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1. Introduction

Time series data occur commonly in the natural and engineering sciences, economics and

many other fields of enquiry. A typical feature of such data is their apparent dependence

across time, for example sometimes records close together in time are strongly correlated. A

general practice in economics is to model the nonstationary character of the series in terms

of unit root models, which typically assume that the first differences are stationary. Many

test statistics have been developed for this purpose (see, e.g., Fuller, 1976; Dickey and

Fuller, 1979; Schmidt and Phillips, 1992; etc.). However, most of these tests are embedded

in autoregressive (AR) alternatives that are stationary or explosive. The test statistics often

have nonstandard null and local asymptotic distributions. The AR model, however, is merely

one of the many models that nest a unit root. Robinson (1994) proposed a very general

testing procedure which includes, as a particular case, the testing of a unit root embedded in

fractional alternatives of form

....,2,1,)1( ��� tuxL tt
d       (1)

where L is the lag operator (Lxt = xt-1); {ut} is a covariance stationary sequence with zero

mean and weak parametric autocorrelation; d can be any real number, and the unit root case

corresponds to the null d = 1. Processes like (1) with positive non-integer d are called

fractionally integrated and when ut is ARMA(p, q),, xt has been called a fractionally ARIMA

(ARFIMA) (p, d, q) process. These models were introduced by Granger and Joyeux (1980),

Granger (1980, 1981) and Hosking (1981), (although earlier work by Adenstedt, 1974 and

Taqqu, 1975, shows an awareness of the representation), and were theoretically justified, in

terms of aggregation by Robinson (1978) and Granger (1980).

We propose, in this article, multivariate tests for unit roots and other fractionally integrated

hypotheses, which are a generalization of the univariate tests of Robinson (1994). They are

relevant if we want to analyse the interrelationships between different variables, also



providing a more detailed insight into properties and stochastic behaviour than the univariate

work. For example, we might want to investigate the order of integration of a given variable

across countries, allowing for weak dependence across the residuals of the differenced

series. In doing so, we can determine the degree of persistence of the variable across

countries. Also, it might be of interest to examine the degrees of integration of several

variables simultaneously when they are specified in a multivariate system and this will be

illustrated with an example in Section 6. We can consider a regression model of form

       ....,2,1,)( ��� tXZY ttt �        (2)

   ,0,0 �� tX t        (3)

where the column vectors Yt and Xt each has n components, and by � we mean a (k x 1)

vector of real parameters. Zt(�) is a (n x 1) vector of (possible) non-linear functions of � and,

in general a number of predetermined variables. We assume that under the null hypothesis to

be tested and described below, Xt in (2) and (3) satisfies

       ....,,2,1,)( ��� tUXL tt        (4)

where �(L) is a (n x n) diagonal matrix function of L,1 and Ut is a (n x 1) vector process

(defined as in Robinson, 1995, for example, as a covariance stationary process with spectral

density matrix f(�) that is finite and positive definite), with mean zero and weak parametric

autocorrelation. We consider a diagonal matrix function �(z; �) of the complex variate z and

the p-dimensional vector � of real-valued parameters, where �(z; �) = �(z) for all z such

that �z� = 1 if and only if the null hypothesis defined by

    0: ��oH        (5)

                                                          
1   Non-diagonal matrices � may also be considered and though this would lead to the possibility of a
fractionally cointegrated system (see, e.g., Robinson and Yajima, 2002), its study is out of the scope of this
paper.



holds, where there is no loss of generality in using the vector of zeros instead of an arbitrary

given vector. Thus, we can cast (4) in terms of a nested composite parametric null

hypothesis, within the class of alternatives

   ....,2,1,);( ��� tUXL tt� .       (6)
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for a given hu, given distinct real numbers u
jw , j = 3, 4, …, hu on the interval (0, �) and given

real numbers u
j�  for j = 1,…,hu. Thus, (4) permits us to consider a wide range of

possibilities. We briefly indicate some special cases of interest:

a): I(1) processes: if �u(z) = (1 – z), and in general, I(d) processes, (eg. Gil-Alana and

Robinson, 1997; Gil-Alana, 2001a),  if �u(z) = (1 – z)d.

b): Cyclic I(1) processes: if �u(z) = (1 – 2 cos wz + z2) for 0 < w < �, and similarly,

fractional cyclical models, (Gray et al., 1989, 1994; Gil-Alana, 2001b), if �u(z) = (1 – 2 cos

wz + z2)d.

c): Quarterly I(1) processes: if �u(z) = (1 – z4), and quarterly I(d), (Porter-Hudak, 1990;

Gil-Alana and Robinson, 2001),  if �u(z) = (1 – z4)d, and so on.

We specify �(z; �) in a way such that we take each element of �(z; �), �u(z; �), to

depend on � but not necessarily involving all elements of �, specifically
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where for each combination (u, j), u
ji� = �l for some l; and for each l, there is at least one

combination (u, j) such that u
ji� = �l, where �l corresponds to the lth element of �. This

specification allows us to consider duplications not only within equations but also across

equations. Furthermore, this way of specifying �(z; �) permits us to specifically consider



situations where � is the same across all equations, and also the case when � is taken as

strictly different for each equation. This will be illustrated with some examples in Section 4.

We adopt the normalization �u(0; �) = 1 for all � and u = 1,2,…n, and assume that �u(z; �) is

differentiable in � on a neighbourhood of � = 0 for all �z� = 1. Also we suppose that for any

u,v = 1, 2, …n

  ,)(det ��vuE      (8)
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for real �, where )()( �� u  is the conjugate vector of )()( �� u . Note that the (p x 1) vector

)()( �� u  is independent of � given the linearity of log �u(ei�; �) with respect to � in (7). In

particular, its real part takes the form:
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where u
lj�  = 1 if u

ji�  = �l and 0 otherwise. (See Robinson, 1994, page 1422). Condition (8)

will not be satisfied when testing unit roots embedded in AR alternatives of form: �u(z; �) =

(1 – (1+�)z). However, it will be satisfied if the alternatives are fractional of form: �u(z; �) =

(1 – z)1+�.

Under the null hypothesis (5), the model in (2) – (4) can be redefined as

       ....,2,1,)()( ���� tUWYL ttt �      (9)

where Wt(�) = (W1t(�); W2t(�); …; Wnt(�))’, with Wut(�) = �u(L) Zut(�).  (9) is a very general

form of a regression model, which includes multivariate linear and non-linear models and

simultaneous equations systems. Sections 2 and 3 present the functional forms of the test

statistics for the cases of white noise and weakly autocorrelated Ut. In section 4, the tests are

rewritten for two cases of interest: First, we suppose that � in (6) is the same across all



elements in �(z; �). Then, we take � as strictly different for each element in �(z; �). Section

5 reports some simulations, studying the finite-sample behaviour of versions of the tests.

Section 6 contains a small empirical application while Section 7 concludes. Appendices A

and B show the derivations of the test statistics of sections 2 and 3 respectively.

2. Score tests for white noise Ut

We describe a score test for Ho (5) in a model given by (2), (3) and (6), under the

presumption that Ut in (6) is a vector sequence of zero mean uncorrelated in time random

variables, with unknown variance-covariance matrix K. One definition for the score test is as

follows. Let L(�) be an objective function and take � = (�’, 	’)’, where )''~,'0(~
�� �  are the

values that minimizes L(�) under the null. A score test (see Rao,1973, page 418) is then

given by
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where the expectation is taken under the null prior to substitution of �~ . The same

asymptotic behaviour will be expected, however, if we replace the inverted matrix in (10) by

alternative forms such as the sample average or the Hessian, (see, eg. Godfrey, 1988). For

convenience below, we make use of the expected information matrix, so the score test takes

the form:
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We take L in (11) to be the negative of the log-likelihood based on Gaussian Ut, with � =

(�’, �’, 
’)’; 
 = v(K).2  In Appendix A it is shown that (11) takes the form

       tttt aAaTS ˆ)ˆ('ˆˆ 1�
�       (12)



where tâ  is a (p x 1) vector of form
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vu
�̂  is the (u,v)th element of 1ˆ �K ; vu�̂  is the (u,v)th element of K̂ ;  and )ˆ;( �sC vu  is the
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As in the univariate tests of Robinson (1994), concise formulas for )(u
s�  are available

in some simple cases; for example, )(u
s�  = -s-1, when �u(L; �) = (1 – L)d+�. However, we can

also express the test statistic in the frequency domain and, under certain suitable conditions,

(basically a generalization of those in Robinson, 1994, requiring technical assumptions on

�u, and thus, on ),()( �� u  to justify approximating integrals by sums), approximate this to

obtain an alternative, asymptotically equivalent, form. Thus, (13) can be written as
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where )()( �� u  is given below (8); )()( �� v  is the conjugate vector of ),()( �� v and )ˆ;( v ��uI  is

the (u,v)th element in the cross-periodogram of Ût(�) = (Û1t(�); …; Ûnt(�))’ : 
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2  v(K) means a vector containing the columns of K, including only those non-repetitive elements of K.



where the line over W denotes complex conjugate. Also, under suitable conditions, keeping

vu�̂  and vu�̂  fixed, Ât in (14) becomes asymptotically
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and using the Parseval’s relationship (see, Zygmund, 1979, Chapter 4), this quantity can be

expressed as
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Therefore, the score statistic in (12) can be approximated in the frequency domain by the

expression
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�r = 2�r/T, the sums on the asterisk being over �r in M where M = {�; -� < � < �; � � (�1 -

�;  �1 + �), l = 1,2,…,s}, such that �l, l = 1,2,…s are the distinct poles on �(u)(�) on (-�, �]

for u = 1,2,…n. Note that if �u(L; �) is given by (1 – L)d+�, we calculate �(u)(�) as:
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with r = 1,2,…,T-1, (Zygmund, 1979, page 5).

Under some regularity conditions, the test described below will have the same

optimal asymptotic properties as Robinson’s (1994) univariate tests. These conditions

impose a martingale difference assumption on the white noise vector Ut, (that is, E(Ut � Bt-1)

= 0 and E(UtUt’ � Bt-1) = K, where Bt-1 is the �-field of events generated by Us, s 	 t); also W

as defined in Appendix A must be a positive definite matrix; and �u(z; �), u = 1,2,…n must



belong to the class H as defined in Robinson (1994), with �(u)(�) satisfying the same

technical conditions as 
(�) in that paper. Then, (12) and (16) will have a null limit 2
p�

distribution, and under local alternatives of form Ha: � = �T = �T-1/2, a )(2
�� p distribution

with a non-centrality parameter �, which is optimal under Gaussianity of Ut. Thus, a large

sample 100%-level test for rejecting Ho (5) against the alternative: H1: � � 0, will be given

by the rule: “Reject Ho if )ˆ(ˆ ft SorS  > 2
,�� p ”, where Prob( 2

p�  > 2
,�� p ) = .

3. Score test for weakly parametrically correlated Ut

We consider the model in (2), (3) and (6), with Ut in (6) as a vector process with n

components generated by a parametric model of form
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where �t is a white noise vector process, and K is now the unknown variance-covariance

matrix of �t. The spectral density matrix of Ut in (19) is
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jiejAk ����  and k* means the complex conjugate transpose of k. A

number of conditions are required on A and f in Appendix B when deriving the test statistic;

their practical implications being that though Ut is capable of exhibiting a much stronger

degree of autocorrelation than multiple ARMA processes, its spectral density matrix must be

finite, with eigenvalues bounded and bounded away from zero. By extending the arguments

in Section 2 and Appendix A, we show in Appendix B that, under Gaussianity of Ut, an

approximate score statistic for testing (5) in (2), (3), (6) and (19) is
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)ˆ;( ��vuI is the (u,v)th element of the periodogram of Ût, ),ˆ;( ��UI  as it was given in Section

2; )~;(ˆ ��rvuf  and )~;(ˆ ��r
vuf correspond respectively to the (u,v)th elements of )~;(ˆ ��rf  and
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where T* is a compact subset of q-dimensional Euclidean space.

Extending the conditions in Robinson (1994) and thus, allowing for a martingale difference

assumption on �t in (19), with �
�

�1

2/1 );(
j

jAj �  < �, where A  means any norm for the

matrix A, for example, the square root of the maximum eigenvalue of A*A; with W as a

positive definite matrix; �u, u = 1,…,n, satisfying the same conditions as in Section 2; and

);( ��vuf and ��� �� /);(vuf  satisfying a Lipschitz condition in � of order � > ½, for all u,v

= 1,2,..n, (Hannan, 1970, page 513), then, under Ho (5): 2~
pdS ��  as T � �, and S~  should

also satisfy the same asymptotic efficiency properties as tŜ and fŜ in Section 2.



4. Particular cases of the score tests

In this section we consider two special cases of interest of each of the previous versions of

the tests. The first corresponds to (6) with � containing the same (p x 1) vector across all

elements in �(z;�), whilst the second case takes this vector as strictly different for each

equation.

We illustrate both cases with two simple examples in a bivariate model. First we test

if one of the series is I(d1) and the other is I(d2). Thus, we consider that both series have a

root at the same zero frequency, though with different integration orders. In the second

example, the series might differ in the number of roots in its bivariate representation, and we

test for an I(d1) process in the first series and a quarterly I(d2) in the second one. Therefore,

the models will be specified under the null, in the first example as
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and in the second as
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where d1 and d2 are given real numbers, (non-necessarily constrained to be in the stationary

region); Xt = (X1t, X2t)’ = 0 for t 	 0; and Ut = (U1t, U2t)’ is an I(0) process. 

4.a Same � across the equations

We consider (2), (3) and (6), and �(z; �) with uth diagonal element:
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ji� = �l for some l, and for each l, there is at least one j such that 

ji� = �l.

Therefore, the parameter vector � is exactly the same across all equations in (6), and the



difference between one equation and another comes now through the coefficients u
j�  for j =

1, 2, ….hu and u = 1,2,…n. Thus, in the first example, the model will be specified as
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testing the null Ho: � = 0 against the alternative Ha: � 
 0.  In the second example, the model

will take the form
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which, under the null hypothesis, Ho: � = (�1, �2, �3)’ = 0, becomes (E2), implying that X2t

follows a quarterly I(d2) process.

This specification is a particular case of the general model presented in Section 1

with
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(26) implies that s
u

s �� �
)( for all u = 1, 2, …, n. Thus, we can easily describe the functional

forms of the three test statistics. Starting with white noise Ut, substituting (26) in (12) – (14),

the time domain version of the test statistic is
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Expressing the test in the frequency domain,

     1111 ˆ)ˆ('ˆˆ 1 ffff aAaTS �

�      (28)

� �)ˆ;(ˆ)(2ˆ 1
*

1 ����
�

rUr
r

f IKtr
T

a ��
�

� ;  ,ˆ 1

T
nA f

�

and finally, substituting (26) in (21), the test statistic with autocorrelated Ut becomes:
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4b. Different �’s across equations

We take � in (6) to be equal to (�1
�, �2

�, …, �n
�)�, where �u is a (pu x 1) vector affecting only

to the uth equation. Thus, the parameter vector involving � will be strictly different for each

equation. We take the uth element of �(z; �), �u(z; �u), adopting the same functional form as

in (7), where now for each j, u
l

u
ij �� � for some l, and for each l, there is at least one j such

that  u
l

u
ij �� � . Thus, in the first example, the model is
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Again this specification is a particular case of the general model presented in Section 1. We

need to define the (pu x 1) vectors �)()( �ue u

ui
u e
�

�� �

�

� );(log
and )()( �uf = )]([Re )( �ue , for

all u = 1, 2, …n, sharing the same properties as �(u)(�) and �(u)(�) in sections 1 – 3. To show



this, we just need to note that ),()( )()( ��� uuu eP�  where Pu is a (p x pu) matrix of 1’s and

0’s of form Pu = (0; ;
upI  0)’. Substituting �(u)(�) in (12), (16) and (21), we can easily obtain

the functional forms of the three statistics. Starting with the time domain and white noise Ut,

noting that )()( u
su

u
s fP��  where )(u

sf  comes from expanding )()( �uf  in terms of its infinite

representation, the test statistic takes the form
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The test statistic in the frequency domain becomes
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and allowing  autocorrelated Ut, 
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and E~  remains unchanged, i.e., as in (29) and below.

5. Finite sample performance

This section examines the finite-sample behaviour of versions of the above statistics by

means of Monte Carlo simulations. All calculations were carried out using Fortran and the

NAG’s library random number generator on LSE’s VAX computer. Given the variety of

tests and the number of possibilities covered by them, we concentrate on a bivariate system

where the null hypothesis consists of two series following a random walk. We take the

model
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and Xt = (X1t, X2t)’ = 0 for all t � 0. Under the null hypothesis:

         ,0)',(: 21 �� ���oH      (34)

Ut  =  (U1t, U2t)’ will be initially, a white noise vector process with mean zero and variance-

covariance matrix �. First, and without loss of generality, we assume that � = I2, though we

also present results, for a given positive definite matrix �. We look at the rejection

frequencies of the score statistic given by (30), for fractional alternatives with (�i)i = 1,2 in

(33) equal to: -0.8, (0.2), 0.8. Then, we generate Gaussian series for different sample sizes,

(T = 50, 100 and 200) taking 5000 replications of each case, and present results for a

nominal size of 5%.

Table 1 reports rejection frequencies of 2ˆ tS in (30) with � = I2. We see that the size

of the test is too small in all cases, though it improves as we increase the number of

observations. Thus, for example, we see that the size is 1.2% with T = 50; it increases to

2.0% with T = 100, and becomes 3.2% with T = 200. If we concentrate on small departures

from (34), we observe that these rejection frequencies increase strongly, especially when the



sample size is large. This increase is more important when �1 and �2 take the same value,

though also is noticeable when �1 � �2. If T = 200, we see that the lowest rejection

probability, apart from that of the true model (�1 = �2 = 0) is 0.671, which is obtained when

�1 = 0 and �2 = -0.2.  However, if �1 = �2 = -0.2, it becomes 0.997. Another remarkable

feature observed in this table is the fact that when the sample size is small, there is a bias

toward positive values of �1 and �2, though increasing the sample size, the bias tends to

disappear.

(Tables 1 and 2 about here)

Table 2 reports rejection frequencies of the same statistic as in Table 1 but taking �

as a positive definite matrix of form: [(1, 1)’; (1, 2)’]. Thus, we can see if the test statistic is

robust to a different specification of the variance-covariance matrix of the differenced series.

We observe that the size is slightly greater than before, but again too small with respect to

the nominal one, though increasing with T. A bias for positive values of �1 and �2 is again

observed when the sample size is small. Comparing the results here with those in Table 1,

we see that in most of the cases, the rejection frequencies are now slightly greater, but in

general, the results are similar across both tables, suggesting that the test statistic is not

much affected by different specifications of the variance-covariance matrix �.

Tables 3 and 4 present the empirical sizes of the test based on the frequency domain.

Table 3 reports sizes of 2ˆ fS in (31) assuming first, in Table 3a, that � = I2 and then, � = [(1,

1)’; (1, 2)’] in Table 3b. As in the previous tables, we see that the sizes are very small when

T = 50, however, they considerably improve when we increase the number of observations.

When � � I2 the same conclusion holds, with empirical sizes smaller than nominal ones but

increasing with T. Comparing the empirical sizes in this table with those in Tables 1 and 2,

we see that they are very similar. If T = 50, the sizes are now slightly smaller than in the

time domain version, but when T = 100 or 200, they are slightly greater.



(Tables 3 and 4 about here)

Finally, Table 4 reports sizes of the test statistic 2~S  in (32), i.e., the frequency

domain version with weakly autocorrelated Ut. In Table 4a we assume that Ut follows a

VAR(1) representation, and we choose the parameterization
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where �t = (�1t, �2t)’ is normally distributed with mean zero and variance-covariance matrix

I2. In Table 4b we consider a VMA(1) structure on Ut, using the same parameters as in the

VAR(1) case. That is,
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and again �t being normally distributed with mean 0 and variance I2.

In both tables we see that the sizes are too large for all nominal sizes, especially

when T = 50, however, increasing T, these empirical sizes reduce and they tend to

approximate to the nominal values. Thus, for the VAR(1) case, we see that if the number of

observations is 200, the sizes are 10.4% for � = 10%;  6.0% for � = 5%;  3.1% for  � =

2.5%; and 1.2% for � = 1%. When the VMA(1) structure is considered, the empirical sizes

are now slightly greater than in the VAR case, but again we observe a considerable

improvement with T. Similar results were obtained when we used different parameters in

(35) and (36) and a different variance-covariance matrix for the residuals �t.

As a conclusion, we can summarise the results obtained across these tables by saying

that the score test statistics obtained in Sections 2 – 4 seem to be adequate to test the null

hypothesis of a random walk in this bivariate context. Though sizes are, in most of the cases,

smaller than nominal ones, the performance of the tests seems quite good even for small

departures from the null, especially if the number of observations is large. The FORTRAN



codes used to obtain the score statistics can be found in Gil-Alana (1997) and they are

available from the author upon request.

6. An empirical application

The data used in this section are US quarterly real per capita consumption on non-durables

and real per capita disposable income from 1947.1 to 1981.2. We use these data because

they have been widely employed in the literature to examine the cointegrating relationship

between consumption and income (see, e.g., Davidson et al., 1978; Hall, 1978; Engle and

Granger, 1987; etc.).

We start by specifying the model in a general form, which, in this bivariate set-up

may adopt the form:
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where Yt = (Y1t, Y2t)’ correspond to the original time series (consumption and income) and

the null hypothesis is given by (34).

We performed the score statistics in (30) – (32), depending basically on the choice

for the disturbance vector Ut and the inclusion or not of restrictions in the elements of the

matrix B above, and take values of d1 and d2 ranging from 0.6 to 1.4 with 0.1 increments.

The test statistic reported in Table 5 is the one corresponding to 2ˆ fS  in (31), i.e., the

frequency domain version of the test for white noise Ut.. We also performed the test in the

time domain and the results were very similar to those given in this table. We initially

impose that B = 0 a priori and the results are given in the upper part of Table 5. We see that

the only non-rejection value takes place when d1 = d2 = 0.9, and any departure from this case



strongly increases the value of the test statistic. Next, we consider the cases of B12 = B22 = 0

a priori, (with Zt � 1), i.e., including an intercept, and B unknown (i.e., with an intercept and

a linear time trend). Clearly, if d1 = d2 = 1, the model behaves, for t > 1, as a random walk

vector process if B12 = B22 = 0, and as a random walk with an intercept if B � 0. In both

cases, we observe that there are more non-rejection values compared with the previous case

and all them occur for values of d1 and d2 close to the unit root. In fact, Ho (34) is rejected

for all values of d1 and d2 smaller than 0.9 or higher than 1.1, implying that both individual

series may contain a unit root. However, the significance of these results may be in large

part due to the un-accounted for I(0) autocorrelation in Ut. Thus, we also performed the tests

imposing a VAR(1) structure on the disturbances and though the results are not reported

across the paper, the conclusions may be summarized as follows: if we do not include

regressors, Ho (34) is rejected for all values of d1 and d2, and including an intercept and/or a

linear trend, the unit root null hypothesis cannot be rejected along with some other (smaller)

values for both series. Thus, the results seem to be less nonstationary than in the previous

case, but this can be explained by the fact that the parameters in the VAR representation

have been obtained using the method of maximum likelihood throughout a quasi-Newton

algorithm, and in some cases these parameters can be close to nonstationary. In conclusion,

the results based on the multivariate tests support the view that both series contain unit roots

which is a preliminary condition if we want to test cointegration between both variables.

7. Conclusions

We have presented different versions of score tests for testing unit roots and other

fractionally integrated hypotheses in multivariate systems. They are a natural generalization

of the univariate tests of Robinson (1994). The test statistics are expressed in both the time



and the frequency domain, using white noise and weakly parametrically autocorrelated

disturbances.

Multivariate tests for unit roots have been widely analysed in the literature,

especially in the context of cointegration. The test statistics presented in this article do not

allow us to test cointegration, however, multivariate unit and fractional root systems appear

as particular cases of interest to be tested. In fact, there exists a considerable flexibility in the

choice of the null and the alternative hypotheses of the tests, which can entail one or more

integer or fractional roots of arbitrary order, for each equation, anywhere on the unit circle in

the complex plane. Thus, for example, we can test I(d) and/or quarterly or cyclic I(d)

systems of equations.

Results based on Monte Carlo simulations suggest that the test statistics seem to be

adequate to test the null of a random walk in a bivariate system. The performance of the tests

seem good even for small departures from the null, suggesting that the efficiency property of

Robinson’s (1994) tests also holds in this multivariate context. The tests were finally applied

to the US consumption and income series in order to examine the dynamic behaviour of the

series. The results based on the multivariate tests showed that both series may contain unit

roots though fractional degrees of integration were also plausible in some cases.

Estimating and testing fractional models in multivariate systems have been semi-

parametrically studied among others by Robinson (1995) and Lobato (1999). This article,

however, proposes a fully-parametric testing procedure, and given the lack of work in this

context, the multivariate tests presented in this paper may be applied to time series data.

Extensions of the tests, allowing for a non-diagonal matrix �(z; �) should prove relevant to

the analysis of fractional and non-fractional cointegration and work in this direction is now

in progress. 
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Appendix A:    Derivation of the score statistic tŜ

The negative of the log-likelihood under (2), (3), (6) and Gaussianity of Ut can be expressed,

apart from a constant as
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From (A1),  Lo can also be expressed as
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where Dm is the duplication matrix, and using the well known result that tr[ABCD] = (vec
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We next look at the second derivative matrix in (11), and first, we concentrate on the (p x p)

matrix �2 Lo / (� �  � �’). From the left-hand side in (A4)
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In order to form (11), we need to take the expectation of this last expression. (Note that it is

evaluated at � = 0, i.e. under the null (5)). This expectation is zero for the first summand,

given the uncorrelatedness in Ut and since it involves terms of the form Uu,t-m and Uv,t+s, for

m,s > 0. The expectation for the second summand is
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Finally, in order to complete the Hessian in (11), we still have to calculate some second

derivatives with respect to �� and �� . From (A5)
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Finally, we look at .
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We can get now consistent and efficient estimates of � and � by equating (A5) and (A8) to

zero; however, for practical purposes and in order to simplify the computations, we can take

any T1/2-consistent estimates of � and �. We will assume that �̂  is a consistent estimate of �
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from expressions (A9), (A10) and (A12), given that uv
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has zero expectation). 



Appendix B:   Derivation of the score statistic S~

For the derivation of the score test statistic in the context of weakly autocorrelated Ut, we

assume that k and K in (20) are parameterized separately, so ��  is taken to specify k and ��

to specify K. Thus, the spectral density matrix of );( �� �
tU  for any admissible �� and �� is
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jiejAk ���� ��  It is also assumed that A(0;�� ) = In (the n-rowed identity

matrix) for any�� in the Euclidean space Rq, and that );;( ��� ��f  is a finite, positive matrix

with eigenvalues bounded and bounded away from zero at any frequency on the

neighbourhood N* of � and M* of �. Also, we assume that each element of

);(ˆ),;(ˆ ���� �� uvff , as defined below (B4), must be continuous in (�, �� ) for �� � N* and have

first and second derivatives with respect to � continuous in (�, �� ) for ��  � N*.

Taking � = (�’; �’; �’; �’)’, the negative of the log-likelihood based on Gaussianity of Ut can

be expressed as
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��  and �� . However, given the computational difficulty of this expression, especially when n

and T are large, under suitable conditions, (B2) can be approximated by
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where );;( ��� �
rUI is the periodogram of );( �� �

tU evaluated at frequencies �r = 2�r/T and the

sum on * is as described in Section 2.

Calling �̂  any T1/2-consistent estimate of �, and �̂  as defined in Appendix A, we can
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where the expectation is taken under the null hypothesis (5) prior to substitution of �~ , where

�
~ can be any consistent estimate of � under (5).
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where  );(ˆ ��ruvI  is the (u,v)th element of ),;(ˆ ��rUI  and );(ˆ �� �r
uvf  is the (u,v)th element of
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and, under suitable conditions, (with m = 1,2,…,M < T-1, for sufficiently large M), this

expression becomes asymptotically:    � � ).ˆ;()()( )()( ������ rvurvru I�                (B7)
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which first two summands will be approximately zero, noting that
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This last expression can also be described by the derivatives of f̂  with respect to �� . Thus,

(B11) can be expressed as
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Substituting (B8), (B9), (B11) and (B13) in (B5), at ��
~

�� , we form (21). 

TABLE 1
Rejection frequencies of 2ˆ tS in (30) with � = I

True model: �1 = �2 = 0;                 �   =   5 %                   No. of replications: 5,000
Table 1a):                                              T  =  50
�1 / �2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 .999 .998 .981 .889 .744 .811 .947 .993 .999
-0.6 .997 .986 .918 .708 .462 .601 .879 .984 .998
-0.4 .980 .919 .726 .400 .181 .358 .778 .962 .996
-0.2 .888 .700 .394 .132 .039 .209 .660 .935 .990

0 .741 .457 .170 .037 .012 .147 .585 .910 .987
0.2 .805 .591 .350 .205 .137 .256 .646 .923 .989
0.4 .944 .873 .769 .659 .582 .648 .846 .968 .996
0.6 .993 .977 .959 .927 .904 .920 .967 .992 .998
0.8 1.000 .999 .996 .991 .987 .988 .997 .999 1.000

Table 1b):                                              T  =  100
�1 / �2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 .998 .989 .996 1.000 1.000 1.000
-0.4 1.000 1.000 .998 .958 .803 .925 .998 1.000 1.000
-0.2 1.000 .998 .958 .618 .221 .632 .976 1.000 1.000

0 1.000 .987 .798 .206 .020 .426 .945 .999 1.000
0.2 1.000 .996 .922 .637 .425 .693 .976 .999 1.000
0.4 1.000 1.000 .997 .975 .949 .975 .997 1.000 1.000
0.6 1.000 1.000 1.000 .999 .999 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table 1c):                                              T  =  200
�1 / �2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .997 .680 .966 1.000 1.000 1.000

0 1.000 1.000 .999 .671 .032 .793 .999 1.000 1.000
0.2 1.000 1.000 .999 .969 .808 .972 1.000 1.000 1.000
0.4 1.000 1.000 1.000 .999 .999 .999 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

In bold, the size of the tests. The nominal size is 0.05.

TABLE 2

Rejection frequencies of  2ˆ tS  in (30) with �
�
�

�
�
�
�

�
�� 21

11

True model: �1 = �2 = 0;                 �   =   5 %                   No. of replications: 5,000
Table 2a):                                              T  =  50
�1 / �2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 .999 .998 .990 .979 .986 .997 .999 1.000 1.000
-0.6 .997 .987 .932 .866 .921 .986 .998 .999 1.000
-0.4 .988 .930 .743 .503 .625 .920 .992 .999 1.000
-0.2 .975 .861 .500 .152 .144 .688 .964 .996 .999

0 .986 .913 .618 .149 .014 .327 .882 .987 .999
0.2 .996 .984 .916 .685 .340 .256 .766 .978 .997
0.4 .999 .998 .992 .960 .879 .764 .846 .976 .997
0.6 1.000 1.000 .999 .998 .991 .979 .977 .992 .999
0.8 1.000 1.000 .999 .999 .999 .999 .999 .999 1.000

Table 2b):                                              T  =  100
�1 / �2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 .999 .982 .993 1.000 1.000 1.000 1.000
-0.2 1.000 .999 .983 .630 .571 .989 1.000 1.000 1.000

0 1.000 1.000 .992 .594 .021 .750 .998 1.000 1.000
0.2 1.000 1.000 1.000 .985 .754 .689 .988 1.000 1.000
0.4 1.000 1.000 1.000 1.000 .999 .989 .997 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2c):                                              T  =  200



�1 / �2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.2 1.000 1.00 1.000 .979 .970 1.000 1.000 1.000 1.000

0 1.000 1.00 1.000 .968 .032 .979 1.000 1.000 1.000
0.2 1.000 1.00 1.000 1.000 .980 .972 1.000 1.000 1.000
0.4 1.000 1.00 1.000 .999 1.000 .999 1.000 1.000 1.000
0.6 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000

In bold, the size of the tests. The nominal size is 0.05.

TABLE 3

Table 3a:  Empirical sizes of 2ˆ fS in (31) with � = I2

True model: �1 = �2 = 0                                No. of replications: 5000
T  /  � 10% 5% 2.5% 1%

50 0.028 0.012 0.001 0.000
100 0.058 0.019 0.010 0.006
200 0.074 0.038 0.020 0.008

Table 3b:  Empirical sizes of 2ˆ fS in (31) with � = [(1, 1)’; (1, 2)’]

True model: �1 = �2 = 0                                No. of replications: 5000
T  /  � 10% 5% 2.5% 1%

50 0.036 0.012 0.002 0.000
100 0.057 0.021 0.008 0.005
200 0.066 0.035 0.017 0.006

TABLE 4

Table 4a:  Empirical sizes of 2~S in (32) with a VAR(1) structure on
True model: �1 = �2 = 0                                No. of replications: 5000

T  /  � 10% 5% 2.5% 1%
50 0.134 0.074 0.040 0.017
100 0.123 0.069 0.035 0.014



200 0.104 0.060 0.031 0.012
Table 4b:  Empirical sizes of 2~S in (32) with a VMA(1) structure on
True model: �1 = �2 = 0                                No. of replications: 5000

T  /  � 10% 5% 2.5% 1%
50 0.207 0.154 0.127 0.097
100 0.137 0.090 0.054 0.045
200 0.131 0.062 0.038 0.023

TABLE 5

Multivariate score tests in the frequency domain ( 2ˆ tS in (30)) with white noise Ut

Table 5a):                                              With no regressors
d1 / d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 122.55 172.91 215.06 221.57 212.69 198.34 182.67 167.51 153.64
0.7 104.72 33.79 111.52 157.70 166.76 160.97 150.09 138.00 126.94
0.8 184.68 61.22 7.02 72.15 112.35 122.14 119.24 111.84 103.25
0.9 217.32 143.00 40.55 3.84 49.58 80.36 89.56 88.83 84.32
1.0 217.96 168.65 104.29 26.61 7.64 38.33 60.21 68.05 68.64
1.1 206.37 167.29 124.77 72.11 18.89 13.15 33.84 48.84 55.11
1.2 190.92 156.84 124.29 89.42 49.42 16.82 18.77 32.97 43.16
1.3 175.06 143.98 116.71 90.87 64.12 36.09 18.60 23.98 33.90
1.4 160.21 131.23 107.28 86.50 67.29 48.12 30.03 22.35 28.64

Table 5b):                                              With an intercept
d1 / d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.6 157.37 95.36 120.74 157.40 179.09 188.52 191.90 192.86 193.02
0.7 203.96 68.94 37.29 53.74 72.31 83.64 89.71 92.96 94.82
0.8 247.10 88.92 16.75 8.94 17.74 26.10 31.92 35.89 38.69
0.9 270.05 112.12 23.24 0.85 2.11 6.99 11.33 14.81 17.60
1.0 278.38 126.19 33.18 4.30 1.70 4.59 7.85 10.75 13.25
1.1 279.82 132.92 40.49 9.32 4.98 6.96 9.71 12.29 14.59
1.2 279.00 135.81 45.22 13.64 8.60 10.19 12.75 15.20 17.42
1.3 277.89 137.00 48.29 17.05 11.81 13.27 15.77 18.22 20.43
1.4 277.11 137.53 50.38 19.73 14.53 15.97 18.48 20.96 23.21

Table 5c):                                              With a linear time trend
d1 / d2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4



0.6 69.22 39.25 44.85 59.61 72.38 80.83 85.72 88.27 89.49
0.7 80.97 27.07 14.93 20.92 30.72 39.06 44.96 48.79 51.18
0.8 95.91 31.25 6.44 3.75 8.92 15.27 20.64 24.67 27.54
0.9 106.91 40.06 8.77 0.23 1.55 5.72 10.01 13.62 16.44
1.0 113.30 48.03 14.46 2.80 1.70 4.32 7.69 10.80 13.39
1.1 116.36 53.75 20.08 7.11 4.73 6.45 9.26 12.03 14.43
1.2 117.48 57.43 24.56 11.30 8.37 9.65 12.18 14.80 17.12
1.3 117.76 59.67 27.85 14.79 11.72 12.83 15.26 17.85 20.17
1.4 117.54 61.04 30.21 17.55 14.54 15.62 18.04 20.66 23.04

In bold, the non-rejection values of the null hypothesis (34) at the 95% significance level. 


