Nuestros investigadores

Francisco Javier Beaumont Ezcurra

Departamento

Publicaciones científicas más recientes (desde 2010)

Autores: Moreno Zulategui, María de Ujué; Eiros Bachiller, María del Rocío; Gavira Gómez, Juan José; et al.
Revista: MEDICAL CLINICS OF NORTH AMERICA
ISSN 0025-7125  Vol. 101  Nº 1  2017  págs. 43-52
The chronic hemodynamic load imposed by hypertension on the left ventricle leads to lesions in the myocardium that result in structural remodeling, which provides support for alterations in cardiac function, perfusion, and electrical activity that adversely influence the clinical evolution of hypertensive heart disease. Management must include detecting, reducing, and reversing left ventricular hypertrophy, as well as the detection and repair of microscopic lesions responsible for myocardial remodeling. Reducing the burden associated with hypertensive heart disease can be targeted using personalized treatment. The noninvasive, biomarker-mediated identification of subsets of patients with hypertensive heart disease is essential to provide personalized treatment.
Autores: Beaumont Ezcurra, Francisco Javier; López Salazar, María Begoña; Ravassa Albéniz, Susana; et al.
Revista: SCIENTIFIC REPORTS
ISSN 2045-2322  Vol. 7  2017  págs. 40696
This study analyzed the potential associations of 7 myocardial fibrosis-related microRNAs with the quality of the collagen network (e.g., the degree of collagen fibril cross-linking or CCL) and the enzyme lysyl oxidase (LOX) responsible for CCL in 28 patients with severe aortic stenosis (AS) of whom 46% had a diagnosis of chronic heart failure (HF). MicroRNA expression was analyzed in myocardial and blood samples. From the studied microRNAs only miR-19b presented a direct correlation (p < 0.05) between serum and myocardium. Compared to controls both myocardial and serum miR-19b were reduced (p < 0.01) in AS patients. In addition, miR-19b was reduced in the myocardium (p < 0.01) and serum (p < 0.05) of patients with HF compared to patients without HF. Myocardial and serum miR-19b were inversely correlated (p < 0.05) with LOX, CCL and LV stiffness in AS patients. In in vitro studies miR-19b inhibition increased (p < 0.05) connective tissue growth factor protein and LOX protein expression in human fibroblasts. In conclusion, decreased miR-19b may be involved in myocardial LOX up-regulation and excessive CCL, and consequently increased LV stiffness in AS patients, namely in those with HF. Serum miR-19b can be a biomarker of these alterations of the myocardial collagen network in AS patients, particularly in patients with HF.
Autores: Ravassa Albéniz, Susana; López Salazar, María Begoña; Querejeta, R., ; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 1473-5598  Vol. 35  Nº 4  2017  págs. 853 - 861
OBJECTIVE: Myocardial fibrosis is associated with alterations in the cross-linking and deposition of collagen type I (CCL and CD, respectively). We aimed to evaluate whether the combination of circulating biomarkers of CCL [the carboxy-terminal telopeptide of collagen type I to matrix metalloproteinase-1 ratio (CITP¿:¿MMP-1)] and CD [the carboxy-terminal propeptide of procollagen type I (PICP)] identifies myocardial fibrosis phenotypes with distinct clinical outcome in hypertensive patients with heart failure. METHODS: Endomyocardial biopsies and blood samples from 38 patients (small cohort), and blood samples from 203 patients (large cohort) were analyzed. Myocardial CCL and CD were assessed by histological methods. Serum PICP, CITP, and MMP-1 were determined by ELISA. RESULTS: Small cohort: CITP¿:¿MMP-1 cutoff 1.968 or less and PICP cutoff at least 110.8¿ng/ml were used for predicting high CCL and severe CD, respectively. Large cohort: as defined by the above thresholds, patients were categorized into four subgroups based on the presence (+) or absence (-) of high CCL and severe CD. Compared with CCL-CD-, the adjusted hazard ratios for a composite end point of heart failure hospitalization or cardiovascular death over 5 years in CCL-CD+, CCL+CD-, and CCL+CD+ were 1.11 (P¿=¿0.79), 1.99 (P¿=¿0.07), and 2.18 (P¿=¿0.04), respectively (P for trend¿=¿0.005). In addition, the categorization based on CCL and CD yielded integrated discrimination (P¿=¿0.03) and net reclassification..
Autores: Beaumont Ezcurra, Francisco Javier; San José Enériz, Gorka; Moreno Zulategui, María de Ujué; et al.
Revista: SCIENTIFIC REPORTS
ISSN 2045-2322  Vol. 7  2017  págs. 41865
Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-beta(1)-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts.
Autores: González Miqueo, Aránzazu; Brugnolaro, Cristina; López Salazar, María Begoña; et al.
Revista: EUROPEAN JOURNAL OF HEART FAILURE
ISSN 1388-9842  Vol. 19  Nº Supl. 1  2017  págs. 9 - 10
Autores: López Salazar, María Begoña; Ravassa Albéniz, Susana; González Miqueo, Aránzazu; et al.
Revista: JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
ISSN 0735-1097  Vol. 67  Nº 3  2016  págs. 251 - 260
BACKGROUND: Excessive myocardial collagen cross-linking (CCL) determines myocardial collagen's resistance to degradation by matrix metalloproteinase (MMP)-1 and interstitial accumulation of collagen fibers with impairment of cardiac function. OBJECTIVES: This study sought to investigate whether CCL and a newly identified biomarker of this alteration are associated with hospitalization for heart failure (HHF) or cardiovascular death in patients with HF and arterial hypertension in whom other comorbidities were excluded. METHODS: Endomyocardial biopsies and blood samples from 38 patients (invasive study), and blood samples from 203 patients (noninvasive study) were analyzed. Mean follow-ups were 7.74 ± 0.58 years and 4.72 ± 0.11 years, respectively. Myocardial CCL was calculated as the ratio between insoluble and soluble collagen. The ratio between the C-terminal telopeptide of collagen type I (CITP) and matrix metalloproteinase-1 (CITP:MMP-1) was determined in blood samples. RESULTS: Invasive study: CCL was increased (p < 0.001) in patients compared with controls. Patients were categorized according to normal or high CCL values. Patients with high CCL exhibited higher risk for subsequent HHF (log-rank test p = 0.022), but not for cardiovascular death. CITP:MMP-1 was inversely associated with CCL (r = -0.460; p = 0.005) in all patients. Receiver operating characteristic curves rendered a CITP:MMP-1 cutoff ¿1.968 (80% sensitivity and 76% specificity) for predicting high CCL. Noninvasive study: Patients were categorized according to CITP:MMP-1 ratio values as normal ratio (>1.968) or low ratio (¿1.968). Patients with a low ratio exhibited higher risk for HHF (log-rank test p = 0.014), which remained significant after adjustment for relevant covariables (adjusted hazard ratio: 2.22; 95% CI: 1.37 to 3.59, p = 0.001). In addition, CITP:MMP-1-based categorization yielded significant integrated discrimination and net reclassification improvements (p = 0.003 and p = 0.009, respectively) for HHF over relevant risk factors. CITP:MMP-1 was not associated with the risk of cardiovascular death. CONCLUSIONS: Excessive myocardial CCL is associated with HHF in hypertensive patients with HF. In this population, the serum CITP:MMP-1 ratio identifies patients with increased CCL and high risk of HHF.
Autores: Gallego Garrido, Idoia; Beaumont Ezcurra, Francisco Javier; López Salazar, María Begoña; et al.
Revista: CLINICAL SCIENCE
ISSN 0143-5221  Vol. 130  Nº 23  2016  págs. 2139 - 2149
MicroRNAs have been associated with cardiomyocyte apoptosis, a process involved in myocardial remodelling in aortic valve (Av) stenosis (AS). Our aim was to analyse whether the dysregulation of myocardial microRNAs was related to cardiomyocyte apoptosis in AS patients. Endomyocardial biopsies were obtained from 28 patients with severe AS (based on pressure gradients and Av area) referred for Av replacement and from necropsies of 10 cardiovascular disease-free control subjects. AS patients showed an increased (P<0.001) cardiomyocyte apoptotic index (CMAI) compared with controls. Two clusters of patients were identified according to the CMAI: group 1 (CMAI ¿ 0.08%; n=16) and group 2 (CMAI > 0.08%; n=12). Group 2 patients presented lower cardiomyocyte density (P<0.001) and ejection fraction (P<0.05), and higher troponin T levels (P<0.05), prevalence of heart failure (HF; P<0.05) and NT-proBNP levels (P<0.05) than those from group 1. miRNA expression profile analysed in 5 patients randomly selected from each group showed 64 microRNAs down-regulated and 6 up-regulated (P<0.05) in group 2 compared with group 1. Those microRNAs with the highest fold-change were validated in the full two groups corroborating that miR-10b, miR-125b-2* and miR-338-3p were down-regulated (P<0.05) in group 2 compared with group 1 and control subjects. These three microRNAs were inversely correlated (P<0.05) with the CMAI. Inhibition of miR-10b induced an increase (P<0.05) of apoptosis and increased expression (P<0.05) of apoptosis protease-activating factor-1 (Apaf-1) in HL-1 cardiomyocytes. In conclusion, myocardial down-regulation of miR-10b may be involved in increased cardiomyocyte apoptosis in AS patients, probably through Apaf-1 up-regulation, contributing to cardiomyocyte damage and to the development of HF.
Autores: López Salazar, María Begoña; González Miqueo, Aránzazu; Ravassa Albéniz, Susana; et al.
Revista: JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
ISSN 0735-1097  Vol. 65  Nº 22  2015  págs. 2449 - 2456
Myocardial fibrosis impairs cardiac function, in addition to facilitating arrhythmias and ischemia, and thus influences the evolution and outcome of cardiac diseases. Its assessment is therefore clinically relevant. Although tissue biopsy is the gold standard for the diagnosis of myocardial fibrosis, a number of circulating biomarkers have been proposed for the noninvasive assessment of this lesion. A review of the published clinical data available on these biomarkers shows that most of them lack proof that they actually reflect the myocardial accumulation of fibrous tissue. In this "call to action" article, we propose that this absence of proof may lead to misinterpretations when considering the incremental value provided by the biomarkers with respect to traditional diagnostic tools in the clinical handling of patients. We thus argue that strategies are needed to more strictly validate whether a given circulating biomarker actually reflects histologically proven myocardial fibrosis before it is applied clinically.
Autores: Ravassa Albéniz, Susana; Beaumont Ezcurra, Francisco Javier; Huerta González, Ana; et al.
Revista: FREE RADICAL BIOLOGY AND MEDICINE
ISSN 0891-5849  Vol. 81  2015  págs. 1 - 12
Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM.
Autores: García, R. , ; Nistal, J. F. , ; Merino, D. , ; et al.
Revista: BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE
ISSN 0925-4439  Vol. 1852  Nº 7  2015  págs. 1520 - 1530
Transforming growth factor-ß (TGF-ß) induces miR-21 expression which contributes to fibrotic events in the left ventricle (LV) under pressure overload. SMAD effectors of TGF-ß signaling interact with DROSHA to promote primary miR-21 processing into precursor miR-21 (pre-miR-21). We hypothesize that p-SMAD-2 and -3 also interact with DICER1 to regulate the processing of pre-miR-21 to mature miR-21 in cardiac fibroblasts under experimental and clinical pressure overload. The subjects of the study were mice undergoing transverse aortic constriction (TAC) and patients with aortic stenosis (AS). In vitro, NIH-3T3 fibroblasts transfected with pre-miR-21 responded to TGF-ß1 stimulation by overexpressing miR-21. Overexpression and silencing of SMAD2/3 resulted in higher and lower production of mature miR-21, respectively. DICER1 co-precipitated along with SMAD2/3 and both proteins were up-regulated in the LV from TAC-mice. Pre-miR-21 was isolated bound to the DICER1 maturation complex. Immunofluorescence analysis revealed co-localization of p-SMAD2/3 and DICER1 in NIH-3T3 and mouse cardiac fibroblasts. DICER1-p-SMAD2/3 protein-protein interaction was confirmed by in situ proximity ligation assay. Myocardial up-regulation of DICER1 constituted a response to pressure overload in TAC-mice. DICER mRNA levels correlated directly with those of TGF-ß1, SMAD2 and SMAD3. In the LV from AS patients, DICER mRNA was up-regulated and its transcript levels correlated directly with TGF-ß1, SMAD2, and SMAD3. Our results support that p-SMAD2/3 interacts with DICER1 to promote pre-miR-21 processing to mature miR-21. This new TGFß-dependent regulatory mechanism is involved in miR-21 overexpression in cultured fibroblasts, and in the pressure overloaded LV of mice and human patients.
Autores: Beaumont Ezcurra, Francisco Javier; López Salazar, María Begoña; Hermida Blanco, Nerea; et al.
Revista: CLINICAL SCIENCE
ISSN 0143-5221  Vol. 126  Nº 7  2014  págs. 497 - 506
miRNAs (microRNAs) have been shown to play a role in myocardial fibrosis. The present study was designed to analyse whether alterations in miRNA expression contribute to the progression of myocardial fibrosis in AS (aortic valve stenosis) patients through up-regulation of the pro-fibrotic factor TGF-ß1 (transforming growth factor-ß type 1). Endomyocardial biopsies were obtained from 28 patients with severe AS, and from the necropsies of 10 control subjects. AS patients presented increased myocardial CVF (collagen volume fraction) and TGF-ß1 compared with the controls, these parameters being correlated in all patients. Patients were divided into two groups by cluster analysis according to their CVF: SF (severe fibrosis; CVF >15%; n=15) and non-SF (CVF ¿15%; n=13). TGF-ß1 was increased in patients with SF compared with those with non-SF. To analyse the involvement of miRNAs in SF, the miRNA expression profile of 10 patients (four with non-SF and six with SF) was analysed showing that 99 miRNAs were down-regulated and 19 up-regulated in the SF patients compared with the non-SF patients. Those miRNAs potentially targeting TGF-ß1 were validated by real-time RT (reverse transcription)-PCR in the whole test population, corroborating that miR-122 and miR-18b were down-regulated in patients with SF compared with those with non-SF and the control subjects. Additionally, miR-122 was inversely correlated with the CVF, TGF-ß1 and the TGF-ß1-regulated PCPE-1 (procollagen C-terminal proteinase enhancer-1) in all patients. Experiments in human fibroblasts demonstrated that miR-122 targets and inhibits TGF-ß1. In conclusion, for the first time we show that myocardial down-regulation of miR-122 might be involved in myocardial fibrosis in AS patients, probably through TGF-ß1 up-regulation.
Autores: Ravassa Albéniz, Susana; Beloqui Ruiz, Óscar María; Varo Cenarruzabeitia, Miren Nerea; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 0263-6352  Vol. 31  Nº 3  2013  págs. 587 - 594
Objectives: Cardiotrophin-1 (CT-1) induces hypertrophic growth and contractile dysfunction in cardiomyocytes. This cross-sectional study was aimed to analyze CT-1 associations with echocardiographically assessed left ventricular systolic properties taking into account the influence of left ventricular growth [i.e. left ventricular hypertrophy (LVH) and inappropriate left ventricular mass (iLVM)] in asymptomatic hypertensive patients. Methods: Serum CT-1 was measured by ELISA in 278 asymptomatic hypertensive patients with a left ventricular ejection fraction more than 50% and in 25 age and sex-matched normotensive patients. Results: Serum CT-1 was increased in hypertensive patients as compared to normotensive patients. CT-1 was directly correlated with parameters of left ventricular mass (LVM) and inversely correlated with parameters assessing myocardial systolic function and left ventricular chamber contractility in hypertensive patients, these associations being independent of a number of potential confounding factors. Interestingly, the associations of CT-1 with myocardial systolic function were independent of LVM even in patients with LVH or iLVM. In addition, there was a significant increment of serum CT-1 in hypertensive patients with LVH or iLVM, especially in those in whom LVH or iLVM were accompanied by impaired myocardial systolic function, as compared to the remaining hypertensive patients and normotensive patients. Plasma amino-terminal pro-brain natriuretic peptide was not correlated with any of the assessed left ventricular systolic parameters in either group of patients. Conclusion: These findings suggest that serum CT-1 is associated with myocardial systolic dysfunction in asymptomatic hypertensive patients, independently of LVM, even in those patients with pathologic left ventricular growth.
Autores: López Salazar, María Begoña; González Miqueo, Aránzazu; Lindner, D., ; et al.
Revista: CARDIOVASCULAR RESEARCH
ISSN 0008-6363  Vol. 99  Nº 1  2013  págs. 111 - 120
We investigated whether the pro-fibrotic matricellular protein osteopontin (OPN) is associated with the enzymes involved in the extracellular synthesis of fibril-forming collagen type I (i.e. procollagen C-proteinase, PCP) and its cross-linking to form insoluble fibrils (i.e. lysyl oxidase, LOX) in heart failure (HF) of hypertensive origin. OPN, PCP, and LOX were assessed by histochemical and molecular methods in the myocardium of 21 patients with hypertensive heart disease (HHD) and HF. Whereas the myocardial expression of OPN was very scarce in control hearts (n 10), it was highly expressed in HF patients (P 0.0001). OPN was directly correlated with LOX (r 0.460, P 0.041), insoluble collagen (r 0.534, P 0.015), pulmonary capillary wedge pressure (r 0.558; P 0.009), and left-ventricular (LV) chamber stiffness (r 0.458, P 0.037), and inversely correlated with LV ejection fraction (r 0.513, P 0.017) in all patients. OPN did not correlate with PCP and other parameters assessing collagen synthesis by fibroblasts or degradation by matrix metalloproteinases. In vitro studies showed that OPN significantly (P 0.05) increases the expression and activity of LOX in human cardiac and dermal fibroblasts. An excess of OPN is associated with increased LOX and insoluble collagen, as well as with LV stiffness and systolic dysfunction in patients with HHD and HF. In addition, OPN up-regulates LOX in human fibroblasts. It is suggested that the OPNLOX axis might facilitate the formation of insoluble collagen (i.e. stiff and resistant to degradation) and the subsequent alteration in LV mechanical properties and function in patients with HHD and HF.
Autores: González Miqueo, Aránzazu; López Salazar, María Begoña; Ravassa Albéniz, Susana; et al.
Revista: ENDOCRINE
ISSN 1355-008X  Vol. 42  Nº 1  2012  págs. 9 - 17
Hypertensive heart disease, here defined by the presence of pathologic left ventricular hypertrophy in the absence of a cause other than arterial hypertension, is characterized by complex changes in myocardial structure including enhanced cardiomyocyte growth and non-cardiomyocyte alterations that induce the remodeling of the myocardium, and ultimately, deteriorate left ventricular function and facilitate the development of heart failure. It is now accepted that a number of pathological processes mediated by mechanical, neurohormonal, and cytokine routes acting on the cardiomyocyte and the non-cardiomyocyte compartments are responsible for myocardial remodeling in the context of arterial hypertension. For instance, cardiotrophin-1 is a cytokine member of the interleukin-6 superfamily, produced by cardiomyocytes and non-cardiomyocytes in situations of biomechanical stress that once secreted interacts with its receptor, the heterodimer formed by gp130 and gp90 (also known as leukemia inhibitory factor receptor beta), activating different signaling pathways leading to cardiomyocyte hypertrophy, as well as myocardial fibrosis. Beyond its potential mechanistic contribution to the development of hypertensive heart disease, cardiotrophin-1 offers the opportunity for a new translational approach to this condition. In fact, recent evidence suggests that cardiotrophin-1 may serve as both a biomarker of left ventricular hypertrophy and dysfunction in hypertensive patients, and a potential target for therapies aimed to prevent and treat hypertensive heart disease beyond blood pressure control.
Autores: Beaumont Ezcurra, Francisco Javier; González Miqueo, Aránzazu; López Salazar, María Begoña; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 0263-6352  Vol. 30  Nº 1  2012  págs. 34 - 37
Autores: González Miqueo, Aránzazu; Ravassa Albéniz, Susana; Beaumont Ezcurra, Francisco Javier; et al.
Revista: JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
ISSN 0735-1097  Vol. 58  Nº 18  2011  págs. 1833 - 1843
Classical therapy of heart failure is based on treatment of its pre-disposing/triggering factors and of the neurohumoral activation secondary to the deterioration of cardiac function. A new view is emerging that proposes the direct intervention on the pathological structural remodeling of the myocardium as part of heart failure therapy. In fact, in conditions of chronic injury, the cardiomyocytic and the noncardiomyocytic components of the myocardium undergo a series of structural lesions (i.e., cardiomyocyte growth and death, inflammation, alterations of collagen matrix, and microvascular rarefaction) that are governed by a complex interplay of mechanisms. Our increasing knowledge of the role of these mechanisms in remodeling enables us not only to better understand how our more successful therapies work but also to explore novel therapies for the future. In this paper, we will examine recent insights from experimental and pilot clinical studies that have provided new targets for interventions to prevent or reverse inflammation, alterations of collagen matrix, and cardiomyocyte death.
Autores: Díez Martínez, Domingo Francisco Javier; López Salazar, María Begoña; Beaumont Ezcurra, Francisco Javier; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 0263-6352  Vol. 29  Nº 4  2011  págs. 660 - 662
Autores: Arias Guedón, Teresa Victoria; Beaumont Ezcurra, Francisco Javier; López Salazar, María Begoña; et al.
Revista: JOURNAL OF HYPERTENSION
ISSN 0263-6352  Vol. 29  Nº 5  2011  págs. 876 - 883
Objective: To analyze whether genetic variants of PPARA are associated with the development of stage C heart failure. Methods: We analyzed the distribution of the rs1800206, rs4253778 and rs135551 polymorphisms in genomic DNA extracted from peripheral blood cells of 534 patients in different heart failure stages and 63 healthy individuals. The mRNA expression of the peroxisome proliferator-activated receptor (PPAR)¿ target genes long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and medium-chain acyl-CoA dehydrogenase (MCAD) was measured in myocardial biopsies of a subgroup of stage B and C patients. Functional studies were performed in HL-1 cardiomyocytes. Results: The V162 allele of the rs1800206 polymorphism was more frequent in stage C patients than in stage A and B patients and healthy individuals. Patients with the V162 allele exhibited decreased myocardial LCHAD and MCAD mRNA expression as compared to L162 homozygote patients. In addition, stage C patients exhibited lower myocardial LCHAD and MCAD mRNA expression than stage B patients. Cardiomyocytes transfected with the V162 allele presented decreased PPAR¿ transcriptional activity, LCHAD mRNA expression and ATP production compared to cardiomyocytes transfected with the L162 variant. Conclusions: These findings suggest that the V162 allele of the human PPARA gene can be a new risk factor in the development of stage C heart failure, likely via depressed cardiac PPARalfa activity.
Autores: Robador Llorente, Pablo Alejandro; San José Enériz, Gorka; Rodríguez, C., ; et al.
Revista: CARDIOVASCULAR RESEARCH
ISSN 0008-6363  Vol. 92  Nº 2  2011  págs. 247 - 255
Aims Cardiotrophin-1 (CT-1) is a cytokine of the interleukin-6 superfamily which is up-regulated in cardiac diseases, in part via hypoxia-dependent mechanisms. However, no evidence for a direct regulation of CT-1 gene (CTF1) promoter by hypoxia inducible factor-1 (HIF-1) has been provided. Methods and results Hypoxia increased CT-1 mRNA levels in the murine adult cardiomyocyte cell line HL-1 in a time-dependent manner. Interestingly, in a murine model (C57BL/6), we show that systemic hypoxia also significantly up-regulated CT-1 in myocardial tissue. The effect of hypoxia on CT-1 expression was mediated through a transcriptional mechanism, since hypoxia increased luciferase activity of constructs containing CTF1 promoter sequences. The increase in CT-1 levels was significantly reduced by drugs that prevent calcium mobilization, such as lercanidipine, or that inhibit the activation of the PI3K/Akt pathway (wortmannin) or mammalian target of rapamycin (rapamycin). The CT-1 elevation was similarly induced by HIF-1 alpha over-expression in co-transfection experiments and prevented by HIF-1 alpha silencing. The direct interaction of HIF-1 alpha with the CTF1 promoter was confirmed through site-directed mutagenesis of hypoxia response elements, electrophoreric mobility shift, and ChIP assays. Hypoxia induced HL-1 apoptosis (measured as annexin-V binding or caspase 3/7 activity) which was increased when CT-1 was silenced in knocked-down cells by lentiviral vectors. Conclusion Hypoxia increased CT-1 levels in cardiac cells (in vitro and in vivo) through a direct regulation of CTF1 promoter by HIF-1 alpha. This CT-1 activation by hypoxia may protect cells from apoptosis, thus supporting a protective role for CT-1 as a survival factor for cardiomyocytes.
Autores: Ravassa Albéniz, Susana; García Bolao, José Ignacio; Zudaire Goldaracena, Amaia; et al.
Revista: CARDIOVASCULAR RESEARCH
ISSN 0008-6363  Vol. 88  Nº 2  2010  págs. 304 - 313