
PHYSICAL REVIEW E 102, 012907 (2020)

Pedestrian evacuation simulation in the presence of an obstacle using self-propelled spherocylinders
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We explore the role that the obstacle position plays in the evacuation time of agents when leaving a room.
To this end, we simulate a system of nonsymmetric spherocylinders that have a prescribed desired velocity
and angular orientation. In this way, we reproduce the nonmonotonous dependence of the pedestrian flow rate
on the obstacle distance to the door. For short distances, the obstacle delays the evacuation because the exit
size is effectively reduced; i.e., the distance between the obstacle and the wall is smaller than the door width.
By increasing the obstacle distance to the door, clogging is reduced leading to an optimal obstacle position
(maximum flow rate) in agreement with results reported in numerical simulations of pedestrian evacuations and
granular flows. For further locations, however, a counterintuitive behavior occurs as the flow rate values fall again
below the one corresponding to the case without obstacle. Analyzing the head-times distribution, we evidence
that this new feature is not linked to the formation of clogs, but is caused by a reduction of the efficiency of the
agent’s instantaneous flow rate when the exit is not blocked.

DOI: 10.1103/PhysRevE.102.012907

I. INTRODUCTION

The study of crowd evacuations in risky situations is a
relevant task with a potential impact on society. Indeed, better
knowledge of human collective behavior in these extreme
circumstances should constitute the foundation of our efforts
to build safer infrastructures and prevent a repeat of past
tragedies [1–3]. The theoretical investigation of this topic
started with the pioneering work of Helbing et al. [4], who
performed simulations of evacuations in which the pedestrians
were modeled as circular particles. Specifically, the pedestrian
flow rate J was analyzed in enclosures with different geome-
tries. Among all the parameters of the model investigated,
the most important turned out to be the pedestrians’ desired
velocity, which in a congested scenario corresponds to the
force that pedestrians eject on the people in front. In the
bottleneck geometry, the variation of this parameter gave rise
to the so called faster-is-slower (FIS) effect, which explains
why adopting a more competitive behavior in a crowd can
produce a delay in the global evacuation time. In addition,
in that work it was also proposed that if an obstacle is
placed on the upstream side of the exit, the flow rate can be
enhanced because it would alleviate the pressure at the door
and consequently reduce the development of clogging events.

Since that first numerical approach to pedestrian dynamics,
many other models have been developed (see [5] for a recent
review). Among them, the most widely used are cellular
automata, lattice-gas, discrete element, and fluid dynamics
models. In general, the outcomes reported are positive about
Helbing’s suggestions. Most of them reproduce the FIS phe-
nomenon [6–8], and they agree that locating an obstacle in
front of the door may improve the evacuation times [7,9–11].
Escobar and De La Rosa [12] studied the effect of different
architectural configurations (including the obstacle) on the
flow rate in an evacuation process using the social force
model. Their findings evidenced that the obstacle caused an

overall reduction in particle velocities and an improvement in
the outflow. However, the positive results were limited as they
depended on the number of particles used: with more than 100
pedestrians, the obstacle ceased to be efficient. Kirchner et al.
[13] also evidenced the convenience of placing an obstacle
in evacuations, but the approach was different as they used a
cellular automata model in which the role of friction between
pedestrians was proven to be crucial. Furthermore, Hughes
[9] discusses the suitability of placing barriers for flow im-
provement from a macroscopic point of view. In addition,
other aspects related to the obstacle are studied, such as its
shape [14], its position with respect to the exit [7,15], or
its distribution [16,17]. In all of them (see [18] for a recent
review) it is concluded that the presence of the obstacle does
not always lead to an evacuation improvement.

In parallel to the development of numerical models, several
experiments with human participants have been implemented
to investigate room evacuation [19–22]. Among them, some
authors have tested the possible beneficial role of the obstacle.
In [10] a small group of participants was asked to exit through
an 82 cm door with a 42 cm cabinet placed in front. The results
reported a 30% improvement in the flow over the no-obstacle
case. Yanagisawa et al. [23] also reported beneficial effects
of placing a 20 cm column in front of a 50 cm door (a 7%
improvement in the flow rate). After that, Liu et al. [24] and
Shi et al. [25] conducted a series of controlled experiments in
which different architectural settings for the obstacle and the
exit were examined. In both cases, it was found that locating
the exit door in a corner (instead of in the wall center) was an
optimal strategy for increasing the flow rate; however, using
an obstacle could be inefficient as it can increase the egress
time.

Importantly, it should be remarked that the evacuating
conditions in these experimental drills were only weakly
competitive, in the sense that pushing each other was not
allowed and contacts were only occasional. More recently,
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Garcimartín et al. [26,27] have moved forward and performed
controlled experiments in which participants were allowed
to push moderately and the emerging pressure in the crowd
was important. They tested different evacuating conditions
implementing several kinds of obstacles and positions. Unex-
pectedly, no improvement was seen in the evacuation times,
challenging the current paradigm that placing an obstacle
before the exit can be beneficial for crowd evacuation.

Finally, let us note that some other experiments about the
role of an obstacle in bottleneck flows have been carried out
with animals such as ants [28], sheep [29], and mice [30].
Generally speaking, these works concluded that the obstacle
could be beneficial on certain occasions but its position has to
be carefully chosen. Importantly, it should be remarked that
although these animal analogies can be inspiring and useful
to understand some generic features of pedestrian bottleneck
flow, it is important to avoid setting direct comparisons with
human behavior.

Given all this, it is not surprising that understanding the
actual role of the obstacle in a room evacuation is one of the
most controversial topics in the field of pedestrian dynamics
[31]. In this respect, it is reasonable to make two observations.
The first observation is that one should not assume an obstacle
is always beneficial for crowd evacuation [18]. The second
concerns the limitations of Helbing’s model in reproducing
human behavior under highly competitive conditions. An
additional purely geometric degree of complexity emerges
in a real system when the agents are asymmetric. Indeed,
body orientation has recently attracted the attention of the
pedestrian dynamics community [32–34], and it seems that in
very dense conditions the shape of the agents could become
even more determinant [35]. Therefore, our work tries to fill
this gap, implementing a model with noncircular pedestrians
to explore the evacuation process in the presence of an obsta-
cle. Note that taking into account the rotational motion of a
nonspherical body not only gives a better description of the
problem, but it also opens the possibility of analyzing the
effect of new variables that would not exist if we worked with
circular particles. One such variable is the pedestrian desired
body orientation with respect to the displacement direction,
a parameter that was introduced in [36,37] and will also be
investigated in this paper.

Our model simulates a set of spherocylindrical bodies flow-
ing through a bottleneck in different competitive conditions,
some of which lead to high densities and contact forces among
the particles. In our study, we evaluate the effectiveness of
placing an obstacle in front of the door by measuring the flow
rate and the distributions of time lapses between consecutive
outgoing pedestrians, also know as head-times. Fixing the
door and obstacle sizes, we carry out a systematic study,
exploring the effect of three parameters of our model: the
desired speed of the particles, the distance from the obstacle
to the door, and the rotational strength (that determines the
force with which each pedestrian tries to keep its desired
orientation).

Our work is organized as follows: Section II exposes
the numerical model and the explored situations. Section III
describes the outcomes and their discussion for each set of
parameters. Finally, we present the main conclusions of this
work and suggest different future lines of research.

II. NUMERICAL SIMULATION

A. The model

The numerical model used in this work is based on discrete
element method modeling, and it was already introduced in
[36]. Here, we will summarize its main features and carefully
describe an important modification that has been incorporated
in the bodies’ noise in order to make them more realistic.
As in previous works, the bodies’ shape is approximated by
a spherocylinder, so they can be characterized by their short
and long axis. Here, the values taken for these variables are
distributed in the range of 0.35–0.5 m for the long axis and
0.24–0.33 m for the short axis. The mass of each body is
distributed as a truncated normal distribution in the range
45–114 kg. The choice of these numbers is based on the actual
size and weight of the people that performed the evacuation
drills reported in [38].

In our approach, the particle motion is driven by a self-
propulsion mechanism, while a granular-type force accounts
for the local particle-particle interactions. The self-propulsion
force can be thought of as an energy input provided by each
individual particle, and it reads

−→
FDi = mi

(−→vi − −→
Vd )

τ
, (1)

where −→vi and
−→
Vd = Vd · êi are the velocity of the particle and

the desired velocity, respectively. The direction of the vector
êi fixes the desired direction to the target place, which is
defined as the closest point of the door. In practice, the target
is generally chosen as a segment located at the exit line, the
length of which is slightly shorter (16%) than the door size.
Finally, τ is a characteristic time interpreted as the time that
the pedestrian would take to reach the speed Vd in the case of
free movement (no interaction with other bodies). Its value is
set to τ = 0.5 s, as is commonly used in the literature [4,10].

In addition, the contact force
−→
FGi has two terms,

−→
FGi =

Nc∑

j

−→
Fi j + −→

Fwi, (2)

where
−→
Fwi is the interaction between the particle and the

walls, and the sum accounts for all the forces
−→
Fi j between

particle i and its Nc contacting neighbors.
Importantly, the action of each interparticle force

−→
Fi j

produces a torque −→ri j × −→
Fi j on the particle. Thus, the total

granular torque reads

τGi =
Nc∑

j

−→ri j × −→
Fi j, (3)

where ri j is the branch vector drawn from the center of mass
of i to the contact point with particle j.

Our numerical scheme also includes a self-alignment
torque �Di, which mimics the desire of pedestrians to walk
with their shoulder plane aligned perpendicularly to the direc-
tion of movement. In practice, the torque is set proportional
to �θ , the difference among the actual and the desired orien-
tation of the particle [36,37]. The complete expression of the
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self-alignment torque reads

�Di = [SD�θ − βθ̇ + η] · ẑ. (4)

Note that the first term of the equation is an elastic term
characterized by an angular strength SD. It also contains a
linear damping term βθ̇ , where θ̇ is the particle’s angular
velocity. In the simulation, we set β = 4.5

√
SD, which guar-

antees overdamped conditions.
The self-alignment torque [Eq. (4)] also includes a white

noise η that differs from the one introduced in previous works
[36,37]. In that case, the noise remained active during the
whole evacuation process, having a deterministic and periodic
nature that does not seem to represent people’s behavior
during an evacuation in a realistic manner. Indeed, previous
experiments showed that people who are far from the door
typically keep their body oriented toward the exit. Once they
approach the door, the possibility of getting trapped in a
given configuration increases, and pedestrians try to rotate
their bodies to escape from it. In other cases, intentional body
rotations are performed to occupy some existing gaps within
the crowd, and it seems that this strategy is more frequent
near the exit. For this reason, we consider that introducing a
continuous perturbation in the particle rotation is not a proper
way of modeling human behavior. Therefore, we propose
an implementation of the noise that is only activated if the
pedestrian is close to the door and is not moving. In practice,
the noise is introduced at each particle when it fulfills two
conditions: (i) it is closer to the center of the door than
2.2 m, and (ii) its kinetic energy is below an energy threshold
(five orders of magnitude lower than the initial energy of the
particle).

Importantly, the strength of the noise η is chosen from a
normal distribution η ∼ N (0, ση ), with ση = 170 N m. This
value was taken after estimating the typical torque acting on
a clogged pedestrian. To this end, we performed preliminary
simulations without any noise; in this scenario, whenever
a clog developed, the torques acting on each particle that
configured the blocking arch were sampled. Repeating the
simulations as many times as necessary, we drew the global
distribution of torques involved, resulting in a Gaussian with
μη ≈ 0 and ση ≈ 170 N m.

Once the forces and torques are defined, the translational
and rotational dynamics of each particle are resolved using
velocity Verlet schemes. As stated above, more details about
the numerical implementation can be found in [36,37].

B. Simulated scenarios

We simulate 192 agents within a square room of 8×8 m2

flowing continuously through a door of 1.0 m width placed
in the middle of one wall. This door size is sufficiently large
to prevent a complete arrest of the flow and small enough to
trigger partial flow interruptions. Initially, all pedestrians are
distributed throughout the room with random speeds (trans-
lational and rotational), and their angular position is fixed
in π radians (all facing the wall where the door is). We
used periodic boundary conditions to avoid transient effects.
In practice, this implies that all pedestrians passing through
the door at a given position in the x direction (coordinates
indicated in Fig. 2) reenter the room from the back at the same

x position. For practical reasons, we also applied periodic
boundary conditions in the transversal direction, but we have
checked that for the size of the room and the number of pedes-
trians simulated here, there are no pedestrians reaching these
boundaries. Furthermore, in some tests a circular obstacle of
1 m radius is implemented (results for smaller obstacle sizes
are shown in the Appendix). The obstacle is always placed
with its center aligned with the center of the door, and we vary
systematically its distance to the exit in the y direction. This
is quantified by the parameter �, which specifically accounts
for the distance from the center of the door to the closest part
of the obstacle, as indicated in Fig. 2(b).

All the results presented here were obtained setting a
simulation time of Tsim ∼ 1500 s. This time guarantees that
all particles leave the room at least five times during the
simulation. In addition, in order to have good statistics, several
repetitions of the simulations with the same parameter values
were also executed but varying the initial conditions (rota-
tional and translational particle speeds). Indeed, it is important
to note that depending on the parameter values, the number of
repetitions performed was different. As we will see later, when
the value of the desired velocity is high, the variability of the
results is notably larger. That is why, in those specific cases,
it was necessary to increase the number of repetitions in order
to reduce the uncertainty of the measured magnitudes.

We execute a systematic study, varying the desired speed
Vd , the angular strength SD, and the distance of the obstacle
to the door �. Modifying Vd , we aim to reproduce changes
in the competitiveness level, while the parameter SD allows
us to vary the tendency of the particles to align in a specific
direction. A value of SD close to zero makes the particle
rotational motion unconstrained, so the particle does not have
a desired orientation in its movement toward the door. On
the contrary, when SD is higher than zero, the particle tends
to orient its long axis perpendicular to the direction of the
desired velocity. The higher SD is, the stronger is the force that
the body applies to reduce the difference between its actual
orientation and its desired orientation. Lastly, introducing the
obstacle and modifying its position, we investigate the role it
plays on the pedestrian evacuation process.

Our systematic study begins by evaluating the dependence
of the flow rate on the desired velocity Vd for cases without
an obstacle (NO) and no desired orientation (SD = 0). This
scenario serves as a reference to compare when exploring
the significance of the other parameters investigated. Then,
we will introduce the obstacle, keeping the angular strength
null and varying the parameter � (obstacle distance to the
door) to find out whether there are positions that optimize the
flow. As a last step, we modify the strength of orientation SD,
addressing its influence on the flow properties.

III. RESULTS

A. Evacuation without obstacle and no desired orientation

We start by evaluating the system response when varying
the desired speed Vd for evacuations without an obstacle and
SD = 0. In every run, we obtained the exit time for each
pedestrian, which is then used to calculate the head-times τ

between the passage of consecutive individuals. This variable
is ideal to detect the formation of blockages at the exit, and
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FIG. 1. (a) Average flow rates (calculated as the mean of the different repetitions performed in the same conditions) vs pedestrian desired
speed Vd . Error bars have been calculated as the standard error with a confidence level of 95%. (b) Black dots represent the average flows
obtained for each repetition (lasting 1500 s), and blue dots represent the means of these data, which correspond to same values displayed in
(a). Also, the box plots of the data are shown in yellow: the boxes display the median and the interquartile range (IQR), and the whiskers reach
the closest data point inside 1.5 IQR. Those points that remain outside this range are represented as outliers (red crosses). (c) Complementary
cumulative distribution function of the time intervals (τ ) between the passage of two consecutive pedestrians for different Vd values as indicated
in the legend. Solid lines represent power-law fittings of the tails with the exponent values reported in Table I. Inset: log-log representation
of the probability density functions for the same simulations as in the main panel. In (d) and (e) we show the time interval averages when
considering only the time lapses that are smaller or larger than a preestablished threshold (τt = 0.5). This separates the clogging and flowing
condition: τC for τ � 0.5 and τF for τ > 0.5.

it can also be used to compute other magnitudes such as the
flow rate as J = 1/〈τ 〉. Once the value of J is calculated
for each repetition (1500 s), we obtain the average value
for each type of evacuation condition. Figure 1(a) suggests
a nonmonotonous dependency of J on the desired velocity Vd .
For low values of Vd , the flow rate increases with Vd denoting
a faster-is-faster regime. However, the behavior changes at
Vd � 4.5 m s−1 as J saturates and even seems to decrease
slightly when increasing Vd , hence suggesting a faster-is-
slower effect.

Nonetheless, increasing Vd also produces more dispersion
in the measurements, as can be glimpsed from the error
bars of Fig. 1(a). These error bars have been calculated as
the 95% confidence intervals of all repetitions performed in
the same conditions. To confirm this result, in Fig. 1(b) we
represent the whole statistics by means of box-plots (also,
black dots are used to represent the values of J calculated in
each repetition). The results displayed in Fig. 1(b) confirm an
important increase of dispersion in the flow rate values when
Vd augments, a feature that is especially evidenced by the
presence of outliers (red crosses). Therefore, although the data
seem to display a faster-is-slower behavior for high values of
Vd , the high dispersion in the values of J obtained in these
conditions demands a better and more careful analysis of the
individual passage times τ (recall that J can be understood as
just the inverse of the average of the head-times J = 1/〈τ 〉).

As expected, the probability distributions of head-times
are strongly asymmetric [inset of Fig. 1(c)]. They display
a plateau for low passage times and then—after a certain

value of τ that we will call τmin—a decay that is compatible
with the power-law tail already obtained in other systems
such as grains, colloids, and sheep [39]. Aiming at a better
quantification of these heavy tails (which reflect the existence
of long-lasting clogs), in Fig. 1(c) we show the complemen-
tary cumulated distribution functions P(t � τ ) (also called
survival functions). First, we confirm the existence of power-
law decays, p(τ ) ∼ t−α . Moreover, a fitting of the curves
reveals that all tails have exponents α > 2 (see Table I), so
the first moment of the distribution 〈τ 〉 is well defined. This
is relevant as it implies that the values of J represented in
Fig. 1(a) are also well defined.

Having said that, it is also important to remark that, in
some cases, the values of α are below 3; when this happens,
the second moment of the distribution diverges. In practice,
this means that the standard deviation of these distributions
cannot be univocally defined: it will grow unboundedly as
the measuring time increases. This feature can of course be
related to the high dispersion in the values of J reported in
Fig. 1(b). Indeed, in this plot the outliers (represented with
red crosses) always appear toward low values of J as they are
caused by extreme long-lasting clog events.

Doing a more careful analysis of Fig. 1(c), it is noticeable
that the survival functions show different trends depending
on the values of τ that we look at. For low values of τ , the
probability P(t � τ ) increases as the value of Vd decreases.
Conversely, for high values of τ (approximately from τ > 1 s)
this trend is reversed. In this region, it is more probable to
find long-lasting head-times when the value of Vd increases, a
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TABLE I. Values of some parameters for different Vd values: α is
the exponent of the power-law tail, τmin is the value of τ above which
the fit is valid, 〈τ 〉 is the average evacuation time per pedestrian, sτ is
the variance of τ values, and N is the total number of data recorded.
The * signs in sτ indicate that the second moment of the distribution
is not well defined as the exponent value is α � 3. Indeed, in most of
these cases the value of sτ is similar to or much larger than the value
of 〈τ 〉.

Vd (m s−1) α τmin (s) 〈τ 〉 (s) sτ (s) N

1 4.03 1.16 0.318 0.103 21864
1.5 3.73 1.50 0.286 0.140 24081
2 3.03 1.11 0.263 0.166 26169
2.5 2.86 1.09 0.242 0.233* 28417
3 2.97 1.38 0.224 0.283* 30745
3.5 2.86 1.50 0.220 3.202* 31290
4 2.84 1.45 0.198 0.525* 34785
4.5 2.62 1.27 0.187 0.338* 36799
5 2.46 1.16 0.189 9.374* 109550
5.5 2.34 1.01 0.192 9.950* 71653

behavior that is compatible with the reduction of the exponent
α when increasing Vd , as reported in Table I. A similar
behavior has been observed before in granular and sheep
flow through bottlenecks [40], and it has been attributed to
an increase of clogging. As in that work, in order to study
both regions separately and characterize the different trends
observed, we define a threshold of τt = 0.5 s, which deter-
mines if the system is in a flowing condition (if τ � τt ) or
in a clogged scenario (when τ > τt ). Physically, this means
assuming that a clog only happens when the delay among the
passage of consecutive pedestrians is longer than 0.5 s; other-
wise, the flow is continuous and the existence of small delays
is just a consequence of the discrete nature of our system.
Importantly, the same analysis that would be presented below
was done using another threshold of τt = 1.0 s, obtaining very
similar results.

Once the distinction among flowing and clogged condi-
tions has been made, we calculate the average τ values for
each case (we called them 〈τF 〉 and 〈τC〉, respectively). The
outcomes are reported in Figs. 1(d) and 1(e), revealing that, as
the desired speed Vd increases, 〈τF 〉 monotonically decreases
and 〈τC〉 monotonically increases. In one, if the system is
not clogged, pedestrians pass faster as the competitiveness
increases. However, when the system is clogged, augmenting
the competitiveness enlarges the duration of the exit block-
ages. In other words, our outcomes suggest that regardless
of the desired velocity, there is a faster-is-faster behavior
for events with τ � τt , and a faster-is-slower behavior for
events with τ > τt . Thereby, the impact of the desired speed
on the flow rate depends strongly on the state of the system.
When the system is in fluidized conditions, increasing the
desired speed would enhance the particle flow rate. However,
when the system is stuck, increasing the desired speed would
enlarge the duration of clogs, hence diminishing the global
flow rate. These features suggest that the competition between
the dynamics in these two regimes determines the overall
system response. Note that this behavior can be masked by the
simplistic calculation of the average flow rate; then, our result

stresses the importance of taking into account the statistical
properties of the head-times distributions in order to have a
complete picture of the evacuation dynamics (see [41,42] for a
deeper explanation). Although it may be thought that the tails
have little statistical weight, their role in the dynamics can be
very significant. An example of this instance can be sensed by
looking at the high value of 〈τC〉 obtained for Vd = 3.5 m s−1,
which is caused by a single very long-lasting clog, which also
leads to an extraordinarily low value of J for the run in which
it appeared [see the outlier in Fig. 1(b)].

B. Effect of the obstacle

After investigating the role that the desired velocity plays
in room evacuations, we proceed to examine the effect of
placing an obstacle in front of the door. For this purpose, we
perform new simulations implementing a circular obstacle of
radius R = 1.0 m, which is aligned with the center of the door.
We have carried out a systematic study, varying the distance
from the obstacle to the door � for the same desired speeds Vd

implemented in Sec. III A. Figure 2(a) illustrates the values of
flow rate J = 1/〈τ 〉 as a function of � for four representative
values of Vd .

In general, we find that the qualitative dependence of J
on � is approximately the same regardless of the desired
velocity. When the obstacle is placed very close to the door,
the flow rate is notably lower than in the case without the
obstacle [dotted lines in Fig. 2(a)]. The reason is that for
these obstacle positions, pedestrians get stuck as the area
between the wall and the obstacle narrows, as illustrated in
Fig. 2(b). In this scenario, the door size plays a secondary
role and the characteristic size governing the system dynamics
is the width of these narrow passages at both sides of the
obstacle. As the obstacle is separated from the door, the
size of these lateral passages increases, and the flow rate is
enhanced until an optimal distance is reached (around 1.2 m).
Then, as the obstacle distance to the door is further increased,
the flow rate reduces and tends to the asymptotic limit of
the case without an obstacle. Interestingly, this asymptotic
approximation to the no-obstacle scenario seems to depend on
the desired velocity. For the lowest value (Vd = 1 m s−1), the
flow rate after the optimum obstacle position is always higher
than that in the case without an obstacle. Therefore, there
is a gradual approach to the asymptotic limit from above, a
result that is compatible with the one obtained experimentally
for clogging in granular materials [43]. Nevertheless, for the
other desired velocities displayed in Fig. 2(a), the flow rate
drops below the dotted line when � > 1.5 m, so the obstacle
delays the evacuation before approaching the asymptotic limit
from below. As far as we know, this distinctive feature has
not been reported experimentally in any system of discrete
bodies passing through bottlenecks. In the same way, we are
not aware of any numerical work that has reported this kind of
behavior.

Aiming to rationalize the different trends observed when
changing the place of the obstacle, we analyze the survival
functions of the time-lapses in the same way as before. In
Fig. 3 we display the outcomes obtained for several obstacle
positions and three representative values of the desired veloc-
ity. The first salient feature is that the distributions display the
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FIG. 2. Effect of obstacle position on the flow rate. (a) Average flow rates vs obstacle position, for several values of desired speed Vd as
indicated in the legend. Dotted lines represent the asymptotic limit, which corresponds to the case without obstacle. (b)–(e) Snapshots of the
simulations obtained for different obstacle positions as indicated in each panel.

same characteristic power-law tails as those obtained without
an obstacle [reported in Fig. 1(a)]. Interestingly, for the lowest
velocity analyzed, all distributions are very similar, a behavior
that is compatible with the small dependence of the flow rate
on the obstacle position reported in Fig. 2 for this case. On the
contrary, for higher desired velocities, the exponent α seems
to depend nonmonotonically on the obstacle distance to the
door �. Effectively, when the obstacle is too close to the
door, the distribution tails are the heaviest, and for the specific
case of � = 0.6 m they approach the limit α = 2, where 〈τ 〉
is not well-defined. Remarkably, the survival functions also
capture the optimal position of the obstacle at � = 1.2 m. In
this case, the statistics show the lowest probabilities of long
head times, a hallmark of clogging reduction. Conversely,
when � > 2.0 m we are unable to detect any feature in the
distributions that correlates with the local minimum in the
flow rate reported in Fig. 2 for these obstacle positions.

To attain a better quantification of the different flowing
dynamics emerging in the presence of an obstacle, we follow
the same procedure as before and we analyze separately the
passage statistics when the system is in a flowing condition
(τ � τt ) and when it is clogged (τ > τt ). Again, we use
τt = 0.5 s as a threshold value to recalculate the average
head-time for each regime separately. Figure 4 shows the
obtained dependencies of 〈τF 〉 and 〈τC〉 on � for different
desired speeds Vd . Interestingly, Fig. 4(a) reveals that when
the system is in the flowing condition, the obstacle never
reduces the pedestrian passage times (at least in a significative
manner). This occurs regardless of the desired velocity of
the pedestrians and the position of the obstacle. However,
when the system is clogged [Fig. 4(b)], the presence of the
obstacle at certain distances improves the flow as 〈τC〉 are
sometimes lower than in the case without an obstacle. Indeed,
we observe that the lowest value of 〈τC〉 occurs for � around

FIG. 3. Complementary CDFs of the time lapses obtained for different Vd values and obstacle positions (see the legend, where NO means
absence of obstacle). In each panel, the results for all the simulations with the same Vd are represented: 1, 3, and 5 m s−1 for (a)–(c), respectively,
as indicated at the top of each panel. The black dotted line marks the boundary α = 2 below which the expected average value of the distribution
does not converge.
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FIG. 4. Average head times as a function of the obstacle distance
for different values of the desired velocity (see the legend). In (a) the
average 〈τF 〉 is performed over the values of τ when the system is
flowing (i.e., τ < 0.5), whereas in (b) the average 〈τC〉 is performed
when the system is clogged (i.e., τ > 0.5). The colored dotted lines
indicate the asymptotic limit for the no-obstacle case.

1.2 m, coinciding with the obstacle position at which the
maximum flow rate appeared in Fig. 2. Overall, this behavior
indicates that the obstacle effect on reducing clogging times
is the reason that it improves the flow rate for some specific
positions (as suggested in the original paper of Helbing et al.
[4]). Nevertheless, the existence of a local minimum in the
flow rate for � > 1.5 m cannot be explained by the obstacle
effect on clogging.

Interestingly, a closer analysis of the average head-times
in the flowing condition [Fig. 4(a)] reveals a small but
systematic increase of 〈τF 〉 for � > 1.5 m that leads to a
local maximum around � = 2 m. Therefore, it seems that
the presence of the obstacle at these distances negatively
affects the instantaneous flow rate (the flow rate value when
there are no blockages). Accordingly, we can conclude that
the existence of a local minimum on the flow rate reported
in Fig. 2 for � � 1.5 is related to the dynamics emerging
in the flowing condition. A different way of reaching this
conclusion is observing that 〈τF 〉 approaches the no-obstacle
limit from above, a behavior compatible with the flow rate
behavior displayed in Fig. 2(a) (where the asymptotic limit
was reached from below). Again, as happened in that case, the
behavior observed for Vd = 1 m s−1 seems to be the exception
to the rule, as 〈τF 〉 approaches the no-obstacle limit from
below.

After all, the actual macroscopic system response results
from a competition between the dynamics in the flowing and
clogged condition. In spite of the fact that the system is
flowing most of the time, it seems that the blockages (being
extreme in some cases) are the ones that primarily determine
the flow rate of the system. In this way, thanks to the positive
role that the obstacle plays in avoiding the formation of long-
lasting clogs, the flow rate is notably enhanced for obstacle
positions around 1.2 m. Then, when the obstacle is placed at
further distances (� > 1.5 m), this clogging prevention effect
is reduced and the seemingly negative role that the obstacle
has on the instantaneous flow leads to the appearance of a
local minimum on the flow rate.

FIG. 5. Average flow rates vs pedestrian desired speed Vd for
three different values of SD (0, 10, 20 N m). As representative cases,
we display results for the simulations without obstacle (a) and with
the obstacle placed at � = 1.2 m (b). All error bars have been
calculated as the 95% confidence interval of the average of all runs
computed in the same conditions.

C. Influence of angular strength SD

As a last step, we analyze the influence of the parameter
SD on the pedestrian flow. Until this point, we set the value
of SD = 0 N m, so the particles had no preferred angular
orientation. By increasing the value of SD, we force the bodies
to reduce the difference between their current and desired
orientation (long axis perpendicular to the desired velocity
direction) by applying a torque such as that defined in Eq. (4).
This investigation is performed considering the case without
an obstacle and the scenario where the obstacle position opti-
mizes the flow rate (� = 1.2 m). Furthermore, we test three
different values of angular strength (SD = 0, 10, 20 N m) for
the whole range of desired velocities explored in previous
sections.

In Fig. 5(a) the outcomes of the flow rate J are presented as
a function of the desired velocity for the case without an obsta-
cle. Clearly, the best scenario is when particles propel without
any preferred orientation (SD = 0) and the flow rates reduce
when increasing SD. Comparatively, the greatest change is
seen when increasing the value of SD from 0 to 10 N m, with a
smaller effect if we keep augmenting SD up to 20 N m. More
importantly, it seems that the implementation of the angular
strength screens the appearance of the faster-is-flower effect
for high values of the desired velocity.

In the presence of the obstacle [Fig. 5(b)], the evolution
of the flow rate curves is rather similar to the case without
an obstacle. Again, increasing SD leads to smaller flow rates
and masks the appearance of the FIS effect. Indeed, the
obstacle seems to prevent the emergence of FIS even for the
evacuations for particles with no desired orientation [blue
curves in Fig. 5(b)], a feature that is compatible with the
reduction of the clogging events triggered by the obstacle that
was evidenced before.

We proceed now to display in Fig. 6 the dependence
of the survival functions on the angular strength for four
representative cases (with and without an obstacle and low and
high desired velocity). Clearly, the most important parameter
affecting the distributions tails is the desired velocity. As is
known, increasing Vd augments the probability of finding long
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FIG. 6. Complementary cumulative distribution functions of the
time lapses obtained for Vd = 1 m s−1 (top row) and Vd = 5 m s−1

(bottom row) when there is no obstacle (left panels) and when the
obstacle is placed at � = 1.2 m (right panels). Different colors are
used for distinct values of SD as indicated in the legend. Again,
the black dotted lines mark the boundary α = 2 after which the
average value of the distribution does not converge.

arrests of the flow. In addition, we find a weak (but consistent)
effect of the angular strength on the appearance of these long
clogs: when SD > 0, the tails seem to be a little bit wider than
for the case of SD = 0. This behavior, which happens regard-
less of whether or not the obstacle is present, is coherent with
the flow rate reduction reported in Fig. 5 when increasing SD.

To test this hypothesis, we will compute once again the
average head-time when the system is in the flowing condition
or in the clogged one. Interestingly, the dependence of the ob-
tained values on the desired velocity reported in Fig. 7 is very
similar regardless of whether or not there is an obstacle: when
Vd increases, 〈τF 〉 reduces and 〈τC〉 augments, both monotoni-
cally. As expected from the trends reported in the distribution
tails in Fig. 6, the effect of implementing an angular strength
slightly increases 〈τC〉 [note that red and yellow curves are
systematically above the blue ones in panels (c) and (d)]. But
surprisingly, the effect of SD on the system dynamics is more
apparent when focusing on the flowing condition [Figs. 7(a)
and 7(b)]. Clearly, implementing a preferred orientation in the
evacuating pedestrians affects the instantaneous flow (when
there are no clogs), which becomes lower (〈τF 〉 higher) as SD

is increased.
Overall, the results reported in this section suggest that

implementing an angular strength—which seems a suitable
strategy if we want to simulate a more realistic pedestrian
behavior—delays the evacuation process. Contrary to what it
could be a priori, forcing a prescribed body orientation has
only a reduced effect on the clog formation and duration, and

FIG. 7. Average head times as a function of the desired velocity
when measured in either the flowing condition (〈τF 〉, top panels) or in
the clogged scenario (〈τC〉, bottom panels). As in the previous figure,
results are presented when there is no obstacle (left panels) and
when the obstacle is placed at the optimal position � = 1.2 m (right
panels). The different curves in each figure correspond to distinct
values of SD as indicated in the legend.

a more important impact on the dynamics when the system
is freely flowing. Although the origin of this behavior is not
clear, we speculate that it could be driven by a reduction of the
global ordering near the door when the bodies are aligned with
the shoulders perpendicular to the desired velocity direction.
On the contrary, the emergence and duration of the clogs
would be mostly determined by the intensity of the η noise
that was introduced above in Eq. (4). Note that this noise is
not coupled to the value of SD, and therefore it seems quite
reasonable that the clogging statistics are rather similar for
the three cases of SD presented.

IV. CONCLUSION

In this work, we have simulated the flow of self-propelled
asymmetric spherocylinders through a narrow door as an
approximation to the pedestrian room evacuation problem. To
this end, we have used a previously introduced model [36]
in which we incorporated a new and more realistic noise in
those pedestrians that are stacked at the exit proximities. In
this way, we have performed a systematic investigation of
the flow rate dependence on several parameters of the model:
desired velocity Vd , obstacle distance to the door �, and
angular strength SD. By determining the time gaps between
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the passage of consecutive pedestrians, we have been able
to characterize the bottleneck flow process, which evidences
the existence of two different dynamics: when the crowd is
flowing and when it is clogged.

The study of these two dynamics separately has allowed us
to consistently reveal the faster-is-slower effect in the clogged
condition and the faster-is-faster phenomenon in the flowing
one. This happens regardless of the desired velocity values
analyzed, the obstacle placement, and the angular strength
implemented. Consequently, we can state that the prevalence
and competition between these two regimes is what deter-
mines the overall emergence of the faster-is-slower effect.
For example, when the obstacle is introduced—although the
faster-is-slower effect appears in the clogging condition—
clogs are importantly reduced and their weight in the statistics
is not sufficiently important to cause the appearance of the
faster-is-slower effect in the average flow rate.

In this sense, we have also shown that the reduction
of clogging induced by the obstacle is clearly behind the
existence of an optimal distance at which the flow rate is
globally improved. On the contrary, the presence of a local
minimum in the flow rate when the obstacle is at about 2 m
seems to be caused by a negative effect of the obstacle in the
system dynamics when it is in a flowing condition. Finally,
we observe that the torque inducing pedestrians to align
their bodies perpendicularly to the moving direction is, in all
cases, prejudicial for the flow rate developed. This stresses the
importance of implementing more realistic particle shapes to
develop better and more helpful evacuation models.

There are several points that we leave open for future work.
First of all, it would be important to meticulously characterize
the micromechanics of the system, thus allowing us to obtain
density, speed, and force fields in different conditions. In
addition, it would be interesting to break the symmetry of
the room, offsetting the obstacle from the exit door. This
task would of course be very challenging as it will imply
the addition of a new degree of freedom in the system, and
the performance of a whole set of numerical experiments
varying that parameter (but also the other ones). Nevertheless,
we believe it is a promising and worthwhile approach given
the experimental evidence existing about the efficacy of this
strategy [23].
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APPENDIX: EFFECT OF OBSTACLE SIZE

In this Appendix, we analyze the role that the obstacle size
has on the macroscopic flow rate. To this end, apart from
the obstacle implemented in the paper, we have simulated
two smaller sizes of 0.5 and 0.25 m radius. Interestingly,
the results reported in Fig. 8 for the most interesting case of
Vd = 5 m s−1 reveal that the flow rate improvement is similar
regardless of the obstacle size. Nevertheless, the optimum
obstacle position seems to move toward smaller values of �,
a behavior that seems reasonable as, for a given obstacle loca-
tion, reducing the obstacle size implies enlarging the narrow
passages at both sides of the obstacle. Also, the comparison
among different obstacle sizes suggests that the decrease of
flow appearing for � � 2.0 m is minimized when the obstacle
size is reduced. In any case, a further investigation of the
role of obstacle size and shape would be interesting using
nonsymmetric spherocylinders.

[1] J. B. Thomas and C. Peters, Int. J. Retail Distrib. Manage. 39,
522 (2011).

[2] R. F. Fahy, G. Proulx, and L. Aiman, Fire Matter 36, 328
(2012).

[3] K. Rogers, Women’s Stud. Quart. 40, 171 (2012).
[4] D. Helbing, I. Farkas, and T. Vicsek, Nature (London) 144, 297

(2000).
[5] H. Vermuyten, J. Beliën, L. De Boeck, G. Reniers, and

T. Wauters, Safety Sci. 57, 167 (2016).

[6] D. R. Parisi and C. O. Dorso, Physica A 385, 343 (2007).
[7] G. A. Frank and C. O. Dorso, Physica A 390, 2135 (2011).
[8] K. Suzuno, A. Tomoeda and D. Ueyama, Phys. Rev. E 88,

052813 (2013).
[9] R. Hughes, Annu. Rev. Fluid Mech. 35, 169 (2003).

[10] D. Helbing, L. Buzna, A. Johansson, and T. Werner, Transport.
Sci. 39, 1 (2005).

[11] Y. Zhao, M. Li, X. Lu, L. Tian, Z. Yu, K. Huang, Y. Wang, and
T. Li, Physica A 465, 175 (2017).

012907-9

https://doi.org/10.1108/09590551111144905
https://doi.org/10.1002/fam.1083
https://doi.org/10.1353/wsq.2012.0023
https://doi.org/10.1016/j.ssci.2016.04.001
https://doi.org/10.1016/j.physa.2007.06.033
https://doi.org/10.1016/j.physa.2011.01.015
https://doi.org/10.1103/PhysRevE.88.052813
https://doi.org/10.1146/annurev.fluid.35.101101.161136
https://doi.org/10.1287/trsc.1040.0108
https://doi.org/10.1016/j.physa.2016.08.021


I. ECHEVERRÍA-HUARTE et al. PHYSICAL REVIEW E 102, 012907 (2020)

[12] R. Escobar and A. De La Rosa, Lect. Notes Comput. Sci. 2801,
97 (2003).

[13] A. Kirchner, K. Nishinari, and A. Schadschneider, Phys. Rev. E
67, 056122 (2003).

[14] D. Helbing and A. Johansson, in Encyclopedia of Complexity
and Systems Science, edited by R. Meyers (Springer, New York,
2010).

[15] T. Matsuoka, A. Tomoeda, M. Iwamoto, K. Suzuno, and D.
Ueyama, Traffic and Granular Flow’13 (Springer, Cham, 2015).

[16] N. Shiwakoti and M. Sarvi, Transport. Res. Pt. C 37, 260
(2013).

[17] L. Jiang, J. Li, C. Shen, S. Yang, and Z. Han, PLoS ONE 9,
e115463 (2014).

[18] N. Shiwakoti, X. Shi, and Z. Ye, Safety Sci. 113, 54 (2019).
[19] S. Hoogendoorn and W. Daamen, Transport. Sci. 39, 147

(2005).
[20] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht, and

W. Klingsch, Transport. Sci. 43, 395 (2009).
[21] C. Feliciani and K. Nishinari, Transp. Res. Pt. C 91, 124 (2018).
[22] T. Kretz, A. Grünebohm, and M. Schreckenberg, J. Stat. Mech.

(2016) P10014.
[23] D. Yanagisawa, A. Kimura, A. Tomoeda, R. Nishi, Y. Suma,

K. Ohtsuka, and K. Nishinari, Phys. Rev. E 80, 036110 (2009).
[24] Y. Liu, X. Shi, Z. Ye, N. Shiwakoti, and J. Lin, in Proceedings

of the 16th COTA International Conference of Transportation
Professionals: CICTP 2016 (ASCE, Reston, VA, 2016), pp.
779–790.

[25] X. Shi, Z. Ye, N. Shiwakoti, D. Tang, and J. Lin, Physica A 522,
350 (2019).

[26] A. Garcimartín, D. Maza, J. M. Pastor, D. R. Parisi, C. Martín-
Gómez, and I. Zuriguel, New J. Phys. 20, 123025 (2018).

[27] I. Zuriguel, I. Echeverría, D. Maza, R. C. Hidalgo, C. Martín-
Gómez, and A. Garcimartín, Safety Sci. 121, 394 (2020).

[28] N. Shiwakoti, M. Sarvi, G. Rose, and M. Burd, Transport. Res.
Record 2137, 31 (2009).

[29] I. Zuriguel, J. Olivares, J. M. Pastor, C. Martín-Gómez, L. M.
Ferrer, J. J. Ramos, and A. Garcimartín, Phys. Rev. E 94,
032302 (2016).

[30] P. Lin, J. Ma, T. Y. Liu, T. Ran, Y. L. Si, F. Y. Wu, and G. Y.
Wang, Physica A 482, 227 (2017).

[31] M. Haghani, Safety Sci. 129, 104760 (2020).
[32] C. Feliciani and K. Nishinari, in Proceedings of Pedestrian

and Evacuation Dynamics 2016, Collective Dynamics (2016),
p. 76.

[33] J. H. Yamamoto, D. Yanagisawa, C. Feliciani, and K. Nishinari,
Transport. Res. Pt. B 122, 486 (2019).

[34] J. Willems, A. Corbetta, V. Menkovski, and F. Toschi,
arXiv:2001.04646.

[35] F. Alonso-Marroquin, J. Busch, C. Chiew, C. Lozano, and
Á. Ramírez-Gómez, Phys. Rev. E 90, 063305 (2014).

[36] R. C. Hidalgo, D. R. Parisi, and I. Zuriguel, Phys. Rev. E 95,
042319 (2017).

[37] D. R. Parisi, R. Cruz Hidalgo, and I. Zuriguel, Sci. Rep. 8, 1
(2018).

[38] A. Garcimartín, J. M. Pastor, C. Martín-Gómez, D. Parisi, and
I. Zuriguel, Sci. Rep. 7, 1 (2017).

[39] I. Zuriguel, D. R. Parisi, R. C. Hidalgo, C. Lozano, A. Janda,
P. A. Gago, J. P. Peralta, L. M. Ferrer, L. A. Pugnaloni,
E. Clèment, D. Maza, I. Pagonabarraga, and A. Garcimartìn,
Sci. Rep. 4, 7324 (2015).

[40] J. M. Pastor, A. Garcimartín, P. A. Gago, J. P. Peralta, C. Martín-
Gómez, L. M. Ferrer, D. Maza, D. R. Parisi, L. A. Pugnaloni,
and I. Zuriguel, Phys. Rev. E 92, 062817 (2015).

[41] A. Nicolas, in Traffic and Granular Flow 17, edited by
S. H. Hamdar (Springer International Publishing, Cham, 2019),
pp. 357–364.

[42] A. Nicolas, S. Bouzat, and M. N. Kuperman, Transport. Res. Pt.
B 99, 30 (2017).

[43] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo,
and D. Maza, Phys. Rev. Lett. 107, 278001 (2011).

012907-10

https://doi.org/10.1007/978-3-540-39432-7_11
https://doi.org/10.1103/PhysRevE.67.056122
https://doi.org/10.1016/j.trc.2013.04.009
https://doi.org/10.1371/journal.pone.0115463
https://doi.org/10.1016/j.ssci.2018.11.016
https://doi.org/10.1287/trsc.1040.0102
https://doi.org/10.1287/trsc.1090.0263
https://doi.org/10.1016/j.trc.2018.03.027
https://doi.org/10.1088/1742-5468/2006/10/P10014
https://doi.org/10.1103/PhysRevE.80.036110
https://doi.org/10.1016/j.physa.2019.01.086
https://doi.org/10.1088/1367-2630/aaf4ca
https://doi.org/10.1016/j.ssci.2019.09.014
https://doi.org/10.3141/2137-04
https://doi.org/10.1103/PhysRevE.94.032302
https://doi.org/10.1016/j.physa.2017.04.021
https://doi.org/10.1016/j.ssci.2020.104760
https://doi.org/10.1016/j.trb.2019.03.008
http://arxiv.org/abs/arXiv:2001.04646
https://doi.org/10.1103/PhysRevE.90.063305
https://doi.org/10.1103/PhysRevE.95.042319
https://doi.org/10.1038/s41598-017-17765-5
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/srep07324
https://doi.org/10.1103/PhysRevE.92.062817
https://doi.org/10.1016/j.trb.2017.01.008
https://doi.org/10.1103/PhysRevLett.107.278001

