T DEND ST SIS DU DI (B.33)

t(l) 1<t t+I<n t(l) 1<t t+l+n<n t(l) 1<t,t+l—n<n

on applying (B.3). Looking first at the second and third terms in (B.32), we note that
1<t,t+1l+n<nand 1<t t+1—n <n are equivalent, respectively, to 1 <t < —I,
for —-L<I<-l,and14+n—-I01<t<n,forl1<I[<L.Then

n—1
"

E Z Ntegipn + Y we(Nepi—n| < KD las(B) < KJI[n?,  (B.34)
t(l) t(l) 5=0

from Lemma D.1. Thus, because Assumption 2 (ii) and (v) implies

SR < oo, (B.35)

l=—0c0

(Zygmund, 1977, p.240), the contribution from the final two terms of (B.32) is
O, (nﬁ ) . Finally

/!

>

t(1)

(V) U1 = Op (nmax(ﬁ’l)) , (B.36)

uniformly in [, from Lemmas C.1 and C.2, which, with (B.35) and Assumption 3 (ii),
completes the proof of (B.28).

Proof of Proposition 8. Follows similarly to, but more easily than, the proof
of Proposition 7.
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Proof of Proposition 9. The left side of (A.28) is
zp ) {wa) (—A) = wai) (A} {55 ) —wa ()} (B3T)
+Zp ) Wata) (=A3) {0,035 (A5) = wa () } (B.38)

+ Z;D ) {wa(my (X)) = wWa(y) (=A) Fwu () - (B.39)

Consider first (B.39)). Noting Assumption 2 (ii) and (iv) and proceeding as in
the proof of Proposition 7, define

L ™
, 1 ,
=Y e ™ p=g [ p)eMax, (B.40)
I=—L T
where
log L =
sup [[p (A) —pr (M| = O o> el < oo (B.41)
A L l=—o0
Thus
Z {p(nj) — 1wy (=X5) = waiyy (=X5) } wa (A)) (B.42)
J

is bounded in norm by

e L {Z{xt e }Z|ut|} , (BA3)

t

using the Cauchy inequality and (B.3) again. Now choosing L = [n%] and taking
¢c=8—~=p¢=06—7in Lemma C.5, (B.43) is O, ((log n)? nﬁ—p) = 0, (n?).
On the other hand, for L < n,

ZPL {wz(v) —Aj) — Way) ( }w“ j Z P [Z {2:(¥) = 2e(v) } wega

- t(1)

" "
+> A @) = 2w + Y {z(@) —w(1)} Ut+l—n] : (B.44)
t(1) t(1)
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As in the proof of Lemma C.5, we can write, for any R > 2,

(V) —w(y) = 2t(7 —6) —ug(—P)
~ (-9 RN
= Z O =3 409 (.8 + 0 (2 6 = 7)
r=1
(B.45)
where, for a vector or scalar sequence ¢,, and real b > 0,
9" (b Za(’" )P s (B.46)

with a(T)(b) = (d"/db")as(b) and |§ — | < [¥ —|. Applying (C.14) of Lemma C.4
with r = R, ¢ = 3, ¢ = § — 7, and Assumption 3 (i), indicates that the final term in
(B.45) is uniformly O, (n‘Rptﬁ“‘e) , for any € > 0. Thus, the contribution of this term
to (B.44) is, by the Cauchy inequality and (B.41), O, (n®T<1=5¢) 'which is o, (n”)
on choosing R large enough.

Next, as in (B.34), we have

"o, "
B> 9" (uze; B) weign + > 9" (w2t B) urgi—n| < Kl logn)™n?,  (B.AT)
t(1) t(1)

applying again Lemma D.1, so on taking account of the (v —7%)" factors and invoking
Assumption 3 (i) and (B.41), the contribution of the sums Z;/(l) and Z;/(/l) to (B.44)

is Op ((logn)™n”=*) + 0, (n?) = 0, (n?) . It remains to consider the quantities
L /
=" »d>_ 0" (w2 Hueyr, 1<r<R-1. (B.48)
I=——L 1)

From (C.2) of Lemma C.1 and (C.8) of Lemma C.2 the sum over Z;(l) is
O, ((logn)rnmax(#:1)) "and thus, using (B.41) and Assumption 3 (i), (B.48) is O, (n™*(3:1) =, logn)
for p > max(0,1—73), that is, o, (nﬁ) . This completes the proof that (B.39) is o, (nﬁ) .

We next consider (B.38), and again wish to replace p(A) by pr(\). First

SO =P ) ) (4 {65 ) = wa () | (B.49)

is bounded by

Nl=

Klsz {th (7)22"1&(3,3) —UtHQ} . (B-50)

t t
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-~

N ’
Noting that v¢(7,8) = (ult (F—="),u2(6 — 6)) the second factor in braces is
- 2
> Hm(ﬁ, 6) — UtH = O, (n'7?) from Lemma C.5, so that, choosing L = [n2], and
7

using (B.27), (B.49) is O, ((logn) n®~*) = o, (n?).
Next, proceeding as above, for R > 2

Ly S 1(G=9" 0 :
B ( 0 G-or ) > (Mg (uessi0) + 0, (n)
l=—L r= t(0)

(B.51)

and the leading term is o, (n”) from (C.3) of Lemma C.1 and (C.9) of Lemma C.2,
(B.41) and Assumption 3 (i).

We are left with (B.37). It is clear from its structure, which involves both the
differences appearing in (B.38) and (B.39), that application of similar arguments to
those above will show it is o, (n”) , so we omit the details.

Proof of Proposition 10. The left side of (A.29) has norm bounded by

Ksup |8 = £050) | |3 3 feats) O 3 [, ) = ()

+ {Z |wa) (A7) = Wagy) (A)] >l ()‘j)|2} , (B.52)

J

and this is clearly O, (nﬁ_""‘e) for any € > 0, from earlier arguments.

Proof of Proposition 11. Omitted, being similar to but easier than the proof
of Proposition 9.

Proof of Proposition 12. Omitted, in view of the remarks about the proofs of
Propositions 10 and 11.

APPENDIX C: TECHNICAL LEMMAS

Lemma C.1. Uniformly inl € [—L,L], L <mn,

E Z/xt(fy)utH =0 (nma"(ﬁ’l)) , (C.1)
t(1)
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{Z 9\ (uae; B Ut+l} =0 ((logn)r max(8, 1)) , (C.2)

t(1)

B {Z’xtw)g“‘)(um; 0>} = 0 ((togn)n™>). (€.3)

(1)

Proof. The proofs are very similar, and in fact are possible under milder condi-
tions following techniques of Robinson and Marinucci (2001), and we just discuss the
proof of (C.3), which is slightly the most complicated. Writing I'y = E (ugtus4s) , the
left side is

, t—1 t+1—1
Z ZaS(/B) Z aff)(U)Fstq, (C.4)
t(l) s=1 q=r

which has norm bounded by
>3 a0 \Z L]l = O ((tog n)"n) (C.5)
t g=r
for § < 1, uniformly in [, and by
n’- 122‘(1(’") ‘ZHF | = O ((logn)™n”) (C.6)
t q=r
for 8 > 1, by Lemma D.4 and Assumption 2, to complete the proof.
Lemma C.2. Uniformly inl € [-L,L], L < n,

%4 {Z/ivt(’Y)utH} =0 (n*"), (C.7)

t(1)

4 {ZIQ(T) (uat; ﬁ)utH} = O ((logn)*n*?), (C.8)
#0)

14 {Z/f/t(’Y)g(T) (w415 0)} =0 (n25+n) . (C.9)

t(l)

for any n > 0.
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Proof. The results follow from minor modifications of the proof of Theorem
5.1 of Robinson and Marinucci (2001). There are only two differences. The first is
that the sums in the latter reference are over ¢ € [1, n|, whereas the Lemma requires
uniformity in ! for sums over ¢(1). But because the ¢(l) are just a subset of [1, n], this
follows easily. The second difference is that in (C.8) and (C.9) (though not in (C.7)),
the weights al) (B) and all) (0) that are involved are not covered by the weights of
Robinson and Marinucci (2001), due to the presence of log factors. But allowance for
such log factors is readily made, and they contribute the (logn)?" and n" factors in
(C.8) and (C.9). We observe that the regularity conditions of Robinson and Marinucci
(2001) are noticeably weaker than those on w; in the present paper.

Lemma C.3. For i = 1,2, and uniformly in v > 1 and t > 2,

B {gm (wit; 0)2} =0(1), (C.10)
and for ¢ >1/2
B g0 w0} = O((log 1)), c.11)
Proof. For any ¢ > 0,
t—1 t—1 T ‘
FE {g(r) (Uit; 0)2} _ Zzagr)(c)agr)(c) /fii(A)ez(sfv))\dA
s=1v=1 e
= t—1 ) 2 m t—1 ‘ 2
= /fiz‘(>\) Zagr)(c)e”’\ d\ < K/ Zagr) (©)e'*>| dA
r s=1 [
t—1
s KDl (C.12)
s=1

From Lemmas D.1 and D.4, this is bounded by the right sides of (C.10) and (C.11),
for ¢ =0 and ¢ > 1/2 respectively.

Lemma C.4. For i =1,2, p > 0, uniformly in t € [1,n], r > 1,

9" (uit;0) = Op(t?) (C.13)
if €= 0,(n""), and
g(r) (uit;¢) = O, (t°T) (C.14)

forany € >0, if c=c+O0p(n="), c>1/2.
Proof. By the Cauchy inequality, for any ¢ > 0,

1
t—1 t—1 2
’g(’")(uit;ﬁ)‘ < { NURIGE :“?s} : (C.15)
s=1

s=1
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From Lemma D.5, for € > 0,

S @2 =0, (i {log(s + D} (5 + 1>2<c+6”> , (C.16)
s=0 s=0

where ¢ = 0 or ¢ > 1/2. Thus, with 3.'_
follow.

= O, (t), the bounds (C.13) and (C.14)

slzs

Lemma C.5. For i =1,2,if c=c+ O, (n""), p> 0, uniformly in t € [1,n], as
n — 0o

up(—¢) —ugw = Op(n*), ¢=0, (C.17)
wir(—0) — u (—¢) = op( —rge=3 logt) c> % (C.18)

Proof. We have, for ¢ > 0,

it (=€) — ui(—c) = z_: {as(€) — as(c)} wii—s, (C.19)

with u;:(0) = us. By Taylor’s theorem, for any R > 2,

(S @ (c—oF
as(C) —as(c Z + a®(e )T'C, (C.20)

where |¢ — ¢| < [¢ — ¢|, so we can write (C.19) as

R—

,_.

C—C

~ R

CcC—2C
g(’") (uit;c) + —( R') g(R)(uit;E). (C.21)
r=1 '

Taking ¢ = 0, (C.10) and (C.13) indicate that (C.21) is Op (n™") + O, (nprt%) ,
whence (C.17) is proved by choosing R large enough and observing that ¢ < n. In the
same way, (C.18) is proved because (C.21) is O, (n_ptc_% log t) + O, (n~HiPtetm) for
1 > 0, due to (C.11) and (C.14).

APPENDIX D: LEMMAS CONCERNING THE a; WEIGHTS

Lemma D.1. For c € [¢g, Co], co > 0, Cy < 00, s >0,
las (o)) < Ko(1+s)", (D1
las (¢) —asi1 ()] < Ko(1+s)77, (D2)
(@) < Kor(og(1+s) (1+s)' 1<r <R (D3)
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where Ko < oo depends only on ¢y and Cy and Kyr < oo depends only on cy, Cy
and R.

Proof. First, (D.1) is familiar from Stirling’s approximation, or derivable by
induction, while (D.2) follows easily from the identity as4+1 (¢) =
{(s+¢)/(s+1)}as(c). To prove (D.3), introduce the digamma function and its
derivatives

d"y (x)

Y (@)= o (x), v () = T, (D.4)

which exist for » > 1 and x > 0. We deduce from the chain rule that

) (©) = S {0 (54 0) — 0 ()} 0 (o), (D.5)

with the convention that ¥ () = ¢ (), a® (-) = a(-), and for finite constants 7,
0 <i <r—1. Now from Gradshteyn and Ryzhik (1994, p.95), for = > 0

= T — 1
- D.
ZZ e (D.6)
where 7 is Euler’s constant. Thus for z > 0
[x] ) o0
W) < D G+ Hla—1] Y i+
i=0 i=[z]+1
< log(z+1)+1+n<Klog(z+1), (D.7)

where [.] denotes integer part and K is independent of z. Also, for [ > 1,

P (@) = ()Y (@) (D.8)
=0
so that
-1
W) ‘ <tz Y < Kor(1+2)7, (D.9)

l

1 <1 <r <R, for z > ¢y. The proof is completed by applying (D.5) recursively,
(D.9), and noting that [log(s +c+1)] < Kplog(s+1).
Lemma D.2. Uniformly in s,t € [1,n], for ¢ > %

min(s,t)

Z s—v (€) at—y (¢) = O (*71) . (D.10)

v=1
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Proof. From (D.1), the left side of (D.10) is bounded in absolute value by
K v (v+ s —t)) . Since (v 4 |s — )" < v fore < land (v+|s — 1)) <
Kne~! for ¢ > 1, (D.10) readily follows.

Lemma D.3. For 1 <s<t—1,¢>1/2,

t

i {as—v(c) — as_o(c)}* + Z a2, (c) < K(t — s)tmax(02e=2) (D.11)
v=1

v=s5+1

Proof. Writing as = a5 (¢), for 1 <v < s,a;—y —as—p, =0, ¢ =1, while for ¢ # 1
we have from (D.2)

t t
lat—y — as—y| < Z lar—y — ar_1—0| < K Z (r—v)2. (D.12)
r=s+1 r=s+1
Now (D.12) is bounded on the one hand by K (s +1 — )" 1(c < 1)+ Kt '1(c > 1),
and on the other by K (t —s) {(s +1-0)?1(c<2)+t21(c> 2)} . It follows
that (D.12) is also bounded by

1 _3 1
K(tfs)%(s+1ffu)C 2, 5 < c<1, (D.13)
K({t—-s)2tT (s+1-v)f ', 1 < c<2, (D.14)
K(t—9)%t—3 ¢ > 2 (D.15)
Thus >0, {at—y(c) — as—y (¢)}? is bounded by
> - 1
K(t75)2(5+17v)203 < K(t-s), §<c<1, (D.16)

v=1

K-8t (s+1-0v)? < K(t—s)t*), 1<e<,
v=1

(D.17)
K{t—s)t*3s < K(t—s)t3D, ¢>2, (D.18)

that is by K (t — s)t™2x(02e=2) * ¢ > 1 On the other hand, for all ¢ > 1/2

t
> oal,<K(t—s)*", (D.19)
v=s5+1
whence the result immediately follows.
Lemma D.4. For r > 1

al”(0)=0, s<r (D.20)
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and

K, (log (s +1))" "
(s—r+1)

IN

, s> (D.21)

al? (0)|

where K, < oo depends only on r.

Proof. On taking logs in (1.4) and differentiating with respect to a we have
—log(l—2)(1—2)""= Zagl) () 2°. (D.22)
5=0

Evaluating this expression at o = 0 gives a(()l) (0) =0 and al! (0) =571, s > 1. This

proves the lemma for » = 1. For » > 1 we differentiate (D.22) r —1 times and evaluate
at a =0 to get

{=log(1—2)}" = iay) (0) 2°. (D.23)
s=0

Clearly al" (0) =0, s < r. Also, we have the recursion

Y al (0)2* = ~log(1-2)Y a1 (0) 2%, r>2. (D.24)
s=0 s=0
It follows that
(r—1) (r—1)
0 N _
al” (0) = a1 (0) 4+ ©) +..+ ag_11> 0), s>r>1. (D.25)

s—r+1 s—r

If (D.21) is true with r replaced by r — 1 we have

g/—\
2
—~~
=
~—
IN

o 1 1 1
K1 (log (s +1)) {1.(s—r+1) L TP 1.(5—T+1)}

r—1
r—2log(s+1) _ . (log(s+1))

< 2K {log(s+ D)} 7 o S Ko

(D.26)

for K, > 2K,_1. The proof thus follows by induction.

Lemma D.5. Let c¢=c+ O, (n""), p>0 such that 0 < ¢ < K and |c| < K for
some K < 00, and suppose € satisfies [¢ —c| < |[¢— ¢|. Then uniformly in s € [0,n)
as n — oo, and for any € > 0,

al) @) =0, ((log (s+ 1)) (s + 1)°’+€—1) (D.27)

as n — Q.
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Proof. From Lemma D.1 and Lemma D.4 we have, for any € > 0

ol ()| =<

o) @[ 1=l <)+ ]l @|1(E=c| > 0

~ M
< K (log (8 + 1))1“ ((S + l)c-‘re—l + (S + 1)K—1 %)

< K(log(s+1)) ((s F1) T 4 (s )R n_M") (D.28)

for any M > 1. We may choose M > (K — ¢ — €) /p which, with s < n, completes the
proof.
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TABLE II
MONTE CARLO BIAS OF 7y, 7, 7o FOR p = (0.5, 1000 REPLICATIONS

n =64 n =128 n = 256
vl 6 vy Up vo | v Up vo | V1 Up Vo
0 .6 .002 -.056 .269 | .004 -.019 223 | .002 -.013 185
01121 .001 -.002 .010 | .000 -.001 .003 | .000 .000 .001
0 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41 .6 | -.002 -.119 472 | .013 -.136 441 | .008 -.119 404
41 1.2 .002 -.013 .052 | .002 -.003 .030 | .001 -.002 .016
4 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0 .6 .001 -.040 .194 | .003 -.014 .160 | .001 -.010 133
0| 1.2 .001 -.002 .007 | .000 -.001 .002 | .000 .000 .001
0 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41 .6 | -.001 -.040 341 | .009 -.073 318 | .006 -.086 291
41 1.2 .001 -.009 .038 | .001 -.002 .022 | .001 -.001 .012
4 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0 .6 .001 -.029 137 | .002 -.009 113 | .001 -.007 .094
0] 1.2 .000 -.001 .005 | .000 .000 .002 | .000 .000 .000
0 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41 .6 | -.001 -.060 241 | .007 -.070 225 | .004 -.061 .206
41 1.2] .001 -.007 .027 | .001 -.002 .015 | .000 -.001 .008
4 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE III
MONTE CARLO SD OF v, Vg, Vo FOR p = 0.5, 1000 REPLICATIONS
n =64 n =128 n = 256
vl 6 vr Vp [Ze) vr Vp Vo vy VR Vo
0 6 | 142 .345 .140 | .081 119 105 | .048 .064 .079
0| 1.2 .030 .033 .031 | .012 .013 .013 | .005 .005 .005
0 2 .004 .004 .004 | .001 .001 .001 | .000 .000 .000
41 .6 | .599 3.27 284 | .387 2.48 244 | .262 .968 .196
41 1.2 ] .083 .110 .094 | .043 .050 .056 | .023 .026 .031
4 2 011 011 .013 | .003 .003 .004 | .001 .001 .001
0 .6 | .101 .247 .100 | .058 .085 075 | .034 .046 .057
01121 .021 .024 .022 | .009 .009 .009 | .004 .004 .004
0 2 .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41 .6 | .426 2.39 203 | .276 1.80 174 | 187 741 .140
41 1.2 .059 .079 .067 | .031 .036 .040 | .016 .018 .022
4 2 .008 .008 .009 | .002 .002 .003 | .001 .001 .001
0 6 | .072 176 071 | .041 .061 .053 | .025 .033 .040
0| 1.2].015 017 .016 | .006 .007 .006 | .003 .003 .003
0 2 .002 .002 .002 | .000 .000 .001 | .000 .000 .000
41 .6 | .305 1.67 145 | 197 1.26 124 | 134 493 .100
41 1.2 ] .042 .056 .048 | .022 .026 .029 | .012 .013 .016
4 2 .005 .006 .007 | .002 .002 .002 | .001 .001 .001
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TABLE IV
EMPIRICAL SIZES OF W; AND Wr FOR p = 0, 1000 REPLICATIONS

a = .05 a=.10
n 64 64 128 128 256 256 64 64 128 128 256 256
Y| 6 | Wi Wr Wi Wrp W; Wgp | W Wg Wy Wrp W; Wp
0 .6 |.072 194 .049 125 .052 .090 | .131 .261 .099 166 116 .137
01]1.2].059 .198 .062 136 .048  .097 | 113 .260 110 208 122 .161
0 2 .054 184 .057 122 .058  .102 | .109 .255 .108 199 120 .167
41 .6 | .077 154 .055 097 062 .076 | .126 .234 .095 159 110 .132
41 1.271.060 .193 .050 115 .051  .076 | .125 .254 .109 176 .099 131
4 2 051 177 071 133 .059  .104 | .108 .238 123 201 121 157
TABLE V
EMPIRICAL SIZES OF W; AND Wr FOR p = (0.5, 1000 REPLICATIONS
a=.05 a=.10
n 64 64 128 128 256 256 64 64 128 128 256 256
| 6 | Wi Wg Wr Wp Wi Wrp | Wi Wp Wi Wrp Wi Wp
0 .6 | .064 .238 .054 152 052 116 | .128  .322 113 224 105 .178
0 1.2].067 .203 .057 132 .053  .097 | .122  .289 108 202 104 157
0 2 065 .201 .055 133 .059 108 | 116 .272 112 193 111 .160
41 .6 | .055 .255 .057 180 .051 153 | 137 .338 115 274 107 231
41 1.2 .067 .231 .051 153 .049 110 | .127 .312 .102 207 092 .168
4 2 065 .184 .055 114 .058  .095 | .122 .2b54 114 A87 111 149
TABLE VI
EMPIRICAL SIZES OF W; AND Wr FOR p = —0.5, 1000 REPLICATIONS
a=.05 a=.10
n 64 64 128 128 256 256 64 64 128 128 256 256
vyl 6 | W Wg Wi Wrp W; Wgp | Wy Wg Wi Wr W; Wg
0 .6 | .062 .227 .059 166 .059  .129 | .128 311 120 231 109 .203
0] 1.2 .047 .209 074 161 .052  .095 | .105 .292 129 225 100 .149
0 2 .049 .199 073 163 .063 112 | .110 .264 129 222 109 157
41 .6 | .070 .263 .057 190 062  .163 | .108 .332 117 268 122 .239
41 1.2].056 .238 .061 167 .050 .109 | .120 .318 A17 222 103 174
4 2 .049 186 074 146 .066 .094 | .097 .248 134 214 105 .152
TABLE VII
EMPIRICAL SIZES OF W; AND Wr FOR p = 0.75, 1000 REPLICATIONS
a = .05 a=.10
n 64 64 128 128 256 256 64 64 128 128 256 256
vyl 6 | Wi Wp Wr Wp Wi Wgp | Wi Wp Wi Wrp Wi Wp
0 .6 ].069 .332 .050 259 .052 .247 | .120 .416 107 337 .104 327
01]12].066 .231 .054 144 .053 .100 | .127 .311 .099 217 112 158
0 2 054 221 .042 144 .064 .104 | .122 .293 .104 208 112 .150
41 .6 | .066 .430 .058 372 .060 .339 | .108 .502 115 451 108 428
41 1.2 ] .065 .292 .048 195 057  .141 | 130  .383 110 278 111 .199
4 2 .064 .210 .054 130 .060 .097 | .123  .267 110 193 112 .148
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TABLE VIII
MONTE CARLO BIAS(SD) OF 7r,7,, s, Ur, U0, FOR § = 1, v = 0, 1000
REPLICATIONS

T 1 1 2 2 5 5
p | n 64 256 64 256 64 256
77 | -.002(.041) .000(.009) | -.001(.029) .000(.007) | -.003(.058) .000(.013)
7., | -.002.(043) .000(.009) | -.001(.031) .000(.007) | -.002(.060) -.001(.013)
0 | s | -.002(.043) .000(.009) | -.001(.030) .000(.007) | -.002(.060) .000(.013)
T | -.001(.044) .000(.009) | -.001(.031) .000(.007) | -.002(.061) .000(.013)
To | -.002(.040) .000(.009) | -.002(.029) .000(.007) | -.003(.056) .000(.013)
77 | .000(.004) .000(.009) | .000(.029) .000(.006) | .000(.057) .000(.012)
7., | -.005(.044) .000(.009) | -.004(.031) .000(.006) | -.007(.062) -.001(.012)
25 | 75 | .002(.042) .000(.009) | .001(.030) .000(.006) | .002(.058) .000(.013)
Tp | -.002(.044) .000(.009) | -.002(.031) .000(.006) | -.003(.062) -.001(.013)
To | .014(.040)  .004(.009) | .010(.029) .003(.006) | .020(.056)  .005(.013)
77 | .001(.035) .000(.008) | .001(.025) .000(.006) | .001(.049) .000(.011)
7, | -.010(.043) -.001(.008) | -.007(.030) .000(.006) | -.014(.060) -.001(.011)
5 | U5 | .004(.037) .000(.008) | .003(.026) .000(.006) | .005(.052) .000(.012)
Tp | -.005(.043) .000(.008) | -.003(.031) .000(.006) | -.006.(060) -.001(.012)
Vo | .030(.040)  .007(.010) | .021(.028) .005(.007) | .041(.056) .010(.014)
77 | .000(.033) .000(.008) | .000(.024) .000(.006) | .000(.046) .000(.011)
7, | .009(.040) .001(.009) | .007(.029) .001(.006) | .013(.056) .001(.012)
-5 | 75 | -.003(.035) .000(.008) | -.002(.025) .000(.006) | -.004(.049) .000(.012)
Tp | .004(.039)  .001(.009) | .003(.028) .000(.006) | .005(.055) .001(.012)
Vo | -.028(.039) -.007(.010) | -.020(.028) -.005(.007) | -.039(.054) -.010(.014)
77 | .001(.026) .000(.006) | .000(.019) .000(.004) | .001(.037) .000(.009)
7., | -.016(.042) -.001(.007) | -.012(.030) -.001(.005) | -.023(.059) -.001(.010)
75 | 75 | .004(.031)  .000(.007) | .003(.022) .000(.005) | .005(.043) .000(.010)
T | -.008(.042) -.001(.007) | -.005(.030) -.001(.005) | -.010(.059) -.001(.010)
Vo | .044(.043)  .011(.011) | .031(.030) .008(.007) | .061(.060) .015(.015)
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TABLE IX
EMPIRICAL SIZES OF Wy, W.,, Ws, Wr, Wo FOR § = 1, v = 0, 1000 REPLICATIONS

« .05 .10

P n WI WW’ W5 WF WO WI WV W5 WF WO
64 | .061 .055 .199 .200 .058 | .122 125 .267 .264 .122
0 | 128 | .03 .053 .126 .126 .052 | .107 .107 .191 .191 .113
256 | .048 .048 .090 .090 .046 | .118 .115 .154 .153 .109
64 | .069 .077 .192 .204 .075 | .124 130 .270 .275 137
25| 128 | .0561 .056 .130 .130 .069 | .116 .117 .203 .197 .114
256 | .051 .051 .092 .089 .064 | .102 .105 .143 .149 .119
64 | .066 .106 .199 218 .126 | .127 175 .266 .297 .213
b | 128 | .056 067 137 .140 126 | 113 129 .209 .202 .201
256 | .063 .064 .08 .095 .107 | .095 .117 .146 .159 .180
64 | .047 .104 196 .223 .131 | .110 .174 274 .309 .210
-5 | 128 | .068 .086 .145 .159 .121 | .114 .148 .221 .218 .205
256 | .045 .061 .093 .100 .119 | .101 .123 .148 .156 .199
64 | .066 .185 .211 .254 .212 | .122 .262 .280 .333 .331
S5 1 128 | .052 116 153 156 .204 | .099 .190 .217 .224 .330
256 | .056 .094 .102 .115 .197 | .109 .159 170 .170 .306

TABLE X
PPP EMPIRICAL EXAMPLE: ESTIMATES OF v AND WALD TESTS OF v =1 FOR
MODELS 1-7 COMPUTED FROM THE LAST n/ = 113, ..., 123 OBSERVATIONS OF
US/UK DATA

n' 123 122 121 120 119 118 117 116 115 114 113

vy | 1139 1.050 1.014 952 889 875 .871  .867 .864 875 875
Wi | 2623 352 .017 .163 .759 940 986 1.035 1.082 .903  .890

vy | 1294 959 1.030 .995 949 941 941 938 936 944 943
Wo | 1173 231 078 .002 .159 .208 .206 .226  .243  .181 182

vs | 1.113 1.084 1.017 .955 .889 .871 866 .863  .859 871 .868
Wy | 1864 1.070 .027 .161 .823 1.079 1.138 1.196 1.251 1.051 1.059

vy | 1290 966 1.028 997 950 939 939 936 934 942  .939
Wy | 1226 178 .0v8 .001 .170 .241 .240 .263 .281 .212  .227

Us | 1.274 1.042 1.025 .98 940 .933 932 931 929 939  .936
Ws | 112.2 225  .055 .014 .230 .283 283 .296 .306 .223  .239

ve | 1.278 960 1.015 983 939 932 931 930 927 937  .935
We | 1149 211  .019 .020 .241 .292 292 306 .325  .246  .255

vy | 1298 999  1.048 1.024 975 961 962 956  .956  .963  .958
Wy | 116.9 .000 .279 .052 .047 .109 .105 .138 .136  .096  .122
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